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ABSTRACT
Recent studies show that Deep Reinforcement Learning (DRL) mod-
els are vulnerable to adversarial attacks, which attack DRL models
by adding small perturbations to the observations. However, some
attacks assume full availability of the victim model, and some re-
quire a huge amount of computation, making them less feasible for
real world applications. In this work, we make further explorations
of the vulnerabilities of DRL by studying other aspects of attacks
on DRL using realistic and e�cient attacks. First, we adapt and
propose e�cient black-box attacks when we do not have access to
DRL model parameters. Second, to address the high computational
demands of existing attacks, we introduce e�cient online sequen-
tial attacks that exploit temporal consistency across consecutive
steps. Third, we explore the possibility of an attacker perturbing
other aspects in the DRL setting, such as the environment dynam-
ics. Finally, to account for imperfections in how an attacker would
inject perturbations in the physical world, we devise a method for
generating a robust physical perturbations to be printed. The attack
is evaluated on a real-world robot under various conditions. We
conduct extensive experiments both in simulation such as Atari
games, robotics and autonomous driving, and on real-world ro-
botics, to compare the e�ectiveness of the proposed attacks with
baseline approaches. To the best of our knowledge, we are the�rst
to apply adversarial attacks on DRL systems to physical robots.
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Figure 1: Analysis of adversarial attacks on DRL. RL environments
are usually modeled as a Markov Decision Process (MDP), and its
observation space, and environment (transition) dynamics may be
attacked. We propose adversarial attacks that have improved com-
putational e�ciency by using the sequential nature of MDP, with
attacks in both digital and physical environments.

1 INTRODUCTION
With recent progress of DRL in various applications, such as com-
puter games [12, 21, 22], autonomous navigation [9, 26] and robot-
ics [17], the safety and robustness of DRL models are becoming a
major concern, especially on real world robotics tasks [17, 30, 35].
Recently, adversarial attacks that have imposed challenges to gen-
eral deep neural network (DNN) models [14, 18, 33, 37–40] started
to challenge the robustness of DRL models. However, the adversar-
ial attacks on DRL models can be di�erent from attacks on DNN
models: DRL models focus on sequential decision-making problems
while DNN models mostly work on individual prediction prob-
lems with no temporal continuity. Existing white-box attacks on
DRL models assume almost full access to the victim policy [16].
Some black-box attacks assume partial knowledge of the victim
policy [13, 16] but attack each observation individually. These black-
box attacks can be computationally intensive especially on tasks
with high dimensional inputs. Moreover, most of these attacks have
only been evaluated in simulated environments. It remains unclear
of their e�ects on real world DRL models.

Main Track AAMAS 2022, May 9–13, 2022, Online

1010



In this work, we seek to expand our understanding of the vul-
nerabilities of DRL systems. To achieve this goal, we propose a
set of realistic attacks with improvement on the computational
e�ciency. To make less assumptions on the victim model, we focus
on black-box attack. Based on the components of MDP (shown
in Figure 1), we categorize attacks into di�erent types, including
attacks on observation space and on environment dynamics. To
improve the attack e�ciency on multiple high dimensional inputs,
we propose to reduce the amount of computation by utilizing the
sequential nature of MDP tasks. Finally, to validate the feasibility of
adversarial attacks on real world DRL tasks, we perform real world
physical attack on a real robot control task. We summarize the
proposed attacks on DRL models and our contribution as follows.

Advanced black-box attacks.An attackermay not have access
to the DRL system’s internals, making white-box attacks infeasible
in this case. For DNNmodels, black-box attacks that take advantage
of query access to the victim model have emerged [6]. Based on
this progress, we adapt and improve this method for attacking DRL
systems and demonstrate the e�ectiveness. Speci�cally, starting
from the� nite di�erence (FD) based attack [6], we propose an im-
provement, named adaptive sampling FD (SFD), that reduces the
amount of computation by adaptively sampling the input dimen-
sions for gradient estimation. We provide a theoretic analysis of
SFD method and prove its e�ciency and estimation error bound.

High throughput perturbation. The adaptive SFD method is
still ine�cient since the attacker would need to generate adversarial
examples on each individual frame. To make further improvement,
we propose an online sequential FD attack based on the fact that DRL
tasks have temporal continuity, where temporal consecutive frames
tend to correlate with each other. We hypothesize that the attacks
generated on a small group of selected frames can be applied globally
to other similar and temporally close frames. When limiting the
number of frames to be selected, it is important to� nd the best set
of frames for generating such attacks. We observe that not all action
decisions (frames) are critical within a trajectory, and hypothesize
that attacks that are generated based on a small group of important
and critical frames can be more e�ective. Based on this, we propose
an optimal frame selection approach to select the most important
frames to generate the attack. We provide mathematical analysis of
this approach.

Perturbations on components other than the observation.
As shown in Figure 1, the observation space is not the only com-
ponent in DRL systems. Besides, environment dynamic is another
important component in the DRL systems. Thus, we propose an-
other attacks that perturb the environment transition dynamics
by changing physical properties of the environment rather than
changing the input observation to the victim model.

Physical attacks. While we have shown the digital adversarial
examples on DRL systems, it is still unclear about the possibility to
generate physical adversarial examples to attack the physical DRL
system. We bridge this gap by using a printed adversarial patch and
a toy robot visual navigation task. We show that the overall end-
to-end attack is e�ective even under e�ects such as manufacturing
inaccuracy and varied viewing angles.

