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ABSTRACT
Opinion spreading in a society decides the fate of elections, the

success of products, and the impact of political or social movements.

The model by Hegselmann and Krause is a well-known theoretical

model to study such opinion formation processes in social networks.

In contrast to many other theoretical models, it does not converge

towards a situation where all agents agree on the same opinion.

Instead, it assumes that people find an opinion reasonable if and

only if it is close to their own. The system converges towards a

stable situation where agents sharing the same opinion form a

cluster, and agents in different clusters do not influence each other.

We focus on the social variant of the Hegselmann-Krause model

where agents are connected by a social network and their opinions

evolve in an iterative process. When activated, an agent adopts the

average of the opinions of its neighbors having a similar opinion.

By this, the set of influencing neighbors of an agent may change

over time. To the best of our knowledge, social Hegselmann-Krause

systems with asynchronous opinion updates have only been studied

with the complete graph as social network. We show that such

opinion dynamics with random agent activation are guaranteed to

converge for any social network. We provide an upper bound of

O(𝑛 |𝐸 |2 (𝜀/𝛿)2) on the expected number of opinion updates until

convergence, where |𝐸 | is the number of edges of the social network.

For the complete social network we show a bound of O(𝑛3 (𝑛2 +
(𝜀/𝛿)2)) that represents a major improvement over the previously

best upper bound of O(𝑛9 (𝜀/𝛿)2). Our bounds are complemented

by simulations that indicate asymptotically matching lower bounds.
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1 INTRODUCTION
Our opinions are not static. On the contrary, opinions are suscep-

tible to dynamic changes and this is heavily exploited by (social)

media, influencers, politicians, and professionals for public rela-

tions campaigns and advertising. The way we form our opinions is

not a solitary act that simply combines our personal experiences

with information from the media. Instead, it is largely driven by

interactions with our peers in our social network. We care about the

opinions of our peers and relatives, and their opinions significantly

influence our own opinion in an asynchronous dynamic process

over time. Such opinion dynamics are pervasive in many real-world

settings, ranging from small scale townhall meetings, community

referendum campaigns, parliamentary committees, and boards of

enterprises to large scale settings like political campaigns in demo-

cratic societies or peer interactions via online social networks.

The aim for understanding how opinions are formed and how

they evolve in multi-agent systems is the driving force behind an

interdisciplinary research effort in diverse areas such as sociology,

economics, political science, mathematics, physics, and computer

science. Initial work on these issues dates back to Downs [32]

and early agent-based opinion formation models as proposed by

Abelson and Bernstein [1].

In this paper we study an agent-based model for opinion forma-

tion on a social network where the opinion of an agent depends

both on its own intrinsic opinion and on the opinions of its network

neighbors. One of the earliest influential models in this direction

was defined by DeGroot [31]. In this model the opinion of an agent

is iteratively updated to the weighted average of the opinions of

its neighbors. Later, Friedkin and Johnsen [38] extended this by

incorporating private opinions. Every agent has a private opinion

which does not change and an expressed opinion that changes over

time. The expressed opinion of an agent is determined as a function

of the expressed opinions of its neighbors and its private opinion.

The main focus of our paper is the very influential model by

Hegselmann and Krause [43] that adds an important feature: the set

of neighbors that influence a given agent is no longer fixed and the

agents’ opinions and their respective sets of influencing neighbors

co-evolve over time. At any point in time the set of influencing

neighbors of an agent are all the neighbors in a given static social

network with an opinion close to their own opinion. Hence, agents

only adapt their opinions to neighboring agents having an opinion

that is not too far away from their own opinion. Note that this

adaption, in turn, might lead to a new set of influencing neighbors.
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In sociology this wide-spread behavior is known as homophily [45],

which, for example, governs the formation of social networks and

explains residential segregation. Co-evolutionary opinion forma-

tion helps to analyze and explain current phenomena like filter

bubbles in the Internet [48] and social media echo chambers [22]

that inhibit opinion exchange and amplify extreme views. The co-

evolution of opinions and the sets of influencing neighbors is the

key feature of a Hegselmann-Krause system (HKS). However, it is

also the main reason why the analysis of the dynamic behavior of

a HKS is highly non-trivial and challenging.

Typical questions studied are the convergence properties of the

opinion dynamics: Is convergence to stable states guaranteed and

if yes, what are upper and lower bounds on the convergence time?

Guaranteed convergence is essential since otherwise the predictive

power of the model is severely limited. Moreover, studying the

convergence time of opinion dynamics is crucially important. In

general, the analysis of stable states is significantlymoremeaningful

if these states are likely to be reached in a reasonable amount of

time, i.e., if quick convergence towards such states is guaranteed.

If systems do not stabilize in a reasonable time, stable states lack

justification as a prediction of the system’s behavior.

Researchers have investigated the convergence to stable states

and the corresponding convergence speed in many variants of the

Hegselmann-Krause model. The existing work can be categorized

along two dimensions: complete or arbitrary social network and

synchronous or asynchronous updates of the opinions. Synchronous
opinion updates means that all agents update their opinion at the

same time. In systems with asynchronous updates a single agent is

selected uniformly at random and only this agent updates its opin-

ion. The main body of recent work focuses on HKSs assuming the

complete graph as social network and the synchronous update rule.

Interestingly, convergence guarantees and convergence times for

the case with asynchronous updates on an arbitrary social network

are, to the best of our knowledge, absent from the literature so far.

This case is arguably the most realistic setting as social networks

are typically sparse, i.e., non-complete, and social interactions and

thereby opinion exchange usually happens in an uncoordinated

asynchronous fashion.

In this paper we study the following Hegselmann-Krause system
(HKS). We have 𝑛 agents and their opinions are modeled by points

in 𝑑-dimensional Euclidean space R𝑑 , for some 𝑑 ≥ 1. The agents

are connected by a social network which does not change over time.

At any point of time the set of influencing neighbors of an agent is

the subset of its neighbors (in the social network) with an opinion

of distance at most 𝜀 > 0 from its own opinion. We assume that in

each step a random agent is activated and its opinion is updated

to the average of its current opinion and the opinion of all current

influencing neighbors. Note in such an asynchronous HKS stable

states in the sense that no agent will change its opinion might

never be reached. This can be seen by a simple example with two

nodes and one edge. Hence, we adopt a natural stability criterion

defined by Bhattacharyya and Shiragur [14]. A HKS is in a 𝛿-stable
state if and only if each edge in the influence network has length

at most 𝛿 . For this scenario we prove that the convergence of the

opinion dynamics is guaranteed and we give an upper bound on

the expected convergence time of

O(𝑛 |𝐸 |2 (𝜀/𝛿)2) ≤ O(𝑛5 (𝜀/𝛿)2),

where |𝐸 | is the cardinality of the edge set of the given social net-

work. We demonstrate the tightness of our derived upper bound by

providing empirical agent-based simulations for several topologies

of the underlying social network topologies. Note that for complete

graphs as social network our bound of O(𝑛3 (𝑛2+ (𝜀/𝛿)2)) improves

the best previously known upper bound of O(𝑛9 (𝜀/𝛿)2) [34].

