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ABSTRACT
We address the scaling of equilibrium computation in Mean Field

Games (MFGs) by using Online Mirror Descent (OMD). We show

that continuous-time OMD provably converges to a Nash equi-

librium under a natural and well-motivated set of monotonicity

assumptions. A thorough experimental investigation on various

single and multi-population MFGs shows that OMD outperforms

traditional algorithms such as Fictitious Play. We empirically show

that OMD scales and converges significantly faster than Fictitious

Play by solving, for the first time to our knowledge, examples of

MFGs with hundreds of billions states.
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1 INTRODUCTION
Solving decision making problems involving multiple agents has

been the topic of intensive research in Artificial Intelligence for

decades [69, 78]. Such research finds applications in a wide variety

of domains such as (amongst others): economics [2, 33, 56], resource

management [34, 39], crowd motion modeling [5] or even animal

behaviour analysis [13, 60]. Despite the vast literature on Game The-

ory and numerous fundamental results, application to real-world

problems remains a challenge. Recent successes of combining Game

Theory and Machine Learning (especially Deep Learning [42] and

Reinforcement Learning (RL) [75]) led to solutions for large scale

games such as chess [21], Go [70–72], Poker [18, 19, 53] and even

complex video games like StarCraft II [77]. Although this allowed

for tackling problems involving large state spaces, the number of

agents still remains limited and scaling up to large populations of

players remains intractable, which prevents a real-world impact.
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To address this challenge of scaling to many agents, the Mean

Field Game (MFG) theory was introduced in [46, 48] to study a

category of games that involves an infinite population of agents.

By considering the limit case of a continuous distribution of iden-

tical agents (i.e., anonymous and with symmetric interests), the

MFG framework allows the learning problem to be reduced to the

characterization of the optimal behavior of a single representa-

tive agent in its interactions with the full population. Given this

asymptotic formulation, traditional solutions to MFGs entail a cou-

pled system of differential equations: one capturing the forward

dynamics of the population and a second being the dynamic pro-

gramming optimality equation of the representative player. De-

spite important progress in the area, such approaches are based

on numerical approximation schemes for partial differential equa-

tions [3, 4, 7, 16, 17, 25, 26], or for stochastic differential equa-

tions [11, 31], which do not easily scale to large state spaces. Also,

given the sensitivity to limit conditions, only simple configurations

of the state space can be considered. Consequently, until recently,

we were left with solutions that either scale in terms of the state

space dimension (deep RL), or scale in terms of large populations

of agents (MFGs).

By introducing solutions inspired by game theory (e.g., Fictitious
Play [63, 68]) into MFGs [24, 37, 59], recent research leverages the

generalization capacity of Machine Learning to compute a Nash

equilibrium (NE) in very large games. Fictitious Play is a generic

algorithm that alternates two steps starting from an arbitrary strat-

egy for the representative player: i) computing the best response of

this agent against the rest of the population, ii) compute the mix-

ture of that best response with its previous strategy. [59] proposes

to make use of recent RL methods to learn the best response and

solve problems with millions of states with non-trivial topology.

Unfortunately, Fictitious Play seems hard to scale further for sev-

eral reasons. Firstly, the computation of the best response remains

a hard problem even if RL is promising. Secondly, its computa-

tional efficiency seems very low in practice. Finally, Fictitious Play

requires storing multiple quantities (e.g., averaged policies and in-

duced distributions, etc.), which contributes to cap scalability.

In this context, our main contribution is the introduction of a

new algorithm that can tackle a large number of agents as well as
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large state spaces. This algorithm, namely Online Mirror Descent

(OMD) [67], computes a NE in a large class of MFGs. Inspired by

convex optimization and the Mirror Descent algorithm [54], our

method doesn’t require the computation of a best response. It rather

alternates a step of evaluation of the current strategy with a step of

improvement of that strategy. The evaluation is done through the

computation of the expected accumulated pay-offs of the strategy

over time in the shape of a so-called 𝑄-function. The improvement

step reduces to computing the soft-max of the quantity obtained

by integrating the 𝑄-functions over iterations (like the MD algo-

rithm suggests). Quantities that need to be stored by OMD (the

strategy and the integrated 𝑄-function) are thus limited compared

to Fictitious Play. As a second contribution, we provide a proof of

convergence for continuous time OMD to a NE for MFGs under

reasonable assumptions (common in the field). These theoretical

results naturally extend to multi-population MFGs as well as to

settings where noise is commonly shared by all agents. Our third

contribution is an extensive empirical evaluation of OMD on differ-

ent tasks involving single or multiple populations, in the presence of

common noise or not, with non trivial topologies. We highlight that

the scale of the considered problems reaches 10
11

states and trillions

of state-action pairs, surpassing by four or five orders of magni-

tudes existing results. These experiments demonstrate that OMD’s

computational efficiency is much stronger than state-of-the-art Fic-

titious Play, which results in faster convergence. Furthermore we

provide a proof of convergence under a monotonicity assumption

which improve over the more widely used contraction assumption

used in the literature (see related work for more detail in Sec. 5).

2 PRELIMINARIES ON MEAN FIELD GAMES
In a Multi-Population Mean Field Game (MP-MFG), an infinite

number of players from 𝑁𝑝 different populations interact with

each other in a temporally and spatially extended game (the case

𝑁𝑝 = 1 corresponds to a standard MFG). MP-MFG are easily en-

compassed within MFGs on an extended state space (including the

population type), but we use this setting for sake of clarity and

completeness. Let X be the finite discrete state space and A be

the finite discrete action space of the MP-MFG. We denote by ΔX
and ΔA respectively the spaces of probability distributions over

states and actions. In this sequential decision problem, a represen-

tative player of population 𝑖 ∈ {1, . . . , 𝑁𝑝 } starts at a state 𝑥𝑖
0
∈ X

according to a distribution 𝜇𝑖
0
∈ ΔX. We consider a finite time

horizon 𝑁 > 0. At each time step 𝑛 ∈ {0, . . . , 𝑁 }, the representative
player of population 𝑖 is in state 𝑥𝑖𝑛 and takes an action according to

𝜋𝑖𝑛 (.|𝑥𝑖𝑛), where 𝜋𝑖𝑛 ∈ (ΔA)X is a policy. Given this action 𝑎𝑖𝑛 , the

representative player moves to a next state 𝑥𝑖
𝑛+1

with probability

𝑝 (.|𝑥𝑖𝑛, 𝑎𝑖𝑛) and receives a reward 𝑟 𝑖 (𝑥𝑖𝑛, 𝑎𝑖𝑛, 𝜇1

𝑛, . . . , 𝜇
𝑁𝑝

𝑛 ), where 𝜇 𝑗𝑛
is the distribution of the population 𝑗 at time𝑛. Here 𝑝 ∈ (ΔX)X×A

and 𝑟 𝑖 : X × A × (ΔX)𝑁𝑝 → R. Observe that the transition kernel

does not depend on the Multi-population distribution as in most

classical MFG examples, see e.g., the original work [48].