We conduct extensive experiments on the above proposed attacks
and compare them with existing white-box (which could be viewed
as the performance upper bound) and black-box attacks both in

simulation and on a real robot. We show that it is feasible to attack
real-world DRL systems with our proposed approaches.

2 RELATEDWORK
Adversarial attacks on machine learning models. Our attacks
draw inspirations from previously proposed attacks. Goodfellow
et al. [14] describes the fast gradient sign method (FGSM) of gen-
erating adversarial perturbations in a white-box setting. Carlini
and Wagner [7] describe additional methods based on optimization,
which results in smaller perturbations. Moosavi-Dezfooli et al. [24]
demonstrates a way to generate a “universal” perturbation that is
e�ective onmultiple inputs. Xiao et al. [39] generates adversarial ex-
amples in 3D world by changing the shape and texture information
respectively. Evtimov et al. [11] shows that adversarial examples
can be robust to natural lighting conditions and viewing angles
using real world examples. Furthermore, black-box attacks without
providing victim model’s training algorithms are also proposed for
general machine learning models [8, 31].

Adversarial attacks on DRL. DRL methods train a policy that
maps state observations to action decisions. Examples include Deep
Q-Learning (DQN) [23] for discrete control, and Deep Determinis-
tic Policy Gradient (DDPG) [19] for continuous control. Proximal
Policy Optimization (PPO) [34], and Soft Actor-Critic (SAC) [15]
are also proposed recently. We select DQN and DDPG as our target
victim algorithms, but our attacks can apply to other RL methods.

Recently, Huang et al. demonstrates an attack that uses FGSM
to perturb observation frames in a DRL setting [16]. However, the
white-box setting in this work requires knowing the full victim
model and the preferred action. They also propose a black-box
attack method based on transferability, where the surrogate models
are trained to obtain attacks and the generated attacks are then
applied on the victim models. We build on FD-based attacks that
do not rely on transferability. Lin et al. [20] designs an algorithm
to achieve targeted attack for DRL models, and they propose a
method to select optimal frames for attacks based on the preference
of the policy on the best action over the worst action. We provide
related theoretical proofs to demonstrate the optimality of frame
selections. Behzadan and Munir [4] propose a black-box attack
method that trains another DQN network to minimize the expected
return using FGSM. Gleave et al. [13] proposes to train another
agent to interact and modify the environment so as to indirectly
attack the victim model. The black-box attacks in these related
works are all evaluated on simulated environments. We provide
real world experiments validating the e�ectiveness of our proposed
attacks. For adversarial attacks on environment dynamics, Pan
et al. [28] propose to use candidate inference attack to infer possible
dynamics used for training a candidate policy, posing potential
privacy-related risk to deep RL models.

Robust RL via adversarial training. Safety and generaliza-
tion in various robotics and autonomous driving applications have
drawn signi�cant attention for training robust models [25, 27, 32].
Knowing how DRL models can be attacked is bene�cial for training
robust DRL agent. Pinto et al. proposes to train a RL agent to provide
adversarial attack during training so that the agent can be robust
against dynamics variations [32]. However, since they manually
selected the perturbations on environment dynamics, the attack
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Table 1: Summary of the adversarial attacks on DRL systems, categorized based on our proposal. The name re�ects the category of the attack
method. For example, obs-fgsm-wb means attack on observation using fast gradient sign method based white-box attack and obs-fgsm-bb
means attack on observation using fast gradient sign method based black-box attack. The attack methods we proposed are highlighted using
bold text. “Arch.,” “Param.,” and “Query” indicate whether the attack requires knowledge of the policy network’s architecture, parameters
and whether it needs to query the policy network.

Attack MDP Component Attacker Knowledge Real-time Physical Temporal Dependency

White/Black-Box Arch. Param. Query

obs-fgsm-wb Observation White-box Yes Yes Yes Yes No Independent
obs-fgsm-bb Observation Black-box No No No Yes No Independent
obs-fd-bb Observation Black-box No No Yes Too slow No Independent
obs-sfd-bb Observation Black-box No No Yes slow No Independent

obs-seq-fgsm-wb Observation White-box Yes Yes Yes Yes No Sequential
obs-seq-fd-bb Observation Black-box No No Yes Yes No Sequential
obs-seq-sfd-bb Observation Black-box No No Yes Yes No Sequential

env-search-bb Transition Dynamics Black-box No No Yes N/A Yes N/A

provided in their work may not be able to generalize to broader RL
systems. Additionally, their method relies on an accurate modeling
of the environment dynamics, which may not be available for real
world tasks such as robotics systems.

3 THREAT MODEL ON DRL
Our victim models are trained by interacting with environments
that are Markov Decision Processes (MDPs), which include several
components: the state space S, the action space A, the transition
dynamics T and the reward function R. The goal of the DRL model
is to learn a policy � so as to maximize the agent’s future expected
return E� [

Õ
t �

t rt ], where � is a discount factor. In this work, we
provide methods for adversarial attack for trained DRL policies,
including discrete control and continuous control methods. We
select two representative algorithms: DQN [23] for discrete control
and DDPG [19] for continuous control.