1.1 Related Work
We focus our discussion on recent research on Hegselmann-Krause

systems and other opinion formation models.

Synchronous HKSs on Complete Networks. Most recent research

focused on synchronous opinion updates in complete social net-

works. For this setting it is known that the process always converges

to a state where no agent changes its opinion anymore [21]. We

denote such states as perfectly stable states. Touri and Nedic [49]

prove that any one-dimensional HKS converges in O(𝑛4) synchro-
nous update rounds to a perfectly stable state. Bhattacharyya et

al. [13] improve this upper bound to O(𝑛3). For 𝑑 dimensions they

show a convergence time of O(𝑛10𝑑2). For arbitrary 𝑑 Etesami and

Başar [34] establish a bound of O(𝑛6) rounds, which is indepen-

dent of the dimension 𝑑 . Finally, Martinsson [44] shows that any

synchronous 𝑑-dimensional HKS converges within O(𝑛4) update
rounds to a perfectly stable state.

Regarding lower bounds, Bhattacharyya et al. [13] construct two-

dimensional instances that need at leastΩ(𝑛2) update rounds before
a perfectly stable state is reached. Later, Wedin and Hegarty [50]

show that this lower bound holds even in one-dimensional systems.

Synchronous HKSs on Arbitrary Social Networks. In [47], the au-

thors use the probabilistic method to prove that the expected conver-

gence time to a perfectly stable state is infinite for general networks.

This also holds for a slightly weaker stability concept than perfect

stability: in all future steps an agent’s opinion will not move fur-

ther than by a given distance 𝛿 . To show their result the authors

construct a HKSs with infinitely many oscillating states. Their sta-

bility notion is also different to the one considered in this paper.

We analyze the time to reach a 𝛿-stable state which is defined as a

state where any edge in the influence network has length at most

𝛿 (see Section 1.2). For 𝛿-stability Bhattacharyya and Shiragur [14]

prove that a synchronous HKS with an arbitrary social network

reaches a 𝛿-stable state in O(𝑛5 (𝜀/𝛿)2) synchronous rounds.

Asynchronous HKSs. Compared to the synchronous case, the ex-

isting results for asynchronous HKSs are rather limited. To the best

of our knowledge, they were first studied by Etesami and Başar [34]

where the authors consider 𝛿-equilibra in contrast to 𝛿-stable states.

They define a 𝛿-equilibrium as a state where each connected compo-

nent of the influence network has an Euclidean diameter of at most

𝛿 and prove that the expected number of update steps to reach such

a state is bounded by O(𝑛9 (𝜀/𝛿)2) for the complete social network.

In general, 𝛿-equilibria are a proper subset of the set of 𝛿-stable

states. However, in Section 2 we discuss the equivalence of both

stability notions on complete social networks.
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Other Opinion Formation Models. In the seminal models by Fried-

kin and Johnsen [38] (extending earlier work by DeGroot [31]) each

agent has an innate opinion and strategically selects an expressed

opinion that is a compromise of its innate opinion and the opinions

of its neighbors. Recently, co-evolutionary and game-theoretic vari-

ants were studied [15–17, 33, 37], and the results focus on equilib-

rium existence and social quality, measured by the price of anarchy.

In the AI and multi-agent systems community, opinion formation is

studied intensively. In [4] a co-evolutionary model is investigated,

where also the innate opinion may change over time. There is also

substantial work on understanding opinion diffusion, i.e., the pro-

cess of how opinions spread in a social network [2, 18–20, 30, 36].

Moreover, in [24, 25] a framework and a simulator for agent-based

opinion formation models is presented. Opinion dynamics and in

particular the emergence of echo chambers is modeled with tools

from statistical physics in [35, 39]

Another line of related research on opinion dynamics has its

roots in randomized rumor spreading and distributed consensus

processes (see [6] for a rather recent survey). Communication in

these models is typically restricted to constantly many neighbors.

A simple and natural protocol in this context is the Voter process

[11, 26, 42, 46], where every agent adopts in each round the opinion

of a single, randomly chosen neighbor. Similar processes are the

TwoChoices process [27–29], the 3Majority dynamics [8, 9, 40],

and the Undecided State Dynamics [3, 5, 7, 10, 23, 41].

1.2 Model and Notation
A Hegselmann-Krause system (HKS) (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) in 𝑑 dimen-

sions is defined as follows. We are given a social network𝐺 = (𝑉 , 𝐸)
and a confidence bound 𝜀 ∈ R+. The 𝑛 nodes of the social network

correspond to the agents, and each agent 𝑣 ∈ 𝑉 has an initial opinion
𝑥0 (𝑣) ∈ R𝑑 . We will use the terms agents and nodes interchange-

ably. As the opinion of agent 𝑣 is represented by a point in the

𝑑-dimensional Euclidean space, we sometimes call it the position
of 𝑣 . In step 𝑡 ∈ Z≥0 the opinion of agent 𝑣 ∈ 𝑉 is denoted as

𝑥𝑡 (𝑣) ∈ R𝑑 . For some constant confidence bound 𝜀 ∈ R+ we define

the influencing neighborhood of agent 𝑣 ∈ 𝑉 at time 𝑡 as

N𝑡 (𝑣) = {𝑢 ∈ 𝑉 |{𝑢, 𝑣} ∈ 𝐸, ∥𝑥𝑡 (𝑢) − 𝑥𝑡 (𝑣)∥2 ≤ 𝜀} ∪ {𝑣} .

In each step 𝑡 one agent 𝑣 ∈ 𝑉 is chosen uniformly at random and

updates its position according to the rule

𝑥𝑡+1 (𝑣) =
∑
𝑢∈N𝑡 (𝑣) 𝑥𝑡 (𝑢)
|N𝑡 (𝑣) |

.

If 𝑥𝑡 (𝑣) ≠ 𝑥𝑡+1 (𝑣), then we say that (the opinion of) agent 𝑣 has

moved. Also, in an update of agent 𝑣 ’s position in step 𝑡 , all other

agents do not change their positions, i.e., 𝑥𝑡+1 (𝑢) = 𝑥𝑡 (𝑢) for 𝑢 ≠ 𝑣 .

Given a social network 𝐺 = (𝑉 , 𝐸), we define for any edge 𝑒 =

{𝑢, 𝑣} ∈ 𝐸 at time 𝑡 the length of 𝑒 as ∥𝑥𝑡 (𝑒)∥2 = ∥𝑥𝑡 (𝑢) − 𝑥𝑡 (𝑤)∥2.

We define the movement 𝑚𝑡 (𝑣) of agent 𝑣 ∈ 𝑉 at time 𝑡 as the

𝑑-dimensional vector

𝑚𝑡 (𝑣) =
∑
𝑢∈N𝑡 (𝑣) (𝑥𝑡 (𝑢) − 𝑥𝑡 (𝑣))

|N𝑡 (𝑣) |
.

