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ABSTRACT
During the COVID-19 pandemic, governments have struggled to
devise strategies to slow down the spread of the virus. This strug-
gle happens because pandemics are complex scenarios with many
unknown variables. In this context, simulated models are used to
evaluate strategies for mitigating this and future pandemics. This
paper proposes a simulator that analyses small communities by
using real geographical data to model the road interactions and the
agent’s behaviors. Our simulator consists of three different modules:
Environment, Mobility, and Infection module. The environment
module recreates an area based on map data, including houses,
restaurants, and roads. The mobility module determines the agents’
movement in the map based on their work schedule and needs, such
as eating at restaurants, doing groceries, and going to work. The
infection module simulates four cases of infection: on the road, at
home, at a building, and off the map. We simulate the surrounding
areas of the University of Tsukuba and design three intervention
strategies, comparing them to a scenario without any intervention.
The interventions are: 1) PCR testing and self-isolation if positive;
2) applying lockdown measures to restaurants and barbershops
3) closing grocery stores and restaurants and providing delivery
instead. For all scenarios, we observe two areas where most infec-
tion happens: hubs, where people from different occupations can
meet (e.g., restaurants), and non-hubs, where people with the same
occupation meet (e.g., offices). The simulations show that most
interventions reduce the total number of infected agents by a large
margin. We observed that interventions targeting hubs (2-4) did
not impact the infection at non-hubs. In addition, the intervention
targeting people’s behavior (1) ended up creating a cluster at the
testing center.
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1 INTRODUCTION
The virus SARS-CoV2 (Covid-19)[14], first detected in late 2019,
started spreading worldwide in early 2020, causing a disease out-
break. As of September 2021, the pandemic is ongoing and has
reached 219 million cases and over 4.5 million deaths worldwide.

To contain the spread of the virus, governments all over theworld
tried different actions to reduce the infection[5]. Some examples of
measures adopted were: social distancing, limiting the occupancy of
buildings, mass testing, temporarily closing non-essential business,
reducing work hours, incentivizing companies to allow employees
to work from home, etc. These measures had different degrees of
success and varied a lot depending on the country.

These mixed results highlight the difficulty of choosing which
actions to take in a pandemic. Not only do many variables have
to be considered, such as social and economic impact, but also,
governments have to reflect on aspects specific to their regions,
such as population distribution, culture, and others.

A key technology that can help tackle this issue is using a simula-
tor to investigate the spread of the disease. While no simulation can
reproduce all the complexities of a real-world situation, its results
can give decision-makers many insights and help them make more
informed decisions.

Although epidemic simulators already exist, most of them simu-
late a fictional city or do not use precise geolocation of the agents.
In the real world, the transmission of airborne diseases usually
depends directly on the interaction between people in the same
location. Hence, it is important to consider their movement, where
they passed through, and which areas can become crowded under
certain conditions. Another factor not usually accounted for is the
differences in mobility in different regions; a big city will be more
crowded and have its agents having much more interactions than a
small city.

In this context, this research proposes a simulator1 that attempts
to models more realistic communities based on geographic data.
1All the code and data for this paper, including experimental scripts, are open and
available at https://github.com/rithgroove/Epidemicon.
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In our simulation, agents move independently around the map
according to their work schedule and needs. These features make it
possible to capture particular characteristics of a community, such
as themovement of agents in themap and commonly crowded areas.
Additionally, our simulator is flexible to be adapted to different
regions. It also enables the comparison of various interventions
against the spread of disease and can give insights into what is best
for a specific community.

In this paper, we simulated three different interventions: 1) PCR
testing and self-isolation if positive; 2) applying lockdownmeasures
to restaurants and barbershops 3) closing grocery stores and restau-
rants and providing delivery instead. Intervention 1 targets the
agent’s behavior, while interventions 2 and 3 target hubs - where
people from different occupations can meet.

These experiments showed that most measures targeting hubs,
such as restaurants and supermarkets, can reduce the total num-
ber of infections but do not decrease infections at non-hubs like
workplaces. In addition, measures such as doing mass PCR testing
should be taken with care since they might cause more infections
or new clusters if not applied properly. Finally, by comparing the
results of our experiments with real-world data, we can see that
they follow the same trend and that our simulator is indeed capable
of reproducing real-world situations.