For the reader’s convenience, we denote 𝜋𝑖 = {𝜋𝑖𝑛}𝑛∈{0,...,𝑁 } ,
𝜇𝑖 = {𝜇𝑖𝑛}𝑛∈{0,...,𝑁 } , 𝜋 = {𝜋𝑖 }𝑖∈{1,...,𝑁𝑝 } , 𝜇 = {𝜇𝑖 }𝑖∈{1,...,𝑁𝑝 } , 𝜋𝑛 =

{𝜋𝑖𝑛}𝑖∈{1,...,𝑁𝑝 } and 𝜇𝑛 = {𝜇𝑖𝑛}𝑖∈{1,...,𝑁𝑝 } .

During the game and given a fixedmulti-population distributions

sequence 𝜇, a representative player of population 𝑖 accumulates the

following sum of rewards:

𝐽 𝑖 (𝜋𝑖 , 𝜇) = E
[ 𝑁∑
𝑛=0

𝑟 𝑖 (𝑥𝑖𝑛, 𝑎𝑖𝑛, 𝜇𝑛)
��� 𝑥𝑖

0
∼ 𝜇𝑖

0
, 𝑎𝑖𝑛 ∼ 𝜋𝑖𝑛 (.|𝑥𝑖𝑛),

𝑥𝑖𝑛+1
∼ 𝑝 (.|𝑥𝑖𝑛, 𝑎𝑖𝑛)

]
.

Backward Equation: Given a population 𝑖 , a time 𝑛, a state 𝑥𝑖 , an

action 𝑎𝑖 , a policy 𝜋𝑖 and a multi-population distribution sequence

𝜇, we define the 𝑄-function:

𝑄
𝑖,𝜋𝑖 ,𝜇
𝑛 (𝑥𝑖 , 𝑎𝑖 ) = E

[ 𝑁∑
𝑘=𝑛

𝑟 𝑖 (𝑥𝑖
𝑘
, 𝑎𝑖

𝑘
, 𝜇𝑘 )

��� 𝑥𝑖𝑛 = 𝑥𝑖 , 𝑎𝑖𝑛 = 𝑎𝑖 ,

𝑎𝑖
𝑘
∼ 𝜋𝑖

𝑘
(.|𝑥𝑖

𝑘
), 𝑥𝑖

𝑘+1
∼ 𝑝 (.|𝑥𝑖

𝑘
, 𝑎𝑖

𝑘
)
]

and the value function:

𝑉
𝑖,𝜋𝑖 ,𝜇
𝑛 (𝑥𝑖 ) = E

[ 𝑁∑
𝑘=𝑛

𝑟 𝑖 (𝑥𝑖
𝑘
, 𝑎𝑖

𝑘
, 𝜇𝑘 )

��� 𝑥𝑖𝑛 = 𝑥𝑖 ,

𝑎𝑖
𝑘
∼ 𝜋𝑖

𝑘
(.|𝑥𝑖

𝑘
), 𝑥𝑖

𝑘+1
∼ 𝑝 (.|𝑥𝑖

𝑘
, 𝑎𝑖

𝑘
)
]
.

These two quantities can be computed recursively with the follow-

ing backward equations:

𝑄
𝑖,𝜋𝑖 ,𝜇

𝑁
(𝑥𝑖 , 𝑎𝑖 ) = 𝑟 𝑖 (𝑥𝑖 , 𝑎𝑖 , 𝜇𝑁 )

𝑄
𝑖,𝜋𝑖 ,𝜇

𝑛−1
(𝑥𝑖 , 𝑎𝑖 ) = 𝑟 𝑖 (𝑥𝑖 , 𝑎𝑖 , 𝜇𝑛−1)

+
∑

𝑥 ′𝑖 ∈X
𝑝 (𝑥 ′𝑖 |𝑥𝑖 , 𝑎𝑖 )E𝑏𝑖∼𝜋𝑖

𝑛 (. |𝑥 ′𝑖 )
[
𝑄
𝑖,𝜋𝑖 ,𝜇
𝑛 (𝑥𝑖 , 𝑏𝑖 )

]
,

𝑉
𝑖,𝜋𝑖 ,𝜇
𝑛 (𝑥𝑖 ) = E𝑎𝑖∼𝜋𝑖

𝑛 (. |𝑥 ′𝑖 )
[
𝑄
𝑖,𝜋𝑖 ,𝜇
𝑛 (𝑥𝑖 , 𝑎𝑖 )

]
.

Finally, the sum of rewards is 𝐽 𝑖 (𝜋𝑖 , 𝜇) = E𝑥𝑖∼𝜇𝑖
0

[𝑉 𝑖,𝜋𝑖 ,𝜇
𝑛 (𝑥𝑖 )].

Forward Equation: If all the agents of a population 𝑖 follow the

policy 𝜋𝑖 , the induced population distribution defines recursively

via the following forward equation: 𝜇
𝑖,𝜋𝑖

0
= 𝜇𝑖

0
and, for all 𝑥 ′𝑖 ∈ X,

𝜇
𝑖,𝜋𝑖

𝑛+1
(𝑥 ′𝑖 ) =

∑
(𝑥𝑖 ,𝑎𝑖 ) ∈X×A

𝜋𝑖𝑛 (𝑎𝑖 |𝑥𝑖 )𝑝 (𝑥 ′
𝑖 |𝑥𝑖 , 𝑎𝑖 )𝜇𝑖,𝜋

𝑖

𝑛 (𝑥𝑖 ) , (1)

for 𝑛 ≤ 𝑁 − 1 .