We aim to attack well-trained DRL models without accessing the
victim model’s parameters and only querying the victim model to
get model output. The goal of the attacker is to minimize the agent’s
future expected return. We do not assume these attackers have full
control over the agent nor the robotics system. They are weaker
than, for example, an attacker that could generally compromise the
robot’s software. To avoid trivial detection, an adversary needs to
constrain the magnitude of perturbation. In this work, we bound
the Linf norm of the added perturbation during the evaluation of
the digital attacks. For real world physical attacks, we follow the
common settings in the literature [2, 11].

4 ADVERSARIAL ATTACKS ON DRL
In this section we develop several concrete attacks to improve the
attack feasibility and e�ciency. We� rst introduce some baseline
attacks and then describe our new attacks in detail. Table 1 summa-
rizes these attacks, where we categorize them based on their attack
components (attack observation or transition dynamics), attacker’s
knowledge, the computational e�ciency of the attack (real-time),
whether the attack requires physically changing the environment
(physical), and whether the attack is based on temporally depen-
dency of consecutive frames (independent or sequential).

4.1 Baseline Attacks
We discuss both white-box and black-box baseline attack methods.

White-box attacks. In this setting, we assume that the attacker
can access the agent’s policy network � (a |s) where a refers to the
action and s refers to the state. Huang et al.[16] has previously in-
troduced one attack in this category that applies the FGSM method
to generate white-box perturbation purely on observations. We
reproduce this experiment with our obs-fgsm-wb attack. This at-
tack’s application scenario is when we know the policy network’s
architecture and parameters.

Black-box attacks. There are di�erent scenarios depending on
the attacker’s knowledge. In one scenario, the attacker does not
have any information about the model architecture, or parameters,
and it can’t query the model either. In this case, the attacker can
perform a “transferability" based attack by attacking a surrogate
model (of which it has complete knowledge) and then transfer the
perturbation to the victim model. Huang et al.[16] introduced a
black-box variant of the FGSM attack using transferability, which
we denote as obs-fgsm-bb. Their experiments assume that the
attacker has access to the same environment, knows the training
algorithm of the targeted agent, and uses the same algorithm to
train the victim model.

4.2 Advanced Black-Box Attacks
In an alternative black-box setting, the attacker has access to query
the model, obtaining the model’s outputs on given inputs (while still
not knowing the model architecture or parameters). This setting
represents a realistic real-world deployment, for example where an
executable copy of the agent is shipped to customers, or where an
online service is o�ered. In this setting, we propose more advanced
black-box attacks, which take advantage of this query access.

Black-box�nite di�erence (FD) based attack. Baseline black-
box attack obs-fgsm-bb requires retraining a surrogate policy. Pre-
vious work [6] applies the� nite di�erence (FD) method in attacking
classi�cation models. We extend the FD method to DRL systems in
obs-fd-bb which doesn’t require retraining a new policy. This at-
tack works in the setting where we don’t have the policy network’s
architecture or parameters and the training algorithms, but can
query the network. FD based attack on DRL uses FD to estimate
gradient with respect to the input observations. It then generates

Main Track AAMAS 2022, May 9–13, 2022, Online

1012



perturbations on the input observations by using the estimated
gradient. The key step in FD is to estimate the gradient. Denote the
loss function as L and state input as s 2 Rd . The canonical basis
vector ei is de�ned as an d dimension vector with 1 only in the i-th
component and 0 otherwise. The FD method estimates gradients
via the following equation

rsL(s) = FD(L(s),� ) =

L(s + �e1) � L(s � �e1)

2�
,

· · · , L(s + �ed ) � L(s � �ed )
2�

�|
,

(1)

where � is a parameter to control estimation accuracy. The loss
function L depends on the actual RL algorithm we use, and since
we have the model output, we can select an action with a minimal
value. De�ne the state-action value function as Q(s,a), then given
a state s , we can obtain a bad target action at from the model
output as at = argmina Q(s,a). Then we de�ne L to induce the
model to select that bad action as follows. Denote the actor of
the RL algorithm as � ; the loss function for continuous control is:
L(s) = k� (s) � at k22 , and the loss function for discrete control is,
L(s) = CELoss(� (s),at ), where CELoss() is the cross-entropy loss
for classi�cation. In the DQN setting, there is no actor, but we can
de�ne an action probability distribution as

� (s) = argmax
a

exp(Q(s,a))Õ
ai 2A exp(Q(s,ai ))

.

For d dimensional input, the� nite di�erence method would require
2d queries to obtain the estimation, which is computationally in-
tensive for high dimensional inputs such as images . Therefore, we
propose a sampling technique to mitigate this computational cost.

Adaptive sampling based FD (SFD). Many deep learning mod-
els extract features from inputs patch-wise and have sparse activa-
tion map [3]. Based on the this observation, we propose a method
for estimating gradients that exploits this spatial structure. In this
method, we� rst estimate the gradient with respect to some ran-
domly sampled pixels, then iteratively, we identify pixels where
the gradient has a high magnitude and estimate the gradient with
respect to surrounding pixels.