Note that𝑚𝑡 (𝑣) = 𝑥𝑡+1 (𝑣) −𝑥𝑡 (𝑣) if 𝑣 is chosen in step 𝑡 , and hence

∥𝑚𝑡 (𝑣)∥2 denotes the distance the agent moves when activated

in step 𝑡 . The influence network 𝐼𝑡 in step 𝑡 is given by the social

network 𝐺 restricted to edges that have length at most 𝜀. More

formally, it is defined as 𝐼𝑡 = (𝑉 , E𝑡 ), where 𝑒 = {𝑢, 𝑣} ∈ E𝑡 if and
only if 𝑢 ∈ N𝑡 (𝑣), i.e., ∥𝑥𝑡 (𝑒)∥2 ≤ 𝜀. We define the state of a HKS
(𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) at time 𝑡 as 𝑆𝑡 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥𝑡 ) and it refers

to the positions of the agents at that specific time. If clear from the

context, we omit the parameter 𝑡 . For a fixed state 𝑆 , the termN(𝑣)
denotes the influencing neighborhood in this state.

We are interested in the expected number of steps that are re-

quired until the HKS reaches a 𝛿-stable state, which is a natural

stability criterion defined by Bhattacharyya and Shiragur [14]. A

HKS is in a 𝛿-stable state, if and only if each edge in the influence

network has length at most 𝛿 . We call the number of steps to reach

a 𝛿-stable state the convergence time of the system.

1.3 Our Contribution
We study the convergence time to a 𝛿-stable state in Hegselmann-

Krause systems with an arbitrary initial state and an arbitrary given

social network, where we update one uniformly at random chosen

agent in each step. To the best of our knowledge, this is the first

analysis of the variant of HKSs that feature asynchronous opinion

updates on a given arbitrary social network. For these systems, we

prove the following:

Theorem 1. For a 𝑑-dimensional HKS 𝑆0 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ), the
expected convergence time to a 𝛿-stable state under uniform random
asynchronous updates is O(Φ(𝑆0)𝑛 |𝐸 |/𝛿2) ≤ O(𝑛 |𝐸 |2 (𝜀/𝛿)2).

For graphs with |𝐸 | = O(𝑛), for example graphs with constant

maximum node degree, the theorem immediately shows an ex-

pected convergence time of O(𝑛3 (𝜀/𝛿)2). Interestingly, our upper
bound on the expected convergence time in the asynchronous

process on arbitrary social networks is of the same order as the

best known upper bound of O(𝑛5 (𝜀/𝛿)2) for the synchronous pro-
cess [14] where all agents are activated in parallel.

Furthermore, we show that the convergence time stated in The-

orem 1 also transfers to the model of Etesami and Başar [34]. They

showed that a HKS with asynchronous opinion updates on a com-

plete social network converges to a 𝛿-equilibrium in O(𝑛9 (𝜀/𝛿)2)
steps, thus it is a major improvement over their analysis. However,

since on arbitrary social networks 𝛿-stability does not imply a 𝛿-

equilibrium, it is open if the bound given in Theorem 1 also holds

for the convergence time to 𝛿-equilibria.

Moreover, for the special case of a complete social network with

asynchronous opinion updates, i.e., the case considered by Etesami

and Başar [34], we show the following even stronger result that

holds for arbitrary 𝛿 :

Theorem 2. Let (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) be any instance of a 𝑑-dimen-
sional HKS and let 𝐺 = 𝐾𝑛 be the complete social network. Using
uniform random asynchronous update steps, the expected convergence
time to a 𝛿-stable state is at most O(𝑛3

(
𝑛2 + (𝜀/𝛿)2

)
).

To prove these results we extend the potential function used

in [34]. The main ingredient for strongly improving the upper

bound derived in [34] is to significantly tighten and generalize the

proof by Etesami and Başar [34]. To do so we develop a projection

argument (see Lemma 3) and a new analysis of the expected move-

ment of a randomly chosen agent. This allows us to improve the

bound on the expected drop of the potential function (see Lemma 7).
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To complement our upper bound results we demonstrate that

our analysis method is tight in the sense that using this potential

function and studying step by step drop, one cannot improve the re-

sults. We present a family of examples where the expected potential

drop is exactly of the same order as our upper bound (see Theo-

rem 8). Moreover, we present a family of one-dimensional HKSs

where in expectation Ω(𝑛2) steps are needed to reach a 𝛿-stable

state (see Theorem 11). Last but not least, in Section 5 we provide

some simulation results for two specific social network topologies.

Our empirically derived lower bounds asymptotically match our

theoretically proven upper bound from Theorem 1.

2 SOCIAL HEGSELMANN-KRAUSE SYSTEMS
In this section, we prove Theorem 1 using three intermediate

steps. First, we show that there is a projection of any state of a 𝑑-

dimensional HKS to one dimension while preserving the main prop-

erties of the HKS. In the next step, we prove for any 1-dimensional

HKS that the term

∑
𝑣∈𝑉 ( |N𝑡 (𝑣) | · ∥𝑚𝑡 (𝑣)∥2) can be lower bounded

by the twice the length of the longest edge in the system (see

Corollary 5). Finally, we prove that the drop in the potential when

activating an agent 𝑣 can be lower bounded by a function of its

movement𝑚𝑡 (𝑣) (see Lemma 6). Combining these three properties

on HKSs enables us to prove the theorem.

Let 𝑆 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) be a state of some 𝑑-dimensional

HKS with influential network 𝐼 = (𝑉 , E). For some arbitrary edge

𝑒 = {𝑢,𝑤} ∈ E , we will project the state 𝑆 to a state 𝑆𝑒 of some

1-dimensional HKS. We define the projected state 𝑆𝑒 along edge

𝑒 = {𝑢,𝑤} with the help of the projection vector

𝑝 =
(𝑥 (𝑢) − 𝑥 (𝑤))
∥𝑥 (𝑢) − 𝑥 (𝑤)∥2

,

where the order of 𝑢 and𝑤 is chosen arbitrarily. We define

𝑆𝑒 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) ,
as follows. We project the position of each agent 𝑣 ∈ 𝑉 to

𝑥 (𝑣) = 𝑥 (𝑣)⊤𝑝 ∈ R .
Furthermore, in the graph 𝐺 = (𝑉 , 𝐸) of the projected system,

we restrict the set of edges 𝐸 to the ones, which are edges of the

influence network in the original state, i.e., 𝐸 = E . For an agent

𝑣 ∈ 𝑉 , we denote by ¯N(𝑣) its influencing neighborhood, and by

𝑚̄ (𝑣) its movement in 𝑆𝑒 .

In the following lemma, we prove that the projected system

behaves similarly to the original system in the sense that the length

of the edge 𝑒 stays the same and the influence network does not

change. Furthermore, the agents in the original HKS move at least

as much as the agents in the projected state, when activated.