The remainder of this paper is organized as follows: Section 2
discusses other simulations and in which aspect our simulations
differ from them. Section 3 explains the implementation of the
model. Section 4 describes the experiments of all three scenarios,
then show their results and analyzes them. Section 5 discusses the
results from the previous section. Finally, Section 6 presents the
conclusion, limitations, and directions for future work.

2 RELATEDWORKS
There are various ways to model an epidemic, each with its advan-
tages and disadvantages. One common method is to use a combina-
tion of compartmental models with mathematical models. The most
common compartmental model for an epidemic is SEIR (Susceptible
- Exposed - Infectious - Recovered). In the compartmental model, in-
dividuals are grouped into compartments representing their health
status, and each individual can transition from one compartment
to another. The mathematical model provides a transition probabil-
ity for the individual to move from one compartment to another.
Abrams et al. [3] expand SEIR by separating the infectious compart-
ment into asymptomatic, symptomatic, mildly symptomatic, and
severe for the Belgian Covid-19 epidemic. Similarly, He et al. [9]
use a modified SEIR that includes Quarantined and Hospitalized to
simulate the Hubei province pandemic.

While mathematical compartmental models are useful to study
the epidemic’s growth, this model only considers which compart-
ments the individuals are in. We cannot analyze information such
as the source of infection or where the infection happened.

Another type of model that can mitigate the problems of math-
ematical compartmental models is an agent-based model. In this
group, each agent represents a person, having a chance to transmit
diseases while interacting with other agents. These models better
capture complex behavior and interaction at a level of detail that

could help us track the origins of each infection case. This infor-
mation provides insights into how the disease spreads. Dignum
et al. [7] creates an agent-based model to simulate the epidemic
that considers the health, economic and social needs of each agent.
One interesting point in this study is how the agent’s needs are
modeled. Each agent has needs such as autonomy, self-esteem,
belonging, safety, and survival that will slowly decrease as the sim-
ulation progress. When these needs decrease to a certain threshold
(hunger), the agent performs activities to replenish them (eat). Our
simulator uses a needs-based mobility model inspired by this study,
simulating needs such as hunger, food supply at home, and hair
length.

Other agent-based simulators have similarities with ours. "Any-
town" [8], which is a part of the Delineo project by Johns Hopkins
University, simulates a fictional Midwestern town with 6000 agents.
Another agent-based model is "PANDEMICSIMULATOR" by Sony
AI, is used in two studies. The first is a study in using reinforcement
learning to modify the timing for starting covid regulation[10]. The
second study infers the likelihood of infecting an individual through
real-time contact tracing [13]. While both models can simulate the
spread of the disease, both simulations use generic activities. This
means that the activities of the agents might not consider the local
behavior of the people that live in such areas. One example of this
is the high outflow of people from suburbs during working hours.

Another agent-based model is "PANSIM" [4, 6]. This simulator
uses anonymized cell phone data to generate agents’ schedules.
This simulator uses a large-scale distributed system to simulate a
large number (more than 100,000) of agents to simulate the spread
of Covid-19. This creates a more realistic behavior of the agents,
but it was not clear if they used the geo-location of the agent for
the infection model.

We use these works as inspiration to develop a simulator that
simulates more detailed agent’s mobility using real map data. This
allows us to simulate the interaction between agents on the road, en-
abling the transmission of diseases between them. We also adapted
the SEIR structure dividing the infectious compartment into asymp-
tomatic, symptomatic, and severe.

3 PROPOSED MODEL
Our model simulates how a virus spreads in small communities.
In the simulation, each step represents 5 minutes. The agent may
update its location during each step, check for infection, and update
its needs according to the modules explained below. Figure 1 illus-
trates a run of the simulator, where we can see how the agent a
placed on the map and their infection status.

The simulation has three modules that are explained below:
environment, mobility, and infection.

3.1 Environment
The environment module loads a defined region’s geodata from
Open Street Map2. The geodata contains information about roads
and buildings. The building’s data includes building types (residen-
tial, restaurants, offices, and others) as seen in the Table 1. This tag
is used to later assign home, workplace, and leisure to the agents.