Given a function f (·;w) : Rd ! R1, where w is the model
parameter (we omit this for conciseness below), our goal is to es-
timate the gradient of f with respect to an input x 2 Rd : rx f̂ (x).
We de�ne the nontrivial dimension of the gradient of f at x as
{j 2 {1, 2, · · · ,d}; |rj f (x)|� � }, i.e., the dimensions with gradi-
ent absolute value greater or equal to a threshold value � > 0.
To estimate nontrivial dimension of the gradient,� rst, we ran-
domly sample k dimensions from {1, · · · ,d}, to get a set of di-
mensions S = {S1, S2, · · · , Sk }, and use FD to estimate the gra-
dients for dimensions in S . Then we select a set of dimensions
S 0 = {j 2 S ; |rj f (X ;w)|� � }, and use FD to estimate the gradients
of the neighbors (a set S 00) of dimensions in S 0, if these gradients
haven’t been estimated (for dimension i within a d dimensional
vector, the neighbor dimension is de�ned as dimension i + 1 if it
exists). Then we select dimensions with absolute gradients no less
than � from S 00 and� nd their neighbors to estimate gradients. We
repeat this process for multiple iterations. By exploring the sparse
large gradients this way, we can adaptively sample dimensions to
estimate gradients, which can signi�cantly reduce the number of

queries. We give the full attack algorithm of obs-sfd-bb. in our
appendix. We denote obs-s[n]fd-bb as the attack of obs-sfd-bb
with n iterations.

To better understand the bene�ts of SFD, here we provide an
analysis of this algorithm and estimate the amount of nontrivial
dimension of the gradient that can be estimated using our method in
Lemma 1. The basic idea of this lemma is to prove that by using SFD,
we can sample more of the nontrivial dimensions of the gradient
than by using random sampling. We also provide an error bound
for the estimated gradient with SFD in Theorem 2.

D��������� 4.1 (N�������D��������’ �G�������). 8i, j 2
{1, 2, · · · ,d} and j = i + 1, we de�ne the neighbor dimension’s gra-
dient as ri f (x)N = rj=i+1 f (x). Note that j = i + 1 is equivalent
to j = i � 1, and to be general we choose the� rst one to obtain the
de�nition.

D��������� 4.2 (N����������G �������D��������). Given a
positive gradient threshold � , an input data instance x 2 Rd , and
a loss function f : Rd ! R1, for any dimension i 2 {1, · · · ,d}, if
|ri f (x)|� � , then we de�ne this gradient as non-trivial gradient
and the corresponding dimension i as non-trivial gradient dimension.
On the other hand, if |ri f (x)| < � , then we de�ne this gradient as
trivial gradient and the corresponding dimension i as trivial gradient
dimension.

D��������� 4.3 (G�������S �������P����������). Given a
selected threshold � > 0 in Algorithm SFD, for any x 2 Rd , de�ne the
non-trivial gradient sampling probability as,

PA(� ) =
1

|DA |
’
i 2DA

1(|ri f (x)|� � ), (2)

where DA represents the set of dimensions selected by algorithm A.
Therefore, the gradient sampling probability of SFD and random sam-
pling are PSFD(� ) and Prandom(� ) respectively. Some further de�nitions
on neighbor gradient distribution probability are as following:

• If |ri f (x)|� � + � , then de�ne

p(|ri f (x)N | 2 [� , � + � ]) = q
p(|ri f (x)N | 2 [� + � ,1)) = 1 � q.

(3)

• If |ri f (x)| 2[ � , � + � ], then de�ne

p(|ri f (x)N | 2 [0,� ]) = p1
p(|ri f (x)N | 2 [� , � + � ]) = p2
p(|ri f (x)N | 2 [� + � ,1)) = p3.

(4)

Based on the above assumption that these distribution p1,p2,p3
and q are de�ned over all possible dimensions in one image (over i)
and these distribution works throughout the entire gradient esti-
mation iteration process, we have the following lemma.

L����1. We make the following assumptions on f : 9� > 0,
s.t. |ri f (x) � ri f (x)N |  �,8i 2 {1, · · · ,d � 1},8x 2 Rd . For
dimension i whose gradient |ri f (x)| 2[ � , � + � ], the probability
that the gradient magnitude of its neighborhood pixel is in [0,� ] is
p1. We conclude, as long as p1 < 1 � Prandom(� ), we have PSFD(� ) >
Prandom(� ).
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The intuitive understanding of this lemma is that when nontrivial
gradients (of magnitude no less than � ) dimensions are spatially
concentrated (p1 is small, thenp1 < 1�Prandom(� )), our method will
be more sample e�cient than random sample method. We provide
the proof of this Lemma in our appendix. Next we give another
theorem about the upper bound for the gradient estimation error
and include the proof for this theorem in our appendix.

T������2. Suppose we sample all nontrivial dimensions of the
gradient and estimate the gradient with perturbation strength � , the
estimation error of the gradients is upper bounded by the following
inequality,

kr f̂ (x) � rf (x)k1  S�C�
2 + (d � S� )� , (5)

for constant C > 0, S� =
Õd
i=1 1(|ri f (x)|� � ), and r f̂ (x) is the

estimated gradient of f with respect to x .

4.3 High Throughput Attacks
A DRL system operates on a sequence of consecutive frames. To
develop a useful attack method against real-time DRL systems, we
must consider the computational costs. Therefore, in this section,
we propose a method for generating perturbations e�ciently: an
online sequential attack.