Lemma 3. Let 𝑆 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) be a state of a 𝑑-dimensional
HKS with influence network 𝐼 = (𝑉 , E) and 𝑒 = {𝑢,𝑤} ∈ E . Then it
holds for the projected state 𝑆𝑒 defined as above that

(1) ∥𝑥 (𝑢) − 𝑥 (𝑤)∥2 = |𝑥 (𝑢) − 𝑥 (𝑤) | ,
(2) N(𝑣) = ¯N(𝑣) ,
(3)

∑
𝑣∈𝑉 ( |N(𝑣) | · ∥𝑚 (𝑣)∥2) ≥

∑
𝑣∈𝑉 ( | ¯N(𝑣) | |𝑚̄ (𝑣) |) .

Proof. Let 𝑝 be the projection vector used to generate 𝑆𝑒 . To

see statement (1) note that

|𝑥 (𝑢) − 𝑥 (𝑤) | =
��𝑥 (𝑢)⊤𝑝 − 𝑥 (𝑤)⊤𝑝

�� = ���(𝑥 (𝑢) − 𝑥 (𝑤))𝑇 𝑝
���

=

���� (𝑥 (𝑢) − 𝑥 (𝑤))⊤ (𝑥 (𝑢) − 𝑥 (𝑤))
∥(𝑥 (𝑢) − 𝑥 (𝑤))∥2

����
= ∥(𝑥 (𝑢) − 𝑥 (𝑤))∥2 .

To prove statement (2), we show that for each pair 𝑣, 𝑣 ′ ∈ 𝑉 it holds

that ∥𝑥 (𝑣) − 𝑥 (𝑣 ′)∥2 ≥ |𝑥 (𝑣) − 𝑥 (𝑣 ′) |.

|𝑥 (𝑣) − 𝑥 (𝑣 ′) | =
��𝑥 (𝑣)⊤𝑝 − 𝑥 (𝑣 ′)⊤𝑝 �� = ��(𝑥 (𝑣) − 𝑥 (𝑣 ′))⊤𝑝 ��

=

���� (𝑥 (𝑣) − 𝑥 (𝑣 ′))⊤ (𝑥 (𝑢) − 𝑥 (𝑤))
∥(𝑥 (𝑢) − 𝑥 (𝑤))∥2

����
Cauchy-Schwarz

≤ ∥(𝑥 (𝑣) − 𝑥 (𝑣 ′))∥2 .

Since the difference between projected positions of agents is at

most as large as the difference between their original positions and

since 𝐸 contains only the edges of the influence network in the

original state, it holds that N(𝑣) = ¯N(𝑣). Finally, it holds that

∥𝑚 (𝑣)∥2 =





∑𝑢∈N(𝑣) (𝑥 (𝑢) − 𝑥 (𝑣))
|N(𝑣) |






2

=



∑
𝑢∈N(𝑣) (𝑥 (𝑢) − 𝑥 (𝑣))




2

|N(𝑣) |

Cauchy-Schwarz

≥

����(∑𝑢∈N(𝑣) (𝑥 (𝑢) − 𝑥 (𝑣))
)⊤

(𝑥 (𝑢) − 𝑥 (𝑤))
����

|N(𝑣) |∥𝑥 (𝑢) − 𝑥 (𝑤)∥2

=

�������
(∑

𝑢∈N(𝑣) (𝑥 (𝑢)⊤𝑝 − 𝑥 (𝑣)⊤𝑝)
)

|N(𝑣) |

�������
=

�����
∑

𝑗 ∈ ¯N(𝑣) (𝑥 (𝑢) − 𝑥 (𝑣))
| ¯N(𝑣) |

����� = |𝑚̄ (𝑣) | ,

and hence ∑
𝑣∈𝑉

|N(𝑣) |∥𝑚 (𝑣)∥2 ≥
∑
𝑣∈𝑉

| ¯N(𝑣) | |𝑚̄ (𝑣) | . □

We now prove a lower bound on the total movement of agents.

Lemma 4. Let 𝑆 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) be a state of a 1-dimensional
HKS, let 𝑐 ∈ R and 𝑉ℓ = {𝑣 ∈ 𝑉 | 𝑥 (𝑣) ≤ 𝑐} and 𝑉𝑟 = 𝑉 \𝑉ℓ . Define
𝐸ℓ,𝑟 = {{𝑢,𝑤} ∈ 𝐸𝐼 | 𝑢 ∈ 𝑉𝑙 ,𝑤 ∈ 𝑉𝑟 }. Then it holds that∑

𝑣∈𝑉
|N(𝑣) | |𝑚 (𝑣) | ≥ 2

∑
𝑒∈𝐸ℓ,𝑟

∥𝑥 (𝑒)∥2

Proof. We observe∑
𝑣∈𝑉ℓ

|N(𝑣) | |𝑚 (𝑣) | ≥
∑
𝑣∈𝑉ℓ

|N(𝑣) |𝑚 (𝑣)

=
∑
𝑣∈𝑉ℓ

|N(𝑣) |
∑

𝑢∈N(𝑣)

𝑥 (𝑢) − 𝑥 (𝑣)
|N(𝑣) |

=
∑
𝑣∈𝑉ℓ

∑
𝑢∈𝑉𝑟

(𝑥 (𝑢) − 𝑥 (𝑣)) =
∑

𝑒∈𝐸ℓ,𝑟

∥𝑥 (𝑒)∥2 .

Similarly, it holds that∑
𝑣∈𝑉𝑟

|N(𝑣) | |𝑚 (𝑣) | ≥

������∑𝑣∈𝑉𝑟 |N(𝑣) |𝑚 (𝑣)

������ = ∑
𝑒∈𝐸ℓ,𝑟

∥𝑥 (𝑒)∥2 .

The lemma follows by combining the two results as𝑉𝑟 = 𝑉 \𝑉ℓ . □
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Corollary 5. Let 𝑆 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) be a state of a 𝑑-
dimensional HK system. Let 𝜆 be the length of a longest edge in the
influence network. Then∑

𝑣∈𝑉
|N𝑡 (𝑣) | · ∥𝑚𝑡 (𝑣)∥2 ≥ 2𝜆.

Proof. Let edge 𝑒 = {𝑣ℓ , 𝑣𝑟 } ∈ E be a longest edge in the influ-

ence network and ∥𝑥 (𝑒)∥2 = 𝜆. Let 𝑆𝑒 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) be the
state projected to one dimension along the edge 𝑒 . By Lemma 3, we

know that ∑
𝑣∈𝑉

|N(𝑣) | · ∥𝑚 (𝑣)∥2 ≥
∑
𝑣∈𝑉

| ¯N(𝑣) | · |𝑚̄ (𝑣) | .

Furthermore, we know that the influence network in both systems

has the same set of edges, and that the length of the longest edge

in the influence network of 𝐼𝑡 is equal to the length of the longest

edge in 𝐼𝑡 . Hence 𝑒 = {𝑢,𝑤} ∈ 𝐸 is a longest edge in the influence

network 𝐼 with ∥𝑥 (𝑒)∥2 = 𝜆.