2Open Street Map web page: https://www.openstreetmap.org/copyright
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Figure 1: An example of rendered view from our simulator.
The blue circles represent susceptible agent, yellow repre-
sent exposed agent, red represent an infectious agent, and
green represent recovered agent. Green buildings represent
a residential building. In contrast, white buildings represent
workplaces or facilities.
Map data: ©OpenStreetMap Contributors

Table 1: Buildings available in the map

Building Type Type Count

Apartments hub 867
House hub 188
Residential hub 166
Restaurant hub 36
Retail hub 68
Train station special-case 1
Office non-hub 52
Laboratory non-hub 80
Hospital hub 5
School non-hub 25
University non-hub 104
Barbershop hub 8

Most buildings had their tag missing, so we implemented a grid-
based tagging technique to give random tags to untagged buildings.
In this technique, we split the map into 10 × 10 cells. For each cell,
we specify how many types of buildings are in that specific square.
For example, one of the cells can have five restaurants, two retails,
and the rest of the buildings are apartments. We created this speci-
fication by observing the area on the map using a different online
map service. Based on this specification, we randomly gave tags to
the buildings within that cell.

After loading the buildings and roads data, the environment
module creates connections between buildings and roads. Since
this connection is not available on Open Street Map, we connect
the centroid of the building to the closest road using the shortest
path.

3.2 Mobility
The mobility module determines the agents’ movement around the
map depending on their occupation, needs, and health.

3.2.1 Occupation. The agents have an occupation, which provides
them with a schedule of when to go to work or school. The occupa-
tion is a parameter in the simulation. This parameter defines the
proportion of the population that has a particular occupation, the
building type to perform their occupation, and working hours. The
building is chosen randomly among all buildings with the specified
tag. For example, we may define students as 30% of the population;
students go to a random building with type "school" and stay there
from 9 to 5 during weekdays. In this parameter, we also may define
agents that work outside the simulated area. These agents go to
a train station and stay idle until their work shift finishes. These
agents have a different infection behavior, which is explained in
the infection module.

3.2.2 Needs. The agents have needs, which define their behavior
outside the working time. The agents need to eat, buy groceries,
and get their hair cut. They can eat at home or available restaurant
when hungry at random based on their preference. When they eat
at home, they consume a unit of groceries. If the groceries at home
reduces to a certain threshold, the agent goes to a supermarket. The
agents also go to the barbershop after their hair grows longer than
their preference.

3.2.3 Health. The agents have a health condition that may change
their usual behavior. Currently, the health status depends only on
one infectious disease according to the SEIR model. Symptomatic
agents stay at home and only go out if they need to buy groceries.
Agents in severe condition remain in a hospital until they recover.
Asymptomatic agents follow their schedule as usual.

3.3 Infection
The infection module provides the logic for disease transmission.
We use a modified SEIR model adapted to our simulator, as shown
in Figure 2. There are four compartments in this model: susceptible,
exposed, infectious, and recovered. The infectious compartment is
divided into asymptomatic, symptomatic, and severe symptomatic.
The transition from Susceptible to Exposed happens after contact
with an Infectious agent, following four different logic depending
on where the contact occurred:

• at residential building: there is a chance of infection based
on time of contact for every infected agent in the same house-
hold;

• at facility: there is a chance of infection based on time of
contact for every infected agent inside the building;

• on the road: the chance of infection drops the farther the
distance between agents;

• off-map infection: we use a different infection logic where
each agent has a fixed chance of getting infected.