In a DRL setting, consecutive observations are not i.i.d.—instead,
they are highly correlated and sometimes the consecutive obser-
vations do not change too much. It’s then possible to perform an
attack with less computation than performing the attack indepen-
dently on each state. Considering real-world cases, for example, an
autonomous robot would take a real-time video as input to help
make decisions, an attacker is motivated to generate perturbations
only based on previous states and apply it to future states, which
we refer to as an online sequential attack. We hypothesize that a
perturbation generated this way is e�ective on subsequent states.

Therefore, we propose online sequential attacks obs-seq-fgsm-
wb in whitebox setting and obs-seq-fd-bb, obs-seq-sfd-bb in
blackbox setting. In these attacks, we� rst collect k observation
frames and generate a single perturbation using the averaged gra-
dient on these frames (or estimated gradients using FD or SFD, in
the case of obs-seq-fd-bb and obs-seq-sfd-bb). Then, we apply
that perturbation to all subsequent frames. We denote them as obs-
seq[Fk]-fgsm-wb, obs-seq[Fk]-fd-wb,obs-seq[Fk]-sfd-wb.

Next, instead of using all the k frames, we further improve the
above attack by� nding the the set of frames that are important and
using the gradients from those frames to perform attack. With this,
we hope to maintain attack e�ectiveness while reducing the number
of queries needed. We propose to select a subset of frames within
the�rst k frames based on the variance of their Q values. Then, in
all subsequent frames, the attack applies a perturbation generated
from the averaged gradient. We select an optimal set of important
frames with highest value variance to generate the perturbations.
We denote them as obs-seq[Lk]-fgsm-wb, obs-seq[Lk]-sfd-wb,
obs-seq[Lk]-sfd-wb. We give a proof in Corollary 3 below for why
attacking these important frames is more e�ective to reduce the
overall expected return. We include the proof in our appendix.

C��������3. Let the state and state-action value be V (s) and
Q(s,a) respectively for a policy � with time horizon H . We con-
clude that 8t1, t2 2 1, 2, · · · ,H , if Var(Q(st1 , ·))� Var(Q(st2 , ·)),

then E�
⇥ÕH

t=0 �
t rt |do(st1 = ŝt1 )

⇤
 E�

⇥ÕH
t=0 �

t rt |do(st2 = ŝt2 )
⇤
,

where do(st1 = ŝt1 ) means the observation at time t1 is changed from
st1 to ŝt1 .

4.4 Attacks on Components Other than the
Observation

Besides attacking the observation space, the attacker can have ac-
cess to the testing environments of the victim model. Therefore,
potentially the attacker can modify the environment such as chang-
ing the physical properties of the environment to perform the attack.
In this case, the observations of the victim model are not perturbed
but the environment transition dynamics will be perturbed.

RL based attacks on environment dynamics. In this case,
the attacker will perturb the environment transition model (dy-
namics). Such transition model is usually non-di�erentiable with
respect to the policy. Therefore, we propose a novel reinforcement
learning based method to attack environment dynamics. We de-
scribe a targeted attack (in which the agent will fail in a speci�c
way, e.g. a Hopper turn over, or a self driving car drive o� the road
and hit obstacles.) where the attacker changes the environment
dynamics (e.g. by changing the mass of the car). The algorithm is
as follows.

De�ne the environment dynamics as M, the agent’s policy
as � , the agent’s state at step t following the current policy un-
der current dynamics as st , and de�ne a mapping from � ,M to
st :st ⇠ f (st |� ,M, s0), which outputs the state at time step t : st
given initial state s0, policy � , and environment dynamics M. The
task of attacking environment dynamics is to� nd another dynam-
ics M 0 such that the agent will reach a target state s 0t at step t :
M 0 = argminM ks 0t � Est⇠f (st |� ,M,s0)[st ]k.

We consider the following two algorithms for generating this
attack: First, Random dynamics search. A naive way to� nd the
target dynamics, which we demonstrate in env-rand-bb, is to use
random search. Speci�cally, we randomly propose a new dynamics
and see whether, under this dynamics, the agent will reach s 0t . This
method works in the setting where we don’t need to have access
to the policy network’s architecture and parameters, but just need
to query the network. Second, RL based adversarial dynamics
search. We design a more systematic algorithm based on RL to
search for a dynamics to attack and call this method env-search-
bb. The algorithm is included in appendix. At each time step, an
attacker proposes a change to the current environment dynamics
with some perturbation �M, where k�M/Mk is bounded by some
constant � , and we� nd the new state st,M0 at time step t following
the current policy under dynamics M 0 = M + �M, then the
attacker agent will get reward r̃ = 1/kst,M0 � s 0t k. We demonstrate
this in env-search-bb using DDPG [19] to train the attacker. In
order to show that this method works better than random search,
we also compare with the random dynamics search method, and
keep the bound of maximum perturbation k�M/Mk the same.

4.5 Physical Attacks
We discuss how to apply previous proposed FD attack algorithms
to generate adversarial perturbations on real world DRL models.
We choose visual navigation robots as our experiment platform.
There are several challenges to perform real-world attacks in this
task. (1) Imperfect camera. Images observed by the robot usually
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are captured by cameras, and the computed perturbation may not
be directly applicable on real world objects due to camera sensor
noise and color shift. (2) Imperfect fabrication process. Using a
printer to make the adversarial image patch limits the attacker to
printable colors, and there exists a color gap between input image
to the printer and output paper from the printer. (3) Imperfect
alignment of the patch. Mounting the adversarial image patch at an
exact position with a particular orientation is hard. Thus, the attack
should be robust to variations of relative position/orientation of
the image patch to the robot position. In order to overcome the
above challenges, we adapt our algorithm to generate an adversarial
patch that is robust against these imperfections. We select a discrete
control task for visual navigation as our real world victim model
(see details in experiment section).