We denote 𝜇𝜋 = (𝜇𝑖,𝜋𝑖 )𝑖∈{1,...,𝑁𝑝 } and emphasize the following

property for the cumulative sum of rewards:

𝐽 𝑖 (𝜋𝑖 , 𝜇) =
𝑁∑
𝑛=0

∑
(𝑥𝑖 ,𝑎𝑖 ) ∈X×A

𝜇
𝑖,𝜋𝑖

𝑛 (𝑥𝑖 )𝜋𝑖𝑛 (𝑎𝑖 |𝑥𝑖 )𝑟 𝑖 (𝑥𝑖 , 𝑎𝑖 , 𝜇𝑛)

.

Best Response and Exploitability: A best response policy
𝜋𝑖,𝑏𝑟,𝜇 to a multi-population distribution sequence 𝜇 verifies the fol-

lowing property max

𝜋𝑖
𝐽 𝑖 (𝜋𝑖 , 𝜇) = 𝐽 𝑖 (𝜋𝑖,𝑏𝑟,𝜇 , 𝜇). It can be computed
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recursively by finding the best responding 𝑄-function 𝑄𝑖,𝑏𝑟,𝜇
:

𝑄
𝑖,𝑏𝑟,𝜇

𝑁
(𝑥𝑖 , 𝑎𝑖 ) = 𝑟 𝑖 (𝑥𝑖 , 𝑎𝑖 , 𝜇𝑁 )

𝑄
𝑖,𝑏𝑟,𝜇

𝑛−1
(𝑥𝑖 , 𝑎𝑖 ) = 𝑟 𝑖 (𝑥𝑖 , 𝑎𝑖 , 𝜇𝑛−1)

+
∑

𝑥 ′𝑖 ∈X
𝑝 (𝑥 ′𝑖 |𝑥𝑖 , 𝑎𝑖 ) max

𝑏𝑖

[
𝑄
𝑖,𝑏𝑟,𝜇
𝑛 (𝑥𝑖 , 𝑏𝑖 )

]
.

Finally, 𝜋
𝑖,𝑏𝑟,𝜇
𝑛 (.|𝑥𝑖 ) ∈ arg max𝑄

𝑖,𝑏𝑟,𝜇
𝑛 (𝑥𝑖 , .).

The exploitability measures the distance to an equilibrum and

is defined as𝜙 (𝜋) =
𝑁𝑝∑
𝑖=1

𝜙𝑖 (𝜋)where, for each 𝑖 ,𝜙𝑖 (𝜋) = max𝜋 ′𝑖 𝐽 𝑖 (𝜋 ′𝑖 , 𝜇𝜋 )−

𝐽 𝑖 (𝜋𝑖 , 𝜇𝜋 ) .

Monotonicity: A multi-population game is said to be weakly
monotone if, for any 𝜌𝑖𝑛, 𝜌

′𝑖
𝑛 ∈ Δ(X × A) and 𝜇𝑖𝑛, 𝜇

′𝑖
𝑛 ∈ ΔX

satisfying

𝜇𝑖𝑛 =
∑
𝑎𝑖 ∈A

𝜌𝑖𝑛 (., 𝑎𝑖 ) and 𝜇 ′𝑖𝑛 =
∑
𝑎𝑖 ∈A

𝜌 ′𝑖𝑛 (., 𝑎𝑖 )

for all 𝑖, 𝑛, we have∑
𝑖

∑
(𝑥𝑖 ,𝑎𝑖 ) ∈X×A

(𝜌𝑖𝑛 (𝑥𝑖 , 𝑎𝑖 )−𝜌 ′
𝑖
𝑛 (𝑥𝑖 , 𝑎𝑖 ))

× (𝑟 𝑖 (𝑥𝑖 , 𝑎𝑖 , 𝜇𝑛) − 𝑟 𝑖 (𝑥𝑖 , 𝑎𝑖 , 𝜇 ′𝑛)) ≤ 0 .

It is strictly weakly monotone if the inequality is strict when-

ever 𝜌𝑛 ≠ 𝜌 ′𝑛 . This conditionmeans that the players are discouraged

from taking similar state-action pairs as the rest of the population.

Intuitively, it can be interpreted as an aversion to crowded areas.

We have the following property, whose proof is postponed to

Appendix. E.

Lemma 1. The weak monotonicity property implies that for any
𝜋, 𝜋 ′ with 𝜋 ≠ 𝜋 ′,

˜M(𝜋, 𝜋 ′) :=

𝑁𝑝∑
𝑖=1

[
𝐽 𝑖 (𝜋𝑖 , 𝜇𝜋 ) + 𝐽 𝑖 (𝜋 ′𝑖 , 𝜇𝜋

′
)

− 𝐽 𝑖 (𝜋𝑖 , 𝜇𝜋
′
) − 𝐽 𝑖 (𝜋 ′𝑖 , 𝜇𝜋 )

]
≤ 0. (2)

Strictly weak monotonicity implies a strict inequality above.

Moreover, the weak monotonicity condition is met in the follow-

ing classical setting (see Appx. A).

Lemma 2. Assume the reward is separable, i.e. 𝑟 𝑖 (𝑥𝑖 , 𝑎𝑖 , 𝜇) =

𝑟 𝑖 (𝑥𝑖 , 𝑎𝑖 ) + 𝑟 𝑖 (𝑥𝑖 , 𝜇) and the following monotonicity condition
holds: for all 𝜇 ≠ 𝜇 ′,

∑
𝑖

∑
𝑥 ∈X

(𝜇𝑖 (𝑥𝑖 )−𝜇 ′𝑖 (𝑥𝑖 )) (𝑟 𝑖 (𝑥𝑖 , 𝜇)−𝑟 𝑖 (𝑥𝑖 , 𝜇 ′)) ≤

0 (resp. < 0). Then the game is weakly monotone (resp. strictly weakly
monotone).