The transition from Exposed to Infectious has an incubation
time of 1 to 3 days. After the incubation time, the agent becomes
asymptomatic and can transition to symptomatic or severe based
on a random risk factor. They can then transition to recovered after
a period of 3 to 14 days after the agent became infectious.
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Figure 2: Our modified SEIR structure has four different
ways to be exposed to the virus and three different stages
of infection

Table 2: Agent’s profession distribution

Profession Workplace Count

Office worker Office 1000
Off map office worker Train station 800
University student University 1600
University professor University 200
Restaurant worker Restaurant 140
Teacher School 100
Scientist Laboratory 150
Medical doctor Hospital 100
Retailer Retail 450
Student School 450
Barber Barbershop 10

4 EXPERIMENT
We carried out several simulation experiments to investigate promis-
ing strategies that can be further investigated and implemented
in real scenarios to reduce the spread of the virus. We simulate
the University of Tsukuba and its neighborhood with 5,000 agents
during 49 days. Table 2 shows the agents’ job distribution. This
distribution was selected based on the types of buildings on the
map.

We use the infection rate inside buildings as 20% per 24 hours
of contact per infected agent, 10% for off-map infection, and 30%
for on-the-road infection, where it reduces linearly to 5% once the
agents are 2 meters away from the infected agent. It is important to
note that this infection rate is not the same as COVID-19; we chose
a higher value to produce a surge of infection given the number of
simulations days and number of agents.

We implement a baseline scenario where no action to contain
the virus is taken and compare it to three other scenarios: 1) ap-
plying lockdown measures to restaurants and barbershops; 2) PCR
testing and self-isolation if positive; 3) closing grocery stores and
restaurants and providing delivery instead.

We record the daily active cases, cumulative cases, and location
of infection happened. Daily active cases show the number of people

Figure 3: Daily active cases for Baseline, Reduced
Workhours, and Closed Stores. Both interventions show a
similar reduction in active cases.

that are infectious per day. The cumulative case shows the total
number of cases since the beginning of the simulation. Lastly, the
location of infection indicates the number of infections per building
type.

4.1 Lockdown / State of Emergency
In this scenario, we simulate two different restriction policies for
businesses with different degrees of severity. The first policy, which
we called ReducedWork Hours, is inspired by the measures adopted
by Japan government during the COVID-19 pandemic; it consists
of limiting the business hours of certain store types to a limited
time frame. The second policy, called Closed Stores, is a stricter
restriction; the chosen business types do not open when the policy
is in effect.

The period that these restrictions are implemented is called a
lockdown period, and we opted to simulate it when the spread of
the disease is already in course. The lockdown period starts when
at least 150 agents are in severe or symptomatic conditions, and
it ends when this same number is reduced below 150. The reason
asymptomatic agents do not count for the policy is that, in a real-life
scenario, these cases would likely go undetected.

For both policies, we chose to target restaurants and barbershops
because they are non-essential businesses. In the case of policy
Reduced Work Hours, similarly to Japan, they are only allowed to
open between 11:00 and 20:00.

4.1.1 Results. For the lockdown scenario, the simulation results
and the comparison between the baseline and the two lockdown
policies, Reduced Work Hours and Closed Stores, can be found
below.

Before analyzing the data, it is important to note that the lock-
down period starts when at least 150 agents are in severe or symp-
tomatic conditions and ends when this same number is reduced
below 150. For that reason, the lockdown began on day 8 or 9 and
finished after day 40 in all repetitions. Consequently, the number
of infection cases on all results only starts to differ some days after
the lockdown begins.

Figure 3 compares the active cases (agents that are asymptomatic,
symptomatic, or severe) between the baseline, ReducedWorkHours,
and Closed Stores policies. As can be seen, the number of cases
decreased after the policies were in effect. Then, all scenarios peaked
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Figure 4: Infection by location in the simulated scenarios.
The graph shows a massive reduction of infection in restau-
rants, but infections at non-hubs do not show any changes.

Figure 5: Average new cases per day for the two simu-
lated lockdown scenarios (ReducedWork Hours and Closed
Stores) compared with reported cases in Kagoshima.

by the same day, but the number of cases in the Reduced Work
Hours and Closed Stores were much lower. By analyzing these
results, it is possible to conclude that although all scenarios followed
the same trend, both policies successfully reduced the number of
cases in total.

Following this, figure 4 shows the locations where the agents got
infected. Not surprisingly, the number of cases in the restaurant was
significantly reduced when the lockdown measures were applied,
and the stricter the measure, the more significant the reduction is.
Additionally, the number of infections on the road also lowered
since people dislocated less since they did not go to restaurants
or barbershops as often. In contrast, the number of cases in retail
increased with more restrictive policies. The possible explanation
for this is that people ate more at home and, as a consequence, had
to visit retail more often to buy food.