In order to improve the robustness of the generated patch against
various mounting positions, we randomly sample multiple binary
masks {Ki }n1

i=1 and apply the masks to the state (an image) I , such
that any part of the patch can be used for attack. One mask is
consisted of a rectangular region with value 1 and all other re-
gions with value 0. Denote the generated perturbed image as I 0,
then the masked frame Imasked

i with mask Ki could be de�ned as:
Imasked
i = I � (1�Ki )+I 0 �Ki ,where � is the element-wise product.
To further improve robustness against imperfect printer and vari-
ability of mounting orientation, we randomly generate a set of trans-
formationsT = {Tj }n2

j=1 including contrast, brightness adjustments,
random rotation adjustments on Imasked and get the� nal image to
be optimized: I�nal = T (Imasked). De�ne the function of generat-
ing the� nal image I�nal as u: I

�nal
i j = T (Imasked

i )j = u(I 0; I ,Ki ,Tj ).
Given a trained policy � with parameters � , the pristine optimal ac-
tion output is a⇤ = �� (I ). We select a target action a0, which should
have smaller return than a⇤. The objective function is shown as fol-
lows: I 0 = argminI 0

Õi=n1, j=n2
i=1, j=1 CE(�� (u(I 0; I ,Ki ,Tj )),a0), where

CE denotes the cross entropy loss. We then apply online-sequential
method and use sampling based FD-based method obs-seq-sfd-bb
to estimate the perturbation.

5 EXPERIMENTS
We design our experiments to answer the following questions:
(1) Can our proposed black-box method achieve similar or bet-
ter performance compared with existing white-box and black-box
methods? (2) How does the adaptive SFD method perform com-
pared with FD? (3) How much improvement of sample e�ciency
does online sequential attack obtain? (4) Does attacking the most
important frame selection work better than attacking other frames?
(5) Does the RL based environment dynamics attack perform better
than random search? (6) Does the real robot attack work in the vi-
sual navigation task? To answer these questions, we� rst introduce
the environments we use, and then introduce our baselines and
evaluations on all methods.

Experiment environments and victim RL models. We at-
tack several agents trained for� ve di�erent simulated RL environ-
ments: Atari games including Pong and Enduro [5], HalfCheetah
and Hopper in MuJoCo [36], and the driving simulation TORCS
[29]. We train DQN [23] on Pong, Enduro and TORCS, and train

DDPG [19] on HalfCheetah and Hopper. We report the cummula-
tive reward on the� rst 500 frames. The reward function for TORCS
comes from [29] and DQN network architecture comes from [23].
The network for continuous control using DDPG comes from [10].

Baselines. We compare the agents’ performance under all at-
tacks with their performance under no attack, denoted as non-adv.
We test the white-box attacks with FGSM [14] (obs-fgsm-wb) and
blackbox attacks with obs-fgsm-bb [16] which the attacker lever-
ages the transferability to perform attacks by training a surrogate
model to generate adversarial examples. We test the attacks on ob-
servation under L1 perturbation bounds of � = 0.005 and � = 0.01
on the Atari games and MuJoCo simulations and � = 0.05 and
� = 0.1 on TORCS. (Observation values are normalized to [0,1].)

Evaluating FD methods. We evaluate the� nite di�erence
method obs-fd-bb and test obs-s[n]fd-bb under di�erent numbers
n of SFD iterations, for n 2 {10, 20}. Here we denote the attack that
uses n iterations as obs-s[n]fd-bb. For online sequential attacks, we
test under conditions obs-seq[Fk]-fgsm-wb and obs-seq[Fk]-fd-bb
(F for “�rst”), where we use all of the�rst k frames to compute the
gradient for generating a perturbation and then apply the perturba-
tion to the subsequent frames. We report the cumulative rewards of
the�rst k frames and the� nal cumulative reward among the�rst
500 frames by applying the perturbation after the�rst k frames.
We implement a baseline method obs-seq[Fk]-rand-bb by using
random noise as the perturbation to evaluate the e�ectiveness of
our algorithms. To increase the attack e�ciency, we also evaluate
the obs-seq[Lk]-fd-bb (L for “largest”), in which we select 20% of the
�rst k frames that have the largest Q value variance to generate the
universal perturbation, and obs-seq[Sk]-fd-bb (S for “smallest”), in
which we select 20% of the�rst k the frames that have the smallest
Q value variance to generate the universal perturbation, as baseline.

Perturbations on components other than the observa-
tions. For attacks on environment dynamics, we test env-rand-bb
and env-search-bb on MuJoCo and TORCS. In the tests on MuJoCo,
we perturb the body mass and body inertia vector, which are in R32
for HalfCheetah and R20 for Hopper. In the tests on TORCS, we
perturb the road friction coe�cient and bump size, which is in R10.
The perturbation strength is within 10% of the original magnitude
of the dynamics being perturbed.