Analogously to Lemma 4, we partition𝑉 into two sets𝑉ℓ and𝑉𝑟
at 𝑐 = (𝑥 (𝑢) + 𝑥 (𝑤))/2 and define 𝐸ℓ,𝑟 = {{𝑣, 𝑣 ′} | 𝑣 ∈ 𝑉ℓ , 𝑣 ′ ∈ 𝑉𝑟 }.
Note that 𝑒 ∈ 𝐸ℓ,𝑟 and hence∑

𝑣∈𝑉
|𝑚̄ (𝑣) | | ¯N(𝑣) | ≥ 2

∑
𝑒∈𝐸ℓ,𝑟

∥𝑥 (𝑒)∥2 ≥ 2𝜆 . □

For any state 𝑆 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) of a 𝑑-dimensional HKS (𝐺 =

(𝑉 , 𝐸), 𝜀, 𝑥 ), we define the following potential function.

Φ(𝑆) =
∑

{𝑢,𝑣 }∈𝐸
min{∥𝑥 (𝑢) − 𝑥 (𝑣)∥2

2
, 𝜀2}.

This potential is upper-bounded by |𝐸 |𝜀2
. In the next step, we will

prove a lower bound on the drop in the potential when updating

any agent 𝑣 ∈ 𝑉 .

Lemma 6. Let 𝑆𝑡 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥𝑡 ) be the state of some 𝑑-
dimensional HKS (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ). Suppose we update the position
of agent 𝑣 and 𝑣 moves by𝑚𝑡 (𝑣). Let

𝑆𝑡+1 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥𝑡+1)

be the new state. The potential decreases by at least

Φ(𝑆𝑡 ) − Φ(𝑆𝑡+1) ≥ (|N𝑡 (𝑣) | + 1) · ∥𝑚𝑡 (𝑣)∥2

2
.

If the influence network does not change from step 𝑡 to 𝑡 + 1, we obtain
equality.

The proof is inspired by the work of Etesami and Başar [34] and

can be found in the full version of our paper [12].

We now have the tools to prove a lower bound on the expected

potential drop in a single step.

Lemma 7. For any state 𝑆𝑡 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥𝑡 ) of some HKS
(𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) in step 𝑡 , when updating an agent chosen uniformly
at random resulting in state 𝑆𝑡+1 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥𝑡+1), the expected
potential drop is at least

E[Φ(𝑆𝑡 ) − Φ(𝑆𝑡+1)] ≥
2(𝜆𝑡 )2

𝑛 |E𝑡 |
,

where 𝜆𝑡 is the length of the longest edge in the influence network 𝐼𝑡
in step 𝑡 .

Proof. From Lemma 6 we know that the potential never in-

creases: if we choose agent 𝑣 to be updated, the potential decreases

by at least

Φ(𝑆𝑡 ) − Φ(𝑆𝑡+1) ≥ (|N𝑡 (𝑣) | + 1) · ∥𝑚𝑡 (𝑣)∥2

2
.

Let 𝑒𝑡 be a longest edge in the corresponding influence network

of 𝑆𝑡 . By Corollary 5, we know that∑
𝑣∈𝑉

|N𝑡 (𝑣) | · ∥𝑚𝑡 (𝑣)∥2 ≥ 2∥𝑒𝑡 ∥2 .

Using Cauchy-Schwarz (∑𝑣∈𝑉 𝑎𝑣𝑏𝑣)2 ≤ ∑
𝑣∈𝑉 𝑎

2

𝑣 ·
∑

𝑣∈𝑉 𝑏
2

𝑣 with

𝑎𝑣 =
√
|N𝑡 (𝑣) | · ∥𝑚𝑡 (𝑣)∥2 and 𝑏𝑣 =

√
|N𝑡 (𝑣) |, we conclude that the

expected potential drop in each step with an edge with length at

least 𝜆𝑡 is at least

E[Φ(𝑆𝑡 ) − Φ(𝑆𝑡+1)] =
∑
𝑣∈𝑉

1

𝑛
E[Φ(𝑆𝑡 ) − Φ(𝑆𝑡+1) |𝑣 is updated]

≥ 1

𝑛

∑
𝑣∈𝑉

( |N𝑡 (𝑣) | + 1)∥𝑚𝑡 (𝑣)∥2

2

≥ 1

𝑛

∑
𝑣∈𝑉

(
√
|N𝑡 (𝑣) | · ∥𝑚𝑡 (𝑣)∥2)2

≥ 1

𝑛

(∑𝑣∈𝑉 |N𝑡 (𝑣) | · ∥𝑚𝑡 (𝑣)∥2)2∑
𝑣∈𝑉

√
|N𝑡 (𝑣) |

2

≥ 1

𝑛
· 4(𝜆𝑡 )2

2|E𝑡 |
. □

The proof of Theorem 1 is a direct consequence of Lemma 7.

Theorem 1. For a 𝑑-dimensional HKS 𝑆0 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ), the
expected convergence time to a 𝛿-stable state under uniform random
asynchronous updates is O(Φ(𝑆0)𝑛 |𝐸 |/𝛿2) ≤ O(𝑛 |𝐸 |2 (𝜀/𝛿)2).

Proof. Note that by definition of the potential function, we

have Φ(𝑆) ≤ 𝜀2 |𝐸 | for all states 𝑆 . We know by Lemma 7 that the

expected potential drop at any step 𝑡 is at least

E[Φ(𝑆𝑡 ) − Φ(𝑆𝑡+1)] ≥
2𝛿2

𝑛 |E𝑡 |
≥ 2𝛿2

𝑛 |𝐸 |
as long as there is an edge with length at least 𝛿 . Thus, the expected

number of steps to reach a 𝛿-stable state is upper bounded by

|𝐸 |𝜀2

2𝛿2

𝑛 |𝐸 |
=
𝑛 |𝐸 |2

2

( 𝜀
𝛿

)
2

. □

The results from Theorem 1 directly improve the results from Ete-

sami and Başar [34] even though they use a slightly different con-

vergence criterium. In their paper convergence is reached if the

diameter of each connected component is bounded by 𝛿 and they

call this state a 𝛿-equilibrium. They bound the expected number

of update steps to reach a 𝛿-equilibrium in the complete social

network by O(𝑛9 (𝜀/𝛿)2).
Note that if the social network is the complete graph, each con-

nected component in the influence network where each edge has

a length of at most 𝜀/2 also must be a complete graph and hence

the diameter of this connected component is also bounded by 𝜀/2.

Hence, if 𝛿 ≤ 𝜀/2, a 𝛿-stable state must be in 𝛿-equilibrium as well.