An example of such a separable and monotone reward can be

found in multi-population predator prey models where the reward

can be expressed as a network zero-sum game:

𝑟 𝑖 (𝑥𝑖 , 𝑎𝑖 , 𝜇) = 𝑟 𝑖 (𝑥𝑖 , 𝑎𝑖 ) + 𝑟 𝑖 (𝑥𝑖 , 𝜇𝑖 ) +
∑
𝑗≠𝑖

𝜇 𝑗 (𝑥𝑖 )𝑟 𝑖, 𝑗 (𝑥𝑖 )︸                                ︷︷                                ︸
=𝑟 𝑖 (𝑥𝑖 ,𝜇)

(3)

if 𝑟 𝑖, 𝑗 = −𝑟 𝑗,𝑖 and 𝑟 satisfies the previous monotonicity condition.

Nash Equilibrium (NE): A NE is a vector of policies for all

populations that has 0 exploitability. The existence of a NE in MFGs

has been studied in many settings [14, 23, 27]. In our framework, it

is a consequence of the convergence of the Fictitious Play dynamics

in monotone games, which is detailed in Appx. C.

Proposition 1 (Existence and uniqeness of Nash). Any
weakly monotone MP-MFG admits a NE. Besides, if the weak mono-
tonicity is strict, the NE is unique.

Proof. The existence result follows from Theorem 2 and unique-

ness is proven in Appx. F. □

3 ONLINE MIRROR DESCENT: ALGORITHM
AND CONVERGENCE RESULT

We now turn to the Online Mirror Descent Algorithm and introduce

a regularizer ℎ : ΔA → R, that is assumed to be 𝜌-strongly convex

for some constant 𝜌 > 0. Furthermore, we will assume from this

point forward that the regularizer ℎ is steep, i.e., ∥∇ℎ(𝜋)∥ → ∞
whenever 𝜋 approaches the border of ΔA; The classic negentropy

regularizer, which results to replicator dynamics is the prototyp-

ical example of this class. Denote by ℎ∗ : R |A | → R its convex

conjugate defined by ℎ∗ (𝑦) = max

𝑝∈ΔA
[⟨𝑦, 𝑝⟩ − ℎ(𝜋)]. Since ℎ is dif-

ferentiable almost everywhere, we have, for almost every 𝑦,

Γ(𝑦) := ∇ℎ∗ (𝑦) = arg max

𝑝∈ΔA
[⟨𝑦, 𝑝⟩ − ℎ(𝜋)] .

Discrete Time Online Mirror Descent: The OMD algorithm

is implemented as described in Algorithm 1. At each iteration, the

first step consists in computing, for each population, the evolution

of the population’s distribution by using the current policy, see (1).

In the second step, each population’s policy is updatedwith learning

rate 𝛼 . This update is done by first updating the corresponding 𝑦

variable and then obtaining the policy thanks to the function Γ. We

have for all 𝑡 > 0, 𝑖 ∈ {1, . . . , 𝑁𝑝 }, 𝑛 ∈ {0, . . . , 𝑁 },

𝑦𝑖𝑛,𝑡+1
(𝑥𝑖 , 𝑎𝑖 ) =

𝑡∑
𝑠=0

𝛼𝑄
𝑖,𝜋𝑖

𝑠 ,𝜇
𝜋𝑠

𝑛 (𝑥𝑖 , 𝑎𝑖 ),

𝜋𝑖𝑛,𝑡+1
(.|𝑥𝑖 ) = Γ(𝑦𝑖𝑛,𝑡+1

(𝑥𝑖 , .)) .

Algorithm 1 Online Mirror Descent (OMD)

Input: learning rate 𝛼 , 𝑦𝑖
𝑛,0

= 0 for all 𝑖, 𝑛; 𝑡𝑚𝑎𝑥 .

repeat
Forward Update: Compute for all 𝑖 , 𝜇𝑖,𝜋

(𝑡 )

Backward Update: Compute for all 𝑖 , 𝑄𝑖,𝜋𝑖
𝑡 , 𝜇𝜋𝑡

Update for all 𝑖, 𝑛, 𝑥, 𝑎,

𝑦𝑖𝑛,𝑡+1
(𝑥, 𝑎) = 𝑦𝑖𝑛,𝑡 (𝑥, 𝑎) + 𝛼𝑄

𝑖,𝜋𝑖
𝑡 ,𝜇

𝜋𝑡

𝑛 (𝑥, 𝑎)
𝜋𝑖𝑛,𝑡+1

(.|𝑥) = Γ(𝑦𝑖𝑛,𝑡+1
(𝑥, .))

until 𝑡 = 𝑡𝑚𝑎𝑥

Continuous Time Online Mirror Descent: We study the

theoretical convergence of the continuous time version of Alg. 1.
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Namely, the Continuous Time Online Mirror Descent (CTOMD)

algorithm [50] is defined as: for all 𝑖 ∈ {1, . . . , 𝑁𝑝 }, 𝑛 ∈ {0, . . . , 𝑁 },
𝑦𝑖
𝑛,0

= 0, and for all 𝑡 ∈ R+,

𝑦𝑖𝑛,𝑡 (𝑥𝑖 , 𝑎𝑖 ) =
𝑡∫

0

𝑄
𝑖,𝜋𝑖

𝑠 ,𝜇
𝜋𝑠

𝑛 (𝑥𝑖 , 𝑎𝑖 )𝑑𝑠,

𝜋𝑖𝑛,𝑡 (.|𝑥𝑖 ) = Γ(𝑦𝑖𝑛,𝑡 (𝑥𝑖 , .)). (4)

From here on, unless otherwise specified, we assume that the

weak monotonicity condition holds and denote by 𝜋∗ a NE, whose
existence follows from Proposition 1. We let 𝑦𝑖,∗ : (𝑥𝑖 , 𝑎𝑖 ) ↦→
𝑦𝑖,∗ (𝑥𝑖 , 𝑎𝑖 ) be the corresponding dual variable such that 𝜋𝑖,∗ (.|𝑥𝑖 ) =
Γ(𝑦𝑖,∗ (𝑥𝑖 , .)) for every 𝑖 .

Measure of similarity with the NE 𝜋∗: Based on the regu-

larizer ℎ, we define in the dual space the following measure of

similarity 𝐻 : R |A | → R with the NE 𝜋∗:

𝐻 (𝑦) :=

𝑁𝑝∑
𝑖=1

𝑁∑
𝑛=0

∑
𝑥𝑖 ∈X

𝜇
𝑖,𝜋∗
𝑛 (𝑥𝑖 )

[
ℎ∗ (𝑦𝑖𝑛,𝑡 (𝑥𝑖 , .))