Real robot experiment. We conduct physical attack experi-
ments on an Anki Vector robot [1]. For training the DRL policy, we
design a discrete control task for the robot in a closed playground.
The robot has a discrete action space of going forward, turning
left, and turning right. It receives a positive reward of 3 for moving
forward (in any direction) and a reward of �10 for colliding with
anything. The task ends if the robot collides with the wall. We
train DQN policy until convergence. We set the maximum episode
length to be 200 steps to shorten the training time.We use the attack
method in Section 4’s real robot attack method to generate pertur-
bation patches that are robust to the imperfections throughout the
attack. For the target action a0 we choose the worst action under
the original input I for attack. We print out the perturbed image
I 0 and crop a random patch from I 0 and mount it in the robot’s
current� eld of view. In order to test the robustness of the attack
algorithm, we mount the patch at di�erent positions and put the
robot at di�erent viewing angles towards the patch.
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Table 2: Cumulative reward of the� rst 500 frames among di�erent attack methods on Torcs
non-adv � obs-fgsm-wb obs-fgsm-bb obs-fd-bb obs-s[n]fd-bb online sequential a�ack obs-seq[L60]-s[n]fd-bb

obs-seq[k]-rand-bb obs-seq[Fk]-fgsm-wb obs-seq[Fk]-fd-bb obs-seq[Sk]-fd-bb obs-seq[Lk]-fd-bb

571.4

0.05 5.8 45.2 11.9

n=10 220.6 k=10 581.74 k=10 8.57 k=10 9.40 k=10 571.63 k=10 400.82 n=10 492.2

n=20 89.8 n=20 483.0

k=60 604.18 k=60 22.62 k=60 27.41 k=60 302.52 k=60 30.27 n=40 334.4
n=40 43.2 n=100 28.7

0.10 5.9 18.6 14.9

n=10 22.3 k=10 583.59 k=10 8.58 k=10 8.47 k=10 525.53 k=10 386.61 n=10 433.2

n=20 23.6 n=20 391.2

k=60 603.43 k=60 17.88 k=60 24.60 k=60 271.73 k=60 22.62 n=40 136.7
n=40 18.9 n=100 28.2

5.1 Experimental Results
The� rst 6 columns of Table 2 shows the results of the attacks on
TORCS, including baseline attacks: obs-fgsm-wb, and obs-fgsm-bb,
and� nite di�erence based methods (obs-fd-bb, obs-s[n]fd-bb) on
black-box settings. It shows that obs-fd-bb could achieve similar
performance compared with whitebox attack (obs-fgsm-wb) and
slightly better than the baseline blackbox attack (obs-fgsm-bb).
Moreover, for obs-s[i]fd-bb, it shows the e�ectiveness and with
n increase, it will increase the computation cost but the attack
e�ectiveness increases as well. For the results, we could observe
that when n = 40, it could achieve comparable attack e�ectiveness
compared to obs-fd-bb, therefore, in the following experiments,
we select n = 40 when we report obs-sfd-bb. In Table 3, we show
the number of queries for obs-s[n]fd-bb with di�erent iteration
parameter n and the number of queries for obs-fd-bb. The results
show that obs-sfd-bb uses signi�cantly fewer queries (around 1000
to 6000) than obs-fd-bb (around 14,000) but achieves similar attack
performance.
Table 3: Number of queries for SFD on each image among di�erent
settings. (14112 would be needed for FD.)

� 10 iter. 20 iter. 40 iter. 100 iter.

0.05 1233 ± 50 2042 ± 77 3513 ± 107 5926 ± 715
0.10 1234 ± 41 2028 ± 87 3555 ± 87 6093 ± 399

Besides those, we evaluate the performance of online sequential
attacks (obs-seq[Fk]-fgsm-wb, obs-seq[Fk]-fd-bb, obs-seq[Lk]-fd-
bb, and baselines( obs-seq[Sk]-fd-bb, obs-seq[Fk]-rand-bb) in the
columns 8-17 of Table 2 with di�erent L1 norm bound (� = 0.05
and 0.1).

We could observe that the baseline obs-seq[Fk]-rand-bb is not
e�ective, while obs-seq[Fk]-fd-bb achieves attack performance
close to its white-box counterpart obs-seq[Fk]-fgsm-wb and to non-
online sequential attack obs-fd-bb. Even when k = 10, the perfor-
mance is still good. The 14-17 columns of Table 2 shows the results
of optimal frame selection. We could observe that when we select a
set of states with the largest Q value variance (obs-seq[Lk]-fd-bb)
to estimate the gradient, the attack is more e�ective than selecting
states with the smallest Q value variance (obs-seq[Sk]-fd-bb). It
also empirically veri�es corollary 1. When k is very small (k = 10),
the estimated universal perturbation may be not strong enough
to apply to the following frames while when k = 60, the attack
performance is reasonably good and similar to obs-seq[F60]-fd-bb.
Therefore, in the following settings, we select obs-seq[L60]-fd-bb
as our default setting.

Finally, we combine online-sequential attack and sampling based
�nite di�erence together to evaluate the performance. We show
the results of obs-seq[L60]-s[i]fd-bb by selecting the 20% of frames

with the largest Q value variance within the� rst 60 frames to
estimate the gradient and using SFD with i iterations. From Table 2,
we could observe that it is clear that with more iterations; we are
able to get more accurate estimation of the gradients and thus
achieve better attack performance. When i = 100, it could achieve
comparable attack e�ectiveness. By looking at Table 3, we could
�nd that when i = 100, the number of queries for SFD is around 6k,
which is still signi�cantly smaller than needed for FD, which takes
14k queries to estimate the gradient on an image of size 84 ⇥ 84
(14112 = 84 ⇥ 84 ⇥ 2).
Table 4: Results of di�erent attacks on other environments. We re-
port the cumulative reward within� rst 500 frames.