4.1.2 Discussion. By analyzing all of these results, it is possible to
conclude that both lockdown policies were effective in reducing the
total number of cases by a significant margin. After being applied
on day 8 or 9, they started reducing the number of cases just a few
days after.

Interestingly, the difference of the accumulative cases between
reducing work hours and closing stores was not very high, suggest-
ing that more rigorous measures do not necessarily reflect a much
bigger reduction of infection. This result shows the importance
of considering alternative lockdown measures depending on the
situation. A strict policy usually is accompanied by a substantial
economic impact for both governments and businesses. Still, its
results may not differ much from a moderate approach that could
lessen the financial burden.

However, it is important to keep in mind that one limitation
these tests had was that agents do not change their schedules to
adapt to the measures. This means that if an agent usually eats
at 20:10, but the restaurants close at 20:00, it would eat at home
instead of eating earlier at a restaurant. As a result, the Reduced
Work Hours measure would be the same as closing down the stores
for these agents.

Lastly, we compare the number of new cases between our simu-
lation and the real data from the Japanese prefecture of Kagoshima
[1]. We chose this prefecture because it adopted restrictions mea-
sures similar to the ones on the Reduced Work Hours scenario [2];
likewise, their lockdown period was similar to ours. To have an
accurate comparison, we selected a period that starts from 9 days
prior to the prefecture applying their lockdown measures (August
11th) and lasts for 49 days. By doing that, both the simulation and
Kagoshima cover the same length of days and start their lockdown
at similar times.

Figure 5 presents a similar trend between the simulated and the
real scenarios, showing that our simulation is able to produce results
that are similar to the ones observed in the real world, displaying
the reliability of our model.

4.2 PCR and Early Self Isolation
This scenario evaluates the use of PCR and early self-isolation. This
scenario is inspired by the early intervention done by countries such
as South Korea [11] which do a massive number of PCR-testing.
The idea of this scenario is to simulate early self-isolation when
the agent has not shown any symptoms. We expect this method
to reduce infection, especially infection caused by asymptomatic
agents.

There are three variants of this scenario that have different va-
lidity periods of the PCR results. The variants are 3-days expiry,
7-days expiry, and no expiry. We chose these configurations be-
cause our simulated disease has 1 to 3 days of incubation period.
On the 3-days expiry configuration, at worst, the agent will have
two days to infect other agents because they think they are healthy.
The 7-days expiry is selected to simulate a more prolonged period
where the agent behaves as healthy while being infectious. Lastly,
the no-expiry scenario was selected to simulate the worse condition
that could happen if we were not careful with the PCR results.

For the PCR and self-isolating experiment, we changed the agent
behavior to change theirmovement based on the PCR results instead
of their symptoms. In this experiment, agents will take a PCR test at
the hospital if they start to show symptoms, and if tested positive,
will inform any agents that live in the same building as them or
visit their workplace within the last three days to take the PCR
test. Once the agents test positive, they will start self-isolation and
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Figure 6: Infection by symptoms for PCR interventions.
The graph shows that PCR interventions reduce the asymp-
tomatic infections, but increase the symptomatic infections.

only go out to buy groceries if their food supply at home runs out.
Agents that in severe condition will have the same activities as the
baseline experiment, which is to go to the hospital and stay there
until recovered.

Another change we made in this experiment is that agents in
severe conditions will not infect any agents in the hospital. This
was designed because the testing area for PCR and the isolation
area for Covid-19 patients are usually in different places inside the
hospital.

4.2.1 Results. This subsection compares the baseline and three
PCR variants (3-days expiry, 7-days expiry, and no expiry). We start
analyzing the infection by the health status of the source, proceed
to the number of cases per location, compare the active case, then
discuss the insights obtained.

Figure 6 shows the number of infections by the health status of
the source. The X-axis shows which health status infectious stage of
the agent infects other agents, while the Y-axis shows the number
of cases. Each color represents the different configuration for this
experiment. From this image, we could see that the infection from
severe sources was reduced. This reduction is caused by the removal
of infection from severe patients in the hospital.