On the other hand, if 𝛿 > 𝜀/2, the expected number of steps to
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𝐶𝑙

ℓ 𝑟

𝜀 − 9𝑚̂ 𝜀 − 6𝑚̂ 𝜀 − 3𝑚̂ 𝜀 𝜀 − 3𝑚̂ 𝜀 − 6𝑚̂ 𝜀 − 9𝑚̂

𝐶𝑟

Figure 1: A state 𝑆 of a HKS with Φ(𝑆) = Θ(𝑛2𝜀) and an ex-
pected potential drop of Θ(𝜀2/𝑛3). Only edges in E0 are pre-
sented, and𝑚̂ = 𝜀/(𝑛2/16+5𝑛/4−1) represents the equalmove-
ment of all nodes. Note that the state 𝑆 is a one-dimensional
instance and the position of all nodes of the cliques 𝐶ℓ and
𝐶𝑟 have the same position, respectively. We use the second
dimension only for a better illustration of the influencing
network. We call the state 𝑆 with its social network reduced
to the edges in E0 a Dumbbell instance.

reach a 𝜀/2-stable state and hence a 𝛿-equilibrium is bounded by

O(𝑛5) by Theorem 1.

The next theorem shows that our bound on the potential drop

per step is tight. Consequently, if we would like to improve the

theorem, we have to choose a different potential function and/or

consider multiple activations at once.

Theorem 8. There is a family of examples with |𝐸 | = Θ(𝑛2), a
potential of Θ(𝑛2𝜀2), where the expected potential drop is Θ(𝜀2/𝑛3)
for the first activation.

Proof. Consider the following family of 1-dimensional HKSs

𝐻𝐾𝑛 = (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥0) such that |𝑉 | = 4𝑛 for any 𝑛 ∈ N, see
Fig. 1 for the example for𝑛 = 4. The set of nodes𝑉 is partitioned into

sets 𝐶ℓ ,𝐶𝑟 , 𝑃, {ℓ, 𝑟 } ⊆ 𝑉 , such that |𝐶ℓ | = |𝐶𝑟 | = 𝑛 and |𝑃 | = 2𝑛 − 2.

The set of edges 𝐸 is given such that𝐶ℓ ,𝐶𝑟 , and 𝑃 are cliques while

nodes ℓ and 𝑟 are connected to all nodes.

To define the opinions of the agents that correspond to the nodes

𝑉 at state 𝑆0, define 𝑚̂ = 𝜀/(𝑛2 + 5𝑛 − 1) and choose

• 𝑥0 (𝑣) = 0 for each 𝑣 ∈ 𝐶ℓ ,
• 𝑥0 (ℓ) = 𝑚̂ · (𝑛 + 1),
• for each 𝑗 ∈ {1, . . . , 𝑛} there exists a node 𝑣 𝑗 ∈ 𝑃 with

𝑥0 (𝑣 𝑗 ) = 𝑥0 (𝑣 𝑗−1) + 𝜀 − 3(𝑛 − 𝑗)𝑚̂

where we define 𝑣0 = ℓ .

• for each 𝑗 ∈ {𝑛 + 1, . . . , 2𝑛 − 2} there exists a node 𝑣 𝑗 ∈ 𝑃
with

𝑥0 (𝑣 𝑗 ) = 𝑥0 (𝑣 𝑗−1) + 𝜀 − 3( 𝑗 − 𝑛)𝑚̂

• 𝑥0 (𝑟 ) = 𝑥0 (𝑣) + 𝜀 − 3(𝑛 − 1)𝑚̂
• 𝑥0 (𝑣) = 𝑥0 (𝑟 ) + (𝑛 + 1)𝑚̂ for each 𝑣 ∈ 𝐶𝑟 .

Note that all the edges inside the cliques 𝐶ℓ ∪ {ℓ} and 𝐶𝑟 ∪ {𝑟 } are
in the influence network 𝐼0, as well as each edge between 𝑣 𝑗 and

𝑣 𝑗+1 for 𝑗 ∈ {0, . . . , 2𝑛 − 2}, where 𝑣0 = ℓ and 𝑣2𝑛−1 = 𝑟 . Also,

|𝑥0 (𝑣𝑖 ) − 𝑥0 (𝑣 𝑗 ) | ≥ 𝑥0 (𝑣2) − 𝑥0 (𝑣0)
= 𝜀 − 3(𝑛 − 2)𝑚̂ + 𝜀 − 3(𝑛 − 1)𝑚̂
= 2𝜀 − 3(2𝑛 − 3)𝜀/(𝑛2 + 5𝑛 − 1)
> 𝜀

for all 0 ≤ 𝑖, 𝑗 ≤ 2𝑛 with |𝑖 − 𝑗 | ≥ 2 and therefore the above

mentioned edges are the only ones in 𝐼0.

We proceed by verifying that for each 𝑣 ∈ 𝑉 it holds that

|𝑚0 (𝑣) | = 𝑚̂. We calculate the movement for ℓ . Let 𝑣 ∈ 𝐶ℓ . Since all
𝑛 agents in𝐶ℓ have the same initial position 𝑥0 (𝑣) = 0, it holds that

𝑚0 (ℓ) = (𝑛 · 𝑥0 (𝑣) + 𝑥0 (𝑣) − (𝑛 + 1)𝑥0 (ℓ))/(𝑛 + 2)
= (𝑥0 (ℓ) + 𝜀 − 3(𝑛 − 1)𝑚̂ − (𝑛 + 1)𝑥0 (ℓ))/(𝑛 + 2)
= (𝜀 − 3(𝑛 − 1)𝑚̂ − 𝑛 · 𝑥0 (ℓ))/(𝑛 + 2)
= (𝜀 − 3(𝑛 − 1)𝑚̂ − 𝑛 · 𝑚̂ · (𝑛 + 1))/(𝑛 + 2)
= (𝜀 − (𝑛2 + 4𝑛 − 3)𝑚̂)/(𝑛 + 2)
= (𝜀 − (𝑛2 + 4𝑛 − 3)𝜀/(𝑛2 + 5𝑛 − 1))/(𝑛 + 2)
= 𝜀 ((𝑛2 + 5𝑛 − 1) − (𝑛2 + 4𝑛 − 3))/((𝑛2 + 5𝑛 − 1) (𝑛 + 2))
= 𝜀 ((𝑛 + 2)/((𝑛2 + 5𝑛 − 1) (𝑛 + 2))
= 𝑚̂ .

The calculation of the movement of the other agents is analogous.

Note that the nodes on the path from ℓ to 𝑟 are the only nodes

that have edges not included in 𝐼0. However, independently of the

chosen agent to be updated, no new edge will be activated, since

the distance between the corresponding nodes always stays larger

than 𝜀. Hence, by Lemma 6, the expected potential drop is given by

E[Φ(𝑆0) − Φ(𝑆1)] =
1

𝑛

∑
𝑣∈𝑉

( |N0 (𝑣) | + 1) |𝑚0 (𝑣) |2

=
1

𝑛

(𝑛
2

(𝑛
4

+ 2

)
+ 2

(𝑛
4

+ 3

)
+
(𝑛

2

− 2

)
· 4

)
𝑚̂2

= (𝑛/8 + 7/2 − 2/𝑛) 𝑚̂2

= (𝑛/8 + 7/2 − 2/𝑛) (𝜀/(𝑛2/16 + 5𝑛/4 − 1))2

= Θ(𝜀2/𝑛3).
On the other hand, there exist𝑛/2(𝑛/2−2) edges with length longer
than 𝜀 and hence Φ(𝑆0) = Θ(𝜀2𝑛2). □

3 IMPROVED RESULTS FOR SPECIFIC
SOCIAL NETWORK TOPOLOGIES

In this section we will prove two improved upper bounds, each for

a more restricted set of graph classes. The first result holds for the

case that the social network is a complete graph, while the second

is for the case that in each step of the HKS the influence network is

the same as the social network.