− ℎ∗ (𝑦𝑖,∗ (𝑥𝑖 , .)) − ⟨𝜋𝑖,∗𝑛,𝑡 , 𝑦
𝑖
𝑛,𝑡 (𝑥𝑖 , .) − 𝑦

𝑖,∗
𝑛,𝑡 (𝑥

𝑖 , .)⟩
]
.

As detailed below, this quantity will be decreasing through the

iterations of CTOMD. Observe that since the regularizer is steep

and thus always maps in the interior of the simplex, it can also be

expressed in terms of Bregman divergence as:

𝐻 (𝑦) =
𝑁𝑝∑
𝑖=1

𝑁∑
𝑛=0

∑
𝑥𝑖 ∈X

𝜇
𝑖,𝜋∗
𝑛 (𝑥𝑖 ) [𝐷ℎ (𝜋𝑖,∗𝑛 (𝑥𝑖 , ·), 𝜋𝑖𝑛 (𝑥𝑖 , ·))] .

which is always non-negative. Here 𝐷𝐹 denotes the Bregman di-

vergence associated with a map 𝐹 and defined as :

𝐷𝐹 (𝑝, 𝑞) := 𝐹 (𝑝) − 𝐹 (𝑞) − ⟨∇𝐹 (𝑞), 𝑝 − 𝑞⟩.
In this derivation we have used known relations between Fenchel

couplings and Bregman divergences (e.g., [51]) and denoted 𝜋𝑖𝑛 :=

Γ(𝑦𝑖𝑛). Thus, the similarity measure 𝐻 can also be expressed in

terms of proximity between policies.

We are now in position to characterize the dynamics of the

similarity to the Nash mapping via the following lemma, whose

proof is provided in Appendix D.

Lemma 3 (Similarity dynamics). In CTOMD, the measure of
similarity 𝐻 to the Nash 𝜋∗ satisfies

𝑑

𝑑𝑡
𝐻 (𝑦𝑡 ) = Δ𝐽 (𝜋𝑡 , 𝜋∗) + ˜M(𝜋𝑡 , 𝜋∗)

where Δ𝐽 (𝜋𝑡 , 𝜋∗) :=
∑𝑁𝑝

𝑖=1
𝐽 𝑖 (𝜋𝑖𝑡 , 𝜇𝜋

∗ ) − 𝐽 𝑖 (𝜋𝑖,∗, 𝜇𝜋∗ ) is always non-
positive, and the weak monotonicity metric ˜M is defined in (2).

Convergence to the Nash for MP-MFGs: We now turn to

the main theoretical contribution of the paper, by deriving the

convergence of CTOMD to the set of NE for MP-MFGs (proof in

Appx G).

Theorem 1 (Convergence of CTOMD). If a MP-MFG satisfies
˜M(𝜋, 𝜋 ′) < 0 if 𝜇𝜋 ≠ 𝜇𝜋

′
and 0 otherwise, then (𝜋𝑡 )𝑡 ≥0 generated

by CTOMD given in (4) converges to the set of Nash equilibria of the
game as 𝑡 → +∞.

Proof. The assumption
𝑑𝐻 (𝑦𝑡 )

𝑑𝑡
< 0 is enough to guarantee con-

vergence of 𝐻 (𝑦𝑡 ) to 0. This relies on the so-called strict Lyapunov

condition, which is classical in Lyapunov theory. It can be found in

non-linear system books such as [47] or more recently in discrete

time in [58]. Let’s briefly sketch the main argumentation that relies

on a contradiction argument and divides in the following steps in

the context of our problem:

• First, in order to have a one to one mapping between 𝜋 and

𝑦, one can rewrite an equivalent dynamical system on the

policy

𝑦𝑖𝑛,𝑡 (𝑥𝑖 , 𝑎𝑖 ) =
𝑡∫

0

𝑄
𝑖,𝜋𝑖

𝑠 ,𝜇
𝜋𝑠

𝑛 (𝑥𝑖 , 𝑎𝑖 )𝑑𝑠 −
𝑡∫

0

𝑄
𝑖,𝜋𝑖

𝑠 ,𝜇
𝜋𝑠

𝑛 (𝑥𝑖 , 𝑎𝑖
𝑥𝑖
)𝑑𝑠

where 𝑎𝑖
𝑥𝑖

is a fixed action for state 𝑥𝑖 without changing the

trajectory of the policy.

• Second, if
𝑑
𝑑𝑡
𝐻 (𝑦𝑡 ) = Δ𝐽 (𝜋𝑡 , 𝜋∗) + ˜M(𝜋𝑡 , 𝜋∗) = 0, we have

˜M(𝜋𝑡 , 𝜋∗) = 0 as Δ𝐽 (𝜋𝑡 , 𝜋∗) ≤ 0 which is only true if 𝜋𝑡 is

a Nash (under Theorem 1 conditions).

• Then, assume that 𝐻 (𝑦𝑡 ) is bounded from below by 𝑐 > 0.

Given the sign of the derivative, it is also bounded from

above by 𝐶 = 𝐻 (𝑦0).

• The set {𝑦 |𝐻 (𝑦) ≤ 𝐶} must be bounded which is true in our

case as ℎ is steep (𝐻 goes to infinity as 𝜋 gets close to the

boundary) and :

𝐻 (𝑦) =
𝑁𝑝∑
𝑖=1

𝑁∑
𝑛=0

∑
𝑥𝑖 ∈X

𝜇
𝑖,𝜋∗
𝑛 (𝑥𝑖 ) [𝐷ℎ (𝜋𝑖,∗𝑛 (𝑥𝑖 , ·), 𝜋𝑖𝑛 (𝑥𝑖 , ·))]

• Hence, the set 𝐴𝐶𝑐 = {𝑦 |𝑐 ≤ 𝐻 (𝑦) ≤ 𝐶} is compact as a

closed bounded set (recall that 𝐻 is continuous in 𝑦).