Figure 7 shows the number of cases based on the location where
the infection happened. In this figure, we removed the barbershop
because it has less than ten infection cases. We also merged School,
University, Office, and Laboratory into non-hub. This was done
because each non-hub building has similar infection increment
trends for the no expiry setting and reduction for the scenarios
with 3-days and 7-days expiry dates.

Figure 8 shows the active case for each day. In this figure, we
can see that the scenario where the PCR never expires has more
active cases than the base. The 7-days expiry scenario has almost
the same number of active-case as the baseline. Lastly, the 3-days
expiry scenario is the only scenario where we could reduce the
number of active-case.

Figure 7: infection by location for PCR interventions. The
graph shows that PCR intervention caused a massive num-
ber of infections at the hospital.

Figure 8: Active case per day for Baseline and three PCR
strategies (no expiry, 7-days expiry, and 3-days expiry).

One interesting point from figure 6 is that PCR testing interven-
tions reduced the asymptomatic infections while the symptomatic
infections increased. Another interesting point shown in figure 8
is that the longer validity of the PCR results caused higher active
cases. This increase of active cases can be attributed to the fact that
agents within the PCR scenario act based on their test results rather
than their health. In this scenario, agents infected after getting
negative results still behave as if they are healthy despite having
symptoms. This behavior caused them to move around the map,
infecting other agents.

4.2.2 Discussion. In this scenario, we also observed a higher num-
ber of infections at the hospital due to the surge of people taking
PCR tests. This is similar to what happened in Malaysia, where the
vaccination center has to be closed after the workers got infected
[12]. During the simulation time (49 Days), agents will take 10 PCR
for the 3-day validity scenario, 3 PCR tests for the 7-day validity
scenario, and 1 PCR test for the no expiry scenario. This surge of
agents taking PCR cause the hospital became a cluster of infections.
But in this scenario, hospitals have the same chance of infection
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as places like a restaurant. In reality, hospitals are likely to have
better safety measures that reduce the infection rate.

These results show that while a massive number of PCR-testing
can reduce the spread of infection, it must be noted that, in the
3-day expiry scenario, agents will need to take PCR once every
4 to 5 days, which is not realistic because PCR tests are expen-
sive. The other option is to take a PCR test once every two weeks,
represented by the 7-days validity scenario. In this scenario, we
could see that we have a similar number of cases with the baseline.
Lastly, if we are not careful, we could have more infections than
the baseline, as shown in the no expiry scenario. The 7-day expiry
and no expiry scenarios indicate that this policy can be dangerous
if not implemented correctly. For example, an agent that shows
mild symptoms and would otherwise self-isolate out of caution,
will instead walk around and infect other people because they got
a long-lasting negative PCR test.

4.3 Delivery from restaurant and supermarket
In this scenario, we want to explore actions taken by actors other
than governments to fight the virus. For such, We simulate the
delivery of food provided by restaurants and supermarkets. In the
baseline, agents have a chance to eat at home or a restaurant. If they
eat at home, they consume a unit of groceries, which they can refill
by going to the supermarket. We make three variants where 3a)
agents no longer go to restaurants; instead, another agent brings
one unit of food from the restaurant to their house. 3b) agents no
longer go to the supermarket; instead, another agent brings enough
units of food for 3 to 7 days. 3c) agents no longer go to restaurants
and supermarkets; a combination of the previous cases.

4.3.1 Results. This subsection compares the baseline and three
delivery strategies (food from restaurants, supermarkets, and both
places). We start analyzing the cumulative cases, proceed to infec-
tions per location, then discuss the insights obtained.

Figure 9 shows the number of people that are infectious per
day. As can be seen, "delivery-supermarket" does not reduce the
total number of infections, having a similar trend to the "baseline"
with about 4200 total infections and a peak of about 2000 infected
people. On the other hand, "delivery-restaurant" and "delivery-
both" drastically reduce the total number of infections, flattening
the curve with about 3000 total infections and a peak of about 850
infected people.