Theorem 2. Let (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) be any instance of a 𝑑-dimen-
sional HKS and let 𝐺 = 𝐾𝑛 be the complete social network. Using
uniform random asynchronous update steps, the expected convergence
time to a 𝛿-stable state is at most O(𝑛3

(
𝑛2 + (𝜀/𝛿)2

)
).

Proof. We split this proof into two steps. First, we count the

number of possible steps where the influence network has an edge

of length at least 𝜀/2. Secondly, we upper-bound the number of

steps where the longest edge of the influence network is in [𝛿, 𝜀/2].
Assume in step 𝑡 there is an edge in the influence network with

length at least 𝜀/2. Let 𝑆𝑡 and 𝑆𝑡−1 denote the states of the HKS in

steps 𝑡 and 𝑡 − 1, respectively. In this case, by Lemma 7, we have

E[Φ(𝑆𝑡 ) − Φ(𝑆𝑡−1)] ≥
𝜀2

𝑛 |E𝑡 |
.
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As a consequence, the expected number of such steps is bounded

by |𝐸 |2𝑛 = O(𝑛5).

Claim 9. Let 𝐼𝑡 be the current influence network. The following
property holds in 𝐼𝑡 . If all edges have length at most 𝜀/2, each con-
nected component 𝐶𝑖 = (𝑉𝑖 , 𝐸𝑖 ) for 𝑉𝑖 ⊆ 𝑉 is a complete graph.

Proof of the Claim. Assume that 𝑣,𝑢 ∈ 𝑉𝑖 , but {𝑣,𝑢} ∉ 𝐸𝑖 .

Than there exists a shortest path 𝑃 = (𝑣,𝑤1, . . . ,𝑤𝑘 , 𝑢) of length
at least 2 from 𝑣 to 𝑢 where each edge has a length of at most

𝜀/2. As a consequence, the distance between 𝑣 and 𝑤2 has to be

smaller than 𝜀 and the edge between 𝑣 and 𝑤2 has to exist in the

influence network. Hence 𝑃 is not the shortest path contradicting

the assumption. □

For the rest of the proof assume that all edges in the influence

network are shorter than 𝜀/2 and there exists one edge with length

at least 𝛿 . We project the HKS to one dimension along the longest

edge. By Lemma 3 we know that in the projected graph no edge

increases its length and there exists an edge with length at least 𝛿 .

For each connected component 𝐶𝑖 = (𝑉𝑖 , 𝐸𝑖 ) define by 𝜆𝑖 (𝑡) the
length of the longest edge in the connected component. We bound

the total movement in this component from below using Lemma 4.

Let 𝑒𝑖 = {𝑢,𝑤} be the longest edge of the connected component

𝐶𝑖 = (𝑉𝑖 , 𝐸𝑖 ). We partition 𝑉𝑖 into 𝑉𝑖,ℓ and 𝑉𝑖,𝑟 at 𝑐 = (𝑥𝑡 (𝑢) +
𝑥𝑡 (𝑤))/2 and we define the set 𝐸ℓ,𝑟 as in Lemma 4. Since each node

from𝑉𝑖,ℓ is connected to𝑤 while each node from𝑉𝑖,𝑟 is connected to

𝑢, the set 𝐸ℓ,𝑟 contains at least ( |𝑉𝑖 | −1) edges of length at least 𝜆𝑡/2

and one of them has length 𝜆𝑡 . As a consequence,
∑
𝑒∈𝐸ℓ,𝑟

∥𝑒 ∥ ≥
|𝑉𝑖 |𝜆𝑡/2 and hence, by Lemma 4,

|𝑉𝑖 |
∑
𝑣∈𝑉𝑖

|𝑚𝑡 (𝑣) | =
∑
𝑣∈𝑉𝑖

|N𝑡 (𝑣) | |𝑚𝑡 (𝑣) | ≥ 2

∑
𝑒∈𝐸ℓ,𝑟

∥𝑒 ∥ ≥ |𝑉𝑖 |𝜆𝑖 (𝑡)

and therefore ∑
𝑣∈𝑉𝑖

|𝑚𝑡 (𝑣) | ≥ 𝜆𝑖 (𝑡) .

As a consequence, it holds that

E[Φ(𝑆𝑡 ) − Φ(𝑆𝑡−1)] ≥
1

𝑛

∑
𝑣∈𝑉

( |N𝑡 (𝑣) | + 1)∥𝑚𝑡 (𝑣)∥2

2

≥ 1

𝑛

𝑘∑
𝑖=1

( |𝑉𝑖 | + 1)
∑
𝑣∈𝑉𝑖

∥𝑚𝑡 (𝑣)∥2

2

≥ 1

𝑛

𝑘∑
𝑖=1

( |𝑉𝑖 | + 1) ©­«
∑
𝑣∈𝑉𝑖

∥𝑚𝑡 (𝑣)∥2

ª®¬
2

/|𝑉𝑖 |

>
1

𝑛
·

𝑘∑
𝑖=1

(𝜆𝑖 (𝑡))2 .

Since one of the edges 𝜆𝑖 (𝑡) has length at least 𝛿 , the expected

potential drop is at least 𝛿2/𝑛. Therefore, in expectation there are

at most O( |𝐸 |𝑛(𝜀/𝛿)2) steps where the length of the longest edge

is in [𝛿, 𝜀/2]. Combining the two results finishes the proof. □

We say a HKSs is socially stable if independently of the update steps
the influence network is always equal to the social network. For

these systems, we can prove a better upper bound on the expected

number of steps needed to reach a 𝛿-stable state. Examples for such

graphs are the path, where all the nodes are positioned with equal

distance of at most 𝜀 and the graph from Theorem 8, if the social

network for the latter is reduced to the set of edges in E0.

Theorem 10. Let (𝐺 = (𝑉 , 𝐸), 𝜀, 𝑥 ) be a HKSs where the social
network and the influence network are equal in each step. Using
uniform asynchronous update steps, the expected convergence time to
a 𝛿-stable state is bounded by O(𝑛 |𝐸 |2 log(𝜀/𝛿)).