• As

𝑑𝐻 (𝑦𝑡 )
𝑑𝑡

= Δ𝐽 (Γ(𝑦𝑡 ), 𝜋∗) + ˜M(Γ(𝑦𝑡 ), 𝜋∗)

, while Δ𝐽 (Γ(𝑦), 𝜋∗) + ˜M(Γ(𝑦), 𝜋∗) < 0 for all 𝑦 in the

compact set 𝐴𝐶𝑐 , we deduce the existence of a constant

𝑘𝑚𝑎𝑥 such that Δ𝐽 (Γ(𝑦), 𝜋∗) + ˜M(Γ(𝑦), 𝜋∗) ≤ 𝑘𝑚𝑎𝑥 < 0

for 𝑦 ∈ 𝐴𝐶𝑐 (the image of a compact through a continuous

function is a compact).

• As 𝐻 (𝑦𝑡 ) = 𝐻 (𝑦0) +
∫ 𝑡

0

𝑑𝐻 (𝑦𝜏 )
𝑑𝜏

𝑑𝜏 , this implies that 𝐻 (𝑦𝑡 ) ≤
𝐶 + 𝑡 × 𝑘𝑚𝑎𝑥 , so there will be a time 𝑡 when 𝐻 (𝑦𝑡 ) < 𝑐 .

This provides a contradiction and implies that 𝐻 (𝑦𝑡 ) must

converge to 0.

This concludes the sketch of the proof. □

Thanks to Lemma 1 togetherwith Proposition 1, we easily deduce

the convergence to the unique NE in some more stringent classes

of MP-MFGs. It is worth noticing that our line of argument differs

from the usual approaches on regret minimization arguments as

e.g. in [82].
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Environment |X| |X| × |A| OMD Fictitious Play

Garnet 2 × 10
3
– 2 × 10

4
2 × 10

4
– 4 × 10

5
84 – 229KB 168 – 458KB

Building 8 × 10
9

5.6 × 10
10

0.21TB 0.42TB

Common noise 2.73 × 10
11

1.092 × 10
12

5.0TB 10TB

Multi-Pop. medium 5 × 10
7

2 × 10
8

0.93GB 1.9GB

Multi-Pop. large 8 × 10
8

3.2 × 10
9

73GB 146GB

Table 1: Number of states, action-states pairs & RAM memory required for the experiments. |X| = positions × timesteps ×
common noise × number of populations (KB stands for Kilo Byte, G stands for Giga and T stands for Tera).

Figure 1: 5 Garnet sampled with param 𝑛𝑥 = 20000, 𝑛𝑎 = 10, 𝑡 = 2000, 𝑠𝑓 = 10

Corollary 1 (Convergence of CTOMD for weakly mono-

tone MFG). For any strictly weakly monotone MP-MFG, (𝜋𝑡 )𝑡 ≥0

generated by CTOMD given in (4) converges to the unique NE, as
𝑡 → +∞.

Restriction to single population MFG: Finally, considering
the number of populations 𝑁𝑝 equal to 1, the convergence of

CTOMD to the NE for single population strictly weakly monotone

MFG follows.

Corollary 2 (Convergence of CTOMD for Single Popula-

tion MFG). For any single population MFG satisfying the strictly
weak monotonicity assumption, (𝜋 (𝑡 ) )𝑡 ≥0 generated by CTOMD
given in (4) converges to the unique NE of the game, as 𝑡 → +∞.

Remark 1. Our proofs only give an asymptotic result and we don’t
think anything better is achievable in general. However if one can
upper bound the monotony coefficient ˜M(𝜋𝑡 , 𝜋∗) by the Lyapunov
function 𝐻 (𝑦𝑡 ) for example, the Gronwall inequality would give an
exponential convergence rate.

4 NUMERICAL EXPERIMENTS
We illustrate the theoretical convergence of CTOMD with an exten-

sive empirical evaluation of OMD described in Algorithm 1 within

various settings involving single or multiple populations as well

as non trivial topologies (videos available here). These settings are

typically hardly tractable using classical numerical approximation

schemes for partial differential equations. Besides, the scale of the

numerical experiments grows up to 10
12

states, establishing a new

scalability benchmark in the MFG literature. We emphasize the

diversity of tractable environments by considering (randomized

MDP) Garnet settings, a twenty-storey high building evacuation, a

crowd movement example in the presence of common noise and

finally an essentially zero sum multi-population chasing game.

Experimental setup: We compare OMD and Fictitious Play

with different learning rates 𝛼 . In discrete-time OMD, 𝛼 appears in

the backward update of 𝑦:

𝑦𝑖𝑛,𝑡+1
(𝑥, 𝑎) = 𝑦𝑖𝑛,𝑡 (𝑥, 𝑎) + 𝛼𝑄

𝑖,𝜋𝑖
𝑡 ,𝜇

𝜋𝑡

𝑛 (𝑥, 𝑎),
whereas in discrete-time Fictitious Play, it corresponds to the weight

for updating the average policywith the new best response 𝜋𝑖
𝑛,𝑡+1

(𝑥𝑖 , 𝑎𝑖 )
given by

(1 − 𝛼𝑡 )𝜇𝑖,𝜋𝑡𝑛 (𝑥𝑖 )𝜋𝑖
𝑛,𝑡+1

(𝑥𝑖 , 𝑎𝑖 ) + 𝛼𝑡 𝜇
𝑖,𝑏𝑟
𝑛,𝑡 (𝑥𝑖 )𝜋𝑖,𝑏𝑟𝑛,𝑡 (𝑥𝑖 , 𝑎𝑖 )

(1 − 𝛼𝑡 )𝜇𝑖,𝜋𝑡𝑛 (𝑥𝑖 ) + 𝛼𝑡 𝜇
𝑖,𝑏𝑟
𝑛,𝑡 (𝑥𝑖 )

.

Fictitious Play is experimented with decreasing 𝛼𝑡 = 𝛼/(2 + 𝑡) or
constant 𝛼𝑡 = 𝛼 learning rate. This latter is referred to hereafter

as Fictitious Play damped, while 𝛼 = 1 corresponds to the fixed

point iteration algorithm, i.e. the population applies the last best

response policy. The theoretical proof of convergence relies on

restrictive conditions which only hold for a small class of games.