Env � non-adv obs-fgsm-wb obs-fgsm-bb obs-fd-bb obs-seq[L60]-s[100]fd-bb

Pong 0.005 6.0 -14.0 -14.0 -13.0 -9.0
0.01 -14.0 -14.0 -13.0 -9.0

Enduro 0.005 43.0 2.0 5.0 2.0 27.0
0.01 2.0 5.0 2.0 11.0

HalfCheetah 0.005 8257.1 3447.6 2149.7 6173.8 8263.6
0.01 980.1 1021.5 1273.6 1498.4

Hopper 0.005 3061.4 1703.0 1736.8 1731.2 1843.5
0.01 1687.2 1694.4 1711.3 1718.8

We provide the results of attack applied on observation space in
other environments in Table 4. These environments include Atari
games Pong and Enduro, and MuJoCo robotics simulation environ-
ments HalfCheetah and Hopper. The results further instantiates
the e�ectiveness of the set of proposed FD methods.

Perturbations on components other than the observations.
Attacks on environment dynamics. In Table 5, we show our
results for performing targeted adversarial environment dynam-
ics attack. The results are the L2 distance to the target state (the
smaller the better). The results show that random search method
performs worse than RL based search method in terms of reaching
a speci�c state after certain steps. The quality of the attack can be
qualitatively evaluated by observing the sequence of states when
the agent is being attacked and see whether the target state has been
achieved. The results are shown in� gure 3. We could observe that
the� nal stages of our RL based method (env-search-bb) are similar
to the targeted state among di�erent games. We include example
trajectories of agents under dynamics attack in our appendix.

Real robot policy attack To evaluate the performance of the
adversarial patch in the physical world, we print it out and mount
it at� ve di�erent positions (front, left, right, up and below of the
robot position) and put the robot at 50 di�erent viewing angles from
the adversarial patch (varied from -60� to 60�). We select a target
action for attack, which results in suboptimal behavior such as a
collision. The physical experiment settings are included in Figure 2.
The results of attack success rate are shown in Table 6. The results
show that by mounting the patch just in front of the robot results in
the best attack success rate both in white-box attack and black-box
attack. When there are inaccuracies of patch mounting, such as
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60 degree 25 degree 0 degree 25 degree 60 degree

Front Left Right Up Down
Different View Angles of the Robot

Different patch mount positions with respect to the robot

Figure 2: First row: example varied robot states with di�erent viewing angles of the robot towards the patch. (The patch is generated using
white-boxmethod) Second row: example varied patchingmounting positions with respect to the robot position. (The patch is generated using
black-box method) We varied 50 di�erent view angles from the left to the right to evaluate the robustness of the attack.

Table 5: Results of environment dynamics based attacks showing our
proposed env-search-bb outperforms baseline env-rand-bb. Shown are
the L2 distance to the target state, the smaller the better.

Environment env-rand-bb env-search-bb

HalfCheetah 7.91 5.76
Hopper 1.89 0.0017
TORCS 25.02 22.75

(a) Agent’s behavior under normal dynamics

(b) Agent’s behavior under abnormal dynamics

(c) Agent’s behavior under attacked dynamics using RL

(d) Agent’s behavior under attacked dynamics using random search
Figure 3: Results for Dynamics Attack on TORCS

mounting the patch to the slight left, right, up or below of the robot
�eld of view, the attack success rate goes down.

Table 6: Attack success rate over all viewing angles bymounting the
adversarial image patch with di�erent selected positions.

Method Positions
Front Left Right Up Below

obs-seq-fgsm-wb 55% 33% 37% 42% 48%
obs-seq-sfd-bb 50% 29% 31% 33% 38%

6 DISCUSSION AND CONCLUSIONS
We propose and evaluate a set of black-box adversarial attacks on
DRL models using�nite-di� erence methods. The sample e�ciency
of FD based methods are further improved by using the adaptive
sampling method, online sequential attack and attack frame selec-
tion. Most importantly, we provide the� rst example of adversarial
attacks on real world visual navigation robot. Studying the ad-
versarial attack on real robot can help to� nd potential defense
approaches to improve the robustness of DRL models. From the
perspective of training robust RL policies, it is important to know
the severeness of the risk related with the proposed attacks. Among
the proposed attacks, the environment dynamics attack can be a
more realistic potential risk to consider than the attacks based on
observations. The reason is that this attack does not require access
to modify the policy network software system and only requires
access to modify environment dynamics, and by modifying the
environment dynamics parameters such as changing road condi-
tion in autonomous driving, we see from our experiments that the
agent tends to fail with the original policy. The observation space
based attack, especially the black-box attacks, are also important to
defend against, since an attacker can de�nitely query the network
and may have access to change the observations. The real world
physical attack experiment by modifying the environment poses a
real concern for DRL policies that may be potentially a�ected. We
hope our exploratory work and the analysis of attacks help form
a more complete view for what threats should be considered in
ongoing research in robust reinforcement learning.
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