Proof. Note that at any step it holds that Φ(𝑆𝑡 ) ≤ |𝐸 | (𝜆𝑡 )2
,

where 𝜆𝑡 is the length of the longest edge at time 𝑡 . By Lemma 7,

the expected drop of the potential in each step is bounded by

2(𝜆𝑡 )2/(𝑛 |𝐸 |). As a consequence, for each 𝑖 ∈ N the expected num-

ber of steps with 𝜆𝑡 ∈ [𝜀/2
𝑖+1, 𝜀/2

𝑖 ] is bounded by O(𝑛 |𝐸 |2). Since
for 𝜆𝑡 ∈ [𝛿, 𝜀] there are atmost log(𝜀/𝛿) such intervals, the expected
number of update steps is bounded by O(𝑛 |𝐸 |2 log(𝜀/𝛿)). □

4 LOWER BOUND
In this section we complement our upper bounds on the expected

convergence time with a lower bound. To the best of our knowledge

no lower bound for asynchronous updates is known so far.

Theorem 11. There exists a family of social 1-dimensional HKSs
where, in expectation, at least Ω(𝑛2) steps are needed to reach a
𝛿-stable state.

Proof. We consider the following family of 1-dimensional HKSs.

Let the social network 𝐺 = 𝑃𝑛 be the path with 𝑛 nodes such that

𝑣𝑖 is the 𝑖’th node on the path, and the position of agent 𝑣𝑖 is

𝑥0 (𝑣𝑖 ) = 𝑖 · 𝜀. It follows that all edges have length exactly 𝜀 > 𝛿 ,

which implies that at least one of the two agents 𝑣 ⌊𝑛/2⌋ , 𝑣 ⌊𝑛/2⌋+1

has to move at some step to reach a 𝛿-stable state.

In the following we prove by induction that agent 𝑣𝑖 moves the

first time after Ω(min{𝑛(𝑖 − 1), 𝑛(𝑛− 𝑖)}) steps in expectation. This

certainly holds for agents 𝑣1 and 𝑣𝑛 , since they move for the first

time upon their first activation.

Note that agent 𝑣𝑖 can only move for the first time, after agent

𝑣𝑖−1 or agent 𝑣𝑖+1 has moved for the first time because otherwise

both incident edges {𝑣𝑖−1, 𝑣𝑖 }, {𝑣𝑖 , 𝑣𝑖+1} have the same length 𝜀 and

hence agent 𝑣𝑖 cannot move. By induction hypothesis one of these

agents moves for the first time after

min {Ω(min{𝑛(𝑖 − 2), 𝑛(𝑛 − (𝑖 − 1))}),Ω(min{𝑛𝑖, 𝑛(𝑛 − (𝑖 + 1))})}
= Ω(min{𝑛(𝑖 − 2), 𝑛(𝑛 − 𝑖 − 1)})

steps. Since agents are activated uniformly at random, after activat-

ing one of the neighboring agents of 𝑣𝑖 for the first time, additional

Ω(𝑛) activations in expectation are needed so that agent 𝑣𝑖 can

finally move for the first time. Hence in expectation agent 𝑣𝑖 moves

for the first time after Ω(min{𝑛(𝑖 − 1), 𝑛(𝑛 − 𝑖)}) steps.
As a consequence, agent 𝑣 ⌊𝑛/2⌋ or agent 𝑣 ⌊𝑛/2⌋+1

moves for the

first time after Ω(𝑛2) steps in expectation. □

5 SIMULATION RESULTS
For corroborating our theoretical findings, we performed agent-

based simulations of asynchronous Hegselmann-Krause opinion

dynamics in one dimension on two types of initial HKS states called

Path and Dumbbell. They are defined as follows:

• Path: The given social network is a path graph. Initially, the

agents’ opinions are uniformly distributed in one dimension
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Figure 2: The plot shows the normalized convergence time:
the number of agent activations until a 𝛿-stable state has
been reached, divided by 𝑛3. The data indicate that the con-
vergence time on Path instances with equal distances scales
as 𝑛3 and on Dumbbell instances it scales as 𝑛4.

with equal distance of 𝜀 so that the influence network forms

a path graph with uniform edge length of 𝜀.

• Dumbbell: This is the state constructed in the proof of The-

orem 8 using the dumbbell graph, except that the social

network contains only the edges that are in E0

In our simulations we fixed 𝜀 = 100 and 𝛿 = 1. For each initial

HKS state on social networks with varying numbers of agents 𝑛,

we simulated 100 independent runs of random activations needed

to reach a 𝛿-stable state.

We present our simulation results in Fig. 2. There, the obtained

number of activations divided by 𝑛3
is plotted via a box plots that

summarize the results for each configuration. Since for Path in-

stances the number of activations appear to be constant, we observe

that we need Θ(𝑛3) activations for Path instances. On the other

hand, the number of activations seem to grow linearly in 𝑛 for

Dumbbell instances. This hints at Θ(𝑛4) activations until Dumbbell
instances reach a 𝛿-stable for constant 𝜀 and 𝛿 .

Note that by construction, in the first step the potential func-

tion of both instance types is bounded by Φ(𝑆0) = Θ(𝑛𝜀2). Ap-
plying Theorem 1 yields an upper bound of Φ(𝑆0)/(2𝛿2/(𝑛 |𝐸 |)) =
O(𝑛𝜀2/(2𝛿2/(𝑛 |𝐸 |))), which yields an upper bound of O(𝑛3 (𝜀/𝛿)2)
for Path instances and O(𝑛4 (𝜀/𝛿)2) for Dumbbell instances. Thus,
if the empirically observed lower bounds on the expected number

of steps until convergence are in fact true, our theoretical analysis

is tight for these two graph classes with respect to the dependence

on the number of agents.

6 CONCLUSION
In this paper we present the first analysis of the convergence time of

asynchronous Hegselmann-Krause opinion dynamics on arbitrary

social networks. As our main result, we derive an upper bound of

O(𝑛 |𝐸 |2 (𝜀/𝛿)2) expected random activations until a 𝛿-stable state

is reached. This bound significantly improves over the state-of-the-

art upper bound for the special case with a given complete social

network. Moreover, our simulation results on one dimensional in-

stances with a path graph or a dumbbell graph as social network

indicate that our theoretical upper bound is tight for these instances.

Our theoretical lower bound on the expected convergence time is

the first proven non-trivial lower bound for asynchronous opinion

updates. A challenging open problem is to improve this lower bound

so that it matches our proven upper bound. As the experimental

results suggest, this might be possible. However, proving lower

bounds for the asynchronous setting seems to be much more in-

volved compared to the analysis of synchronous opinion dynamics

as the specific order of agent activations determines which of the

possibly many 𝛿-stable states with possibly very different potential

function values is reached.

It might be possible to prove better bounds for specific social net-

work topologies. Regarding this, it would be interesting to consider

social networks that have similar features as real-world social net-

works. Moreover, another direction for future work is to consider

social networks with directed and possibly weighted edges. This

would more closely mimic the structure of real-world neighborhood

influences and it would allow to study asymmetric influence settings

found in online social networks like Twitter. Another promising

extension would be to incorporate the influence of external factors

like publicity campaigns.
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