We provide a thorough evaluation in Table 1 of the complexity of

the environments along with the memory required to compute our

results. For OMD, we only need to store 𝑦 of size |X| × |A| and the

distributions, of size |X|. For Fictitious Play, we need to store the

last best response, the average policy, the last distribution and the

average distribution, requiring a total of 2× (|X| × |A|) +2× |X|. In
all the experiments, ℎ is the entropy: ℎ = −∑

𝑎∈A 𝜋 (𝑎) log(𝜋 (𝑎)).
This implies that ℎ∗ (𝑦) = log(∑𝑎 exp(𝑦 (𝑎))), and we find that Γ is
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Figure 2: Population distribution at consecutive dates (three first figures on the left). Each plot of a subfigure is a different floor,
the bottom floor is the bottom-right plot, the top floor is the top-left plot. The figure on the right displays the exploitability
of: Fictitious Play (red, 𝛼 = 10

−5), Fictitious Play damped (green, 𝛼 = 10
−3) and OMD (blue, 𝛼 = 10

−4).

Figure 3: Crowd position at different consecutive dates when the point of interest is randomly shifted to the right by a common
noise. The fourth graph is displaying the exploitability of MD.

a softmax if we take the gradient of ℎ∗.

4.1 Garnet
We first evaluate our algorithm on a set of randomly generated

problems (repeatability of our results for varying sizes).

Environment: A garnet is an abstract and randomly generated

MDP [12]. We adapt this concept to single-population MFGs by

modifying the reward. In our case, a Garnet is built from the set

of parameters (𝑛𝑥 , 𝑛𝑎, 𝑛𝑏 , 𝑠𝑓 , 𝜂), with 𝑛𝑥 and 𝑛𝑎 respectively the

numbers of states and actions. The term 𝑛𝑏 is a branching factor,

and the transition kernel (independent of 𝜇) is built as follows: 𝑛𝑏
transiting states are drawn randomly without replacement, and

the associated transition probabilities are obtained by partitioning

the unit interval with 𝑛𝑥 − 1 uniformly sampled random points.

The reward term 𝑟 (𝑥,𝑢) is set to 0 for 𝑠𝑓 states sampled randomly

without replacement, for each of the remaining states it is set for all

actions to a random value sampled uniformly in the unit interval.

We set 𝑟 (𝑠, 𝜇) = −𝜂 log(𝜇 (𝑥)). This reward encourages the agents to
spread out accross the MDP states and can model social distancing.

This process generates a monotone MFG.

Numerical results: Fig. 1 (main text) and 10 (Appx. H.1) shows

various Garnet experiments. We fix 𝑠𝑓 = 10, 𝑡 = 2000, 𝜂 = 1 and

𝑛𝑏 = 1 (deterministic dynamics) and vary 𝑛𝑥 ∈ {2.10
3
; 2.10

4} and
𝑛𝑎 ∈ {10, 20}. In each case, results are averaged over 5 randomly

generated Garnets. We compare OMD to Fictitious Play, damped

or not. We observe that OMD consistently converges faster for the

right choice of 𝛼 . 𝛼 = 1 might lead to unstable results while 𝛼 = 0.1

consistently provides fast convergence to the Nash. In all cases, the

number of states influences the convergence rate, but much less for

OMD.

4.2 Building evacuation
Environment: We now turn to a single-population crowd model-

ing problem, namely a building evacuation. This kind of problem

has been considered in several studies on MFG (see e.g. [5, 6] for a

single room and [36] for a multilevel building). The building con-

sists of 20 floors, each of dimension 200 × 200. At each floor, two

staircases are located at two opposite corners, such as the crowd

has to cross the whole floor to take the next staircase. Each agent

can remain in place, move in the 4 directions (up, down, right, left)

as well as go up or down when on a staircase location. The initial

distribution is uniform over all the floors. Each agent of the crowd

wants to go downstairs as quickly as possible - as it gets a reward
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Figure 4: 4-population chasing. Right figure : Fictitious Play (red, 𝛼 = 10
−3), Fictitious Play damped (green, 𝛼 = 10

−5) and OMD
(blue, 𝛼 = 10

−5). From left to right, 3 picture chowing the distribution evolving through time and a fourth one displaying the
exploitability.

of 10 at the bottom floor - while favoring social distancing:

𝑟 (𝑥, 𝑎, 𝜇) = −𝜂 log(𝜇 (𝑥)) + 10 × 1𝑓 𝑙𝑜𝑜𝑟=0

Numerical results:We compute this problem with a horizon of

Figure 5: Building environment.

10000, so |X| = 8
10
. We take 𝜂 = 1. To ensure that the reward stays

bounded, we clip the first part −𝜂 log(𝜇 (𝑥)) to −40. As expected, we

observe in Fig. 2 that the agents go downstairs and do not concen-

trate on the shortest path but rather spread mildly. OMD converges

faster than both Fictitious Play and Fictitious Play damped.

4.3 Crowd motion with randomly shifted point
of interest

Environment: We consider a second crowd modeling MFG, ex-

tending the Beach Bar problem of [59] in two dimensions. The

environment is a 2D torus of dimensions 1000 × 1000, with a point

of interest initially located at the center of the square. After 200

timesteps, the point of interest changes location, moving randomly

in the direction of one of the corner. This process repeats itself 5

times. This random location change adds common noise to the envi-

ronment and increases exponentially the number of states. Consid-

ering MFG with common noise can be encompassed in our previous

study by simply increasing the state space with the common noise

and adding time to the reward and the transition kernel. For every

random movement, four possible directions are possible, making

the total number of states |X| = 2 × 10
8 ×∑

4

𝑘=0
4
𝑘 = 2.73 × 10

11

states. The reward is: 𝑟 (𝑥, 𝑎, 𝜇) = 𝐶 × (1− ∥𝑏𝑎𝑟−(𝑖, 𝑗) ∥1

2×𝑁𝑠𝑖𝑑𝑒
) − log(𝜇 (𝑥)).

Numerical results:We set𝐶 = 10. We observe in Fig. 3 that the

population is organizing itself with respect to the point of interest

and follows it closely as it randomly moves within the dedicated

square region. In the common noise setting, we get more than a

trillion states, making it hard for Fictitious Play to scale. More plots

with a smaller state space are available in Appx. H for a comparison

of OMD and Fictitious Play.