Figure 10 shows the number of infection on each building type.
As can be seen in the baseline, restaurants are hotspots of infections,
having the highest number compared to all the other places. On the
other hand, supermarkets have one of the lowest infections (behind
only laboratories and barbershops). As expected, the number of
infections at restaurants and supermarkets is reduced to almost
zero when these places are closed to the public (allowing only deliv-
ery). The infection at these places does not reduce to zero because
workers can infect each other. Interestingly, because restaurants
and groceries are closed, there is less movement on the streets,
reducing the number of infections "on the road" compared to the
baseline.

Figure 9: Active cases for Baseline and three delivery
strategies (restaurants, supermarkets, and both). Baseline
and delivery-supermarket present the same trend of in-
fection, peaking at about 2000 cases. Delivery-restaurant
and delivery-both have reduced the number of infections,
peaking at about 800 cases. Strategies targeting restaurants
(hotspots) are more effective in reducing infection.

4.3.2 Discussion. These results highlight the importance of identi-
fying hotspots before taking action. One may wrongly close facili-
ties that have little impact on the number of infections, potentially
causing financial problems to these places without helping fight
against the virus (supermarkets in the simulation). On the other
hand, we can get better results at fighting a pandemic by identi-
fying potential hotspots in advance and then reducing the flow of
people in these places (restaurants in the simulation). Providing
delivery requires a specific infrastructure that many places (e.g.,
small restaurants) may not have. For this reason, it is essential
to focus the resources at the right place since governments and
companies have limited resources. In the simulation, this translates
as providing the delivery infrastructure to restaurants instead of
supermarkets.

5 DISCUSSION
We observed that identifying hotspots of infection is essential when
choosing restriction measures. By targeting these locations, it is
possible to create policies that have lesser economic impact but are
still effective in reducing the transmission of the disease.

Another important observation is that infections on the road,
while not high, are still relevant. By closing hubs, agents move less,
and as a result, the cases on the road also decrease.

Surprisingly, the massive number of PCR tests reduced the in-
fections from the asymptomatic source but raised the infections
from the symptomatic source. Our results show that having a long
validity period for the PCR results caused agents infected after
the test to infect more people by behaving as if they were healthy.
Other than that, it was shown in the simulation that PCR testing
places can be a new cluster for infection. These results highlight the
importance of being careful when implementing a massive number
of tests.

Finally, the comparison with Kagoshima active cases of COVID-
19 shows that, when simulating an intervention, the simulator can
indeed produce results similar to those found in the real world —
displaying its capacity to simulate realistic scenarios.
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Figure 10: Infection by location for the baseline against
the three delivery strategies (restaurants, supermarkets, and
both). The three delivery strategies have slightly reduced
infections "on the road" and slightly higher infections "off-
map".

6 CONCLUSION
In this paper, we develop a pandemic simulator and explore three
different interventions to reduce the spread of the virus. We ob-
served that our lockdown intervention was very similar to a real
intervention in Kagoshima, Japan [1], which also had a similar
trend of new cases per day. We also noted that most interventions
targeting places where people gather, such as restaurants and su-
permarkets, reduce the total number of infections. At the same time,
the PCR testing might create a cluster in the testing center due to
the increased flow of people, which also is similar to the infection
cluster at vaccination center case in Malaysia [12]. These results
suggest that simulator can provide insights on how the disease
spread, helping decision-makers design public policies.

Our simulator has some limitations. Some data about the simu-
lated area was incomplete. This project would benefit greatly from
integrating more detailed demographics, job distribution, mobility,
and missing or incomplete information about buildings. Due to
time and processing power limitations, we had to limit the number
of simulated days and agents in the simulation. This lower number
of agents resulted in a lower population density in the simulated
area. Consequently, this lower population density resulted in a
slower spread of infection due to the lower interaction between
agents. Finally, some features that have not been implemented at
the time of writing are: transportation methods (all agents only
walk), the chance of death, and different compliance levels to the
interventions.

This work’s natural progression is to incorporate real move-
ment data generated from data collected by phone carriers into
the simulation. Another interesting future research is to explore
the interaction between natural disasters and epidemics where a
cluster of infections might form in evacuation centers.
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