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ABSTRACT
A new mobile attention economy has emerged with the explosive

growth of short-video apps such as TikTok. In this internet mar-

ket, three types of agents interact with each other: the platform,

influencers, and advertisers. A short-video platform encourages its

influencers to attract users by creating appealing content through

short-form videos and allows advertisers to display their ads in

short-form videos. There are two options for the advertisers: one is

to bid for platform advert slots in a similar way to search engine

auctions; the other is to pay an influencer to make engaging short

videos and promote them through the influencer’s channel. The

second option will generate a higher conversion ratio if advertisers

choose the right influencers whose followers match their target

market. Although displaying influencer ads will generate less rev-

enue, it is more engaging than platform ads, which is better for

maintaining user traffic. Therefore, it is crucial for a platform to

balance these factors by establishing a sustainable business agree-

ment with its influencers and advertisers. In this paper, we develop

a two-stage solution for a platform to maximize short-term revenue

and long-term user traffic maintenance. In the first stage, we esti-

mate the impact of user traffic generated by displaying influencer

ads and characterize the user traffic the platform should allocate to

influencers for overall revenue maximization. In the second stage,

we devise an optimal (1 − 1/𝑒)-competitive algorithm for ad slot

allocation. To complement this analysis, we examine the ratio of

the revenue generated by our online algorithm to the optimal of-

fline revenue. Our simulation results show that this ratio is 0.94 on

average, which is much higher than (1− 1/𝑒) and outperforms four

baseline algorithms.
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Figure 1: A demonstration of a series of short videos and
the advertising scenario with agents’ interactions in a short-
video app. Advertisers bid for the platform ad slots or coop-
erate with influencers to deliver engaging ad videos.

Agents and Multiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAA-
MAS, 9 pages.

1 INTRODUCTION
Over the last decade, user-generated content (UGC) platforms such

as Facebook and Instagram have made communication through

news feeds and video feeds easier. Such platforms have also stim-

ulated the transformation of Internet ad auctions, from classical

sponsored links on search engines to banner advertising on Face-

book and video advertising on Instagram. The trend of delivering

information through videos has never been easier and more mobile.

Cisco expected that by 2022, 82% of mobile data would be consumed

by videos [7].

Recently, short-video mobile apps have grown tremendously,

with TikTok, Vine, and Vigo as typical examples. Short-video feeds,

*
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in the form of memes, lip-synced songs, and comedy videos, are suc-

cinct, passionate and creative, therefore attractive [32, 37]. We show

a series of short videos and the advertising scenario of a typical mo-

bile app that consists of three types of agents: platform, advertisers

and influencers in Fig. 1. Individuals can post their clips effort-

lessly, and many influencers have been more active and successful

than ever before [39]. Influencers create interesting and attractive

short videos, capturing billions of users who spend considerable

time watching these videos [26]. In order to produce engaging con-

tent, extensive research has been done to understand app users’

interests and behavior patterns [4–6, 18, 23, 24, 38, 40]. Some users

subscribe to influencers and become their followers. Short videos,

most lasting for 10 to 15 seconds each, are displayed to users on

full screen, one after another. Users can choose to watch them or

swipe to the next. Amongst these short videos, usually one in every

seven is a video ad. There are two types of ads. One is the platform
ad, which is offered to advertisers through a platform’s real-time

bidding mechanism. The other is influencer ad, in which advertis-

ers sponsor their partner influencers to make a personalized ad

and display it through the influencers’ channel. In the second case,

platforms charge a commission fee, and the ads are delivered to

targeted audiences – the influencers’ followers – to increase the

conversion rate. So, an advertiser is more likely to reach its target

customers quickly through influencer marketing.

In this mobile marketplace, the three types of agents — platform,

influencers, and advertisers— interact with each other. Many short-

video platforms provide productive influencers with benefits, e.g.,

allocating extra user traffic, monetary reward, and tailored com-

mercial cooperation. These benefits stimulate active influencers

to create high-quality content and attract as many followers as

possible, which further accelerates the booming of the platform.

The high-quality short videos attract many users who generate

billions of impressions per day, which incurs advertising over the

platform. Short-video app users often base their content on trends

and memes, which can change rapidly as what is popular one week

will not necessarily be hot the next. So, advertisers consider mar-

keting through these short-video apps to be highly rewarding – as

their content can jump on the trends as soon as possible.

The co-existence of two advertising channels is one of the unique

features of short-video platforms. The platform ads enable adver-

tisers to display their ads to any user, but this approach suffers a

low conversion rate
1
, just like advertising on other user-generated

content platforms. The influencer ads have a higher conversion rate,

but the ads will mainly be displayed to influencers’ followers. These

two advertising approaches complement each other and provide

advertisers with more choices. From a platform’s perspective, plat-

form ads generate immediate revenue, but users often do not find

them entertaining, so displaying too many platform ads risks a loss

of users. The influencer ads generate less revenue than platform

ads, as advertisers usually submit a smaller bid price for influencer

ads. However, they generate user traffic as well since the embedded

ads are intrinsic, natural, and engaging. To influencers, they are

happy to play a role in the advert so that they have more chance

to be exposed. This way, they get more opportunities to attract

1
Conversion rates are calculated by taking the number of conversions to a sale dividing

the number of total ad displays that can be tracked to a conversion during the same

period.

followers. As a return, they have more business collaboration with

the platform and advertisers. Therefore, the platform, advertisers,

and influencers benefit from this feature.

It is a new challenge for these short-video platforms to balance

the short-term revenue generated by platform ads and the long-term

impact on user traffic generated by influencer ads. In this paper, we

deploy badge design [2] as a tool to maximize a platform’s overall

profit that combines short-term revenue and long-term user traffic

impact when considering interactions among different types of

agents. We tackle this problem by developing a two-stage solution.

In the traffic bonus estimation stage, the platform estimates the user

traffic that would be generated by an influencer ad and determines

an optimal impression target. In the online allocation stage, we
present an optimal online ad slot allocation algorithm that achieves

a competitive ratio of 1 − 1

𝑒 . The algorithm combines advertisers’

bids and the estimated influencers’ traffic bonus and outputs the

best short-video ads allocation that maximizes the platform’s total

revenue.

We summarize the contribution of our work as follows.

• We formulate the mobile short-video advertising framework.

In this framework, after collecting advertisers’ bids and their

ads type and content, a platform needs to allocate ads slots

such that its overall revenue, as the sum of advertisers’ pay-

ments and long-term user traffic bonus, is maximized.

• We devise an algorithm based on badge design for estimat-

ing the user traffic bonus as a result of displaying different

influencer ads.

• We devise an online allocation algorithm that aggregates bid

prices and user traffic bonus for overall revenue maximiza-

tion. The algorithm is (1− 1

𝑒 )-competitive and we show that

the bound is tight.

• Going forward, we conduct extensive experiments and show

that the devised algorithm outperforms four other baseline

algorithms in advertising auctions.

2 RELATEDWORK
BadgeDesign for Participant Incentives.There is a large amount

of literature on empirical analysis and models of user behavior in

user-generated content platforms. Hamari [17] conducted a two-

year field experiment by implementing badges in a service. The

experimental results showed that users generally used the service

in a significantly more active way. Denny [8] conducted a large-

scale randomized, controlled experiment, measuring the impact of

incorporating a badge-based achievement system within an online

learning tool, and a highly significant positive effect was discovered

on the quantity of students’ contributions, without a corresponding

reduction in their quality. Drawing evidence from empirical data,

Anderson et al. [2] concluded that users indeed value badges and

modify their actions to earn badges. They proposed a model of how

users behave in response to badges awarded for their actions. A

game-theoretical approach was proposed for badge design [10], an-

alyzing the incentives created by two different widely-used badge

designs in a model where winning a badge is valued, and the effort

is costly.

Sponsored Search Auctions. The sponsored search auctions

have been extensively studied in the last 20 years. The Generalized
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Second Price model bears a similarity to the Generalized English

Auctions and the classical assignment games. In particular, Ben-

jamin et al. [11] and Varian [36] discussed their similarities and

characterized their equilibria. The seminal work by [28] established

the competitive analysis of search engines’ revenue maximization

problem in sponsored search auctions. Feldman et al. [12] studied a
free disposal model for online ad assignment where the value of

an assignment only includes the highest-weighted impressions as-

signed to each advertiser. Goel et al. [16] introduced an impression-

plus-click model and investigated a dominant strategy mechanism

design problem when bidders’ valuations are consistent. Ieong et
al. [20] considered the special scenario for advertising in a stream

and emphasized the attention level drop of a single user viewing

the stream. Rong et al. [33] discussed the quantal response equilib-

rium under bounded rationality assumptions. Gatti et al. [13] built

a cascade model with contextual externalities and bounded user

memory for sponsored search auctions. Abhishek et al. [1] designed

truthful auctions with multi-arm bandits. Mandal and Narahari [25]

proposed an ex-post truthful mechanism for multi-slot sponsored

search. Shen et al. [34] modelled the bidders’ behavior and learnt

the set of optimal reserve prices by reinforcement learning. Other

surveys on sponsored search auctions can be found in [15], [21],

[31], and Chapter 28 in [30].

Video Advertising.With the vigorous growth of video-sharing

platforms such as YouTube and social networking services such as

Facebook, video advertising has been flourishing [29]. However,

research on video ad slots allocation was significantly less than that

on the sponsored search auctions. As far as we are aware, Geyik

et al. [14] was the first to address challenges arising in online video

advertising, optimized multiple video-specific performance indica-

tors, including engagement (the percentage of the total duration

of a video ad that the users have actively watched) and viewability

(the goodness of the ad’s location), while subject to the budget con-

straint. They demonstrated the benefit of the proposed framework

via empirical results. Sumita et al. [35] took account of the length of

a video ad and the time spent watching it by users. Assuming that

a user watches allocated video-ads to the end, they simplified the

problem and presented an online video-ads allocation algorithm.

3 REVENUE AND USER TRAFFIC
MAXIMIZATION

In this section, we formulate the problem of revenue and user traffic

maximization in mobile short-video advertising.

On a short-video platform, there is a set of advertisers. Each

advertiser 𝑖 has a fixed daily budget 𝐵(𝑖) for real-time bidding (RTB).

The platform has a set of advert slots. Each slot 𝑗 corresponds to

a short period in a day. Each advertiser 𝑖 submits their bid prices

𝑏 (𝑖, 𝑗) for