4.4 Multi-population chasing
Environment: We finally look at MP-MFGs, where the popula-

tions are chasing each other in a cyclic manner. For the sake of

clarity, we explain the reward structure with 3 populations, but

more populations are considered in the experiments. With three

populations, the game closely relates to the well knownHens-Foxes-

Snakes outdoor game for kids. Hens are trying to catch snakes,

while snakes are chasing foxes, who are willing to eat hens. It can

also be interpreted as a control version of the spatially extended

Rock-Paper-Scissors, where patterns of travelling waves appear

under certain conditions [62]. The interplay between nontransi-

tive interactions and biodiversity has been the subject of extensive,

mostly experimental, research showing that the setting details crit-

ically affect the emergent behavior [76]. To ensure 𝑟 𝑖, 𝑗 = −𝑟 𝑗,𝑖 we
implement MP-MFGs with the reward structure defined in Table 6

(ex. with 3 populations).

The reward of population 𝑖 is monotone (cf. Appx. H.4.1) and
follows the definition (3):

𝑟 𝑖 (𝑥, 𝑎, 𝜇1, . . . , 𝜇𝑁 ) = − log(𝜇𝑖 (𝑥)) +∑
𝑗≠𝑖 𝜇

𝑗 (𝑥)𝑟 𝑖, 𝑗 (𝑥).
The distributions are initialized either randomly or in different

corners. The number of agents of each population is fixed, but

the reward encourages the agent to chase the population that it
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R P S

R 0 -1 1

P 1 0 -1

S -1 1 0

Figure 6: 𝑟 𝑖, 𝑗 for three-population.

dominates. For example, if an agent is Rock, the second term of

the reward is proportional to the amount 𝜇𝑆 of Scissors agents

where the Rock agent is located, and inversely proportional to the

proportion 𝜇𝑃 of Paper agents, making the Rock agent to flee from

places populated by Paper agents.

Numerical results: We present a four-population example,

each is initially located at a corner of the environment. We observe

that the populations are chasing each other in a cyclic fashion.

Fig. 4 highlights that OMD algorithm outperforms Fictitious Play in

terms of exploitability minimization (full comparison with different

values of𝛼 in Appx. H.4). It demonstrates the robustness of the OMD

algorithm within the different topologies considered. Topologies of

the environment are a torus, a basic square or the ‘donut’ topology

(an environment where the agent gets a negative reward if it goes

inside a large zone at the center of the square).

5 RELATEDWORK
OMD in Normal Form Games : OMD dynamics have been studied

extensively within the field of multi-agent games [30, 55]. Leverag-

ing the well known advantageous regret properties of such dynam-

ics [73], one can prove strong time-average convergence results

both in zero-sum games (and network variants thereof) [20, 40]

as well as in smooth-games [64]. Recently, there has been explicit

focus on understanding their day-to-day behavior which has been

shown to be non-equilibrating even in standard bilinear zero-sum

games [50, 61]. Moreover, even in simple games the behavior of

such dynamics can become formally chaotic [32, 57, 66]. Never-

theless, sufficient conditions have been established under which

converge to NE is guaranteed even in the sense of the day-to-day

behavior [15, 81]. We find sufficient conditions for convergence in

the more demanding setting of MP-MFG.

Learning in Mean Field Games : Related to the question of learn-

ing in MFGs, [80] studied a MF oscillator game, while [24] initiated

the study of Fictitious Play in MFGs, which has been further stud-

ied in [45]. Recently, these ideas have been combined with RL

by [37, 59]. These methods allow solving MFGs under a monotonic-

ity assumption, which is at the same time easier to check and less

restrictive than the ones used to ensure convergence for fixed point

iterations [9, 43] or single-loop Fictitious Play iterations [10, 79].

In our work, we also prove convergence under such a weak mono-

tonicity condition, which enables us to cover a large class of MFGs.

Furthermore, we consider time-dependent problems (as e.g. in [52])

instead of stationary equilibria. Mirror Descent for MFGs has been

introduced in [44] for first-order, single-population MFG, while

our results cover second order MP-MFG. As far as we know, our

work is the first one to provide a well-suited monotonicity condi-

tion for MP-MFG. Traditional numerical methods for solving MFGs

typically rely on a finite difference scheme introduced in [4]. This

approach can be extended to solve MP-MFG, see [1]. However, to

the best of our knowledge, there is no general convergence guaran-

tees, nor has it been tested on examples with as many states as we

consider.

Contraction hypothesis in Mean Field Games : In contrast to this

work, a large part of learning algorithms in Mean Field Games

assume some form of a contraction assumption ([9, 43, 79]). Despite

being a source of great convergence properties, it has been shown

in [35] that Mean Field Games examples in the literature generally

fail to satisfy this assumption. Furthermore, in no way these papers

exhibit examples that check the necessary contraction property

they assume. To circumvent this problem [35] introduce a form of

smoothing having the effect of biasing the solution found by the

algorithm.

Numerical methods : More recently, several numerical methods

to solve MFGs based on machine learning tools have been proposed

using either an analytical viewpoint [8, 22, 28, 49, 65] or a stochastic

viewpoint [29, 38, 41]. To the best of our knowledge, these algo-

rithms have not been proved to converge, are applicable only under

rather stringent conditions (on the structure or the regularity of the

problem) and do not seem to be directly applicable to complex ge-

ometries due to boundary conditions. Last, the question of learning

with multiple infinite populations of agents has also been studied

recently in [74]. The authors consider several groups where the

agents cooperate among each group, which differs from our setting

where all the agents compete.

6 CONCLUSION
We proposed Online Mirror Descent for MP-MFGs and proved that,

under appropriate monotonicity assumptions, OMD converges to

a NE. Moreover, we considered multiple experimental benchmarks,

some with hundreds of billions states, and have extensively com-

pared OMD to state-of-the-art Fictitious Play. OMD scales empir-

ically remarkably well, and consistently converges significantly

faster than Fictitious Play. An interesting direction of future work

would be to study the rate of convergence of OMD. Fictitious Play

benefits from a 𝑂 (1/𝑡) rate of convergence (see Appx. C) but the
corresponding line of argument does not extend to OMD. Empir-

ically, we envision to extend this approach to a model-free setting

with function approximation and address even larger problems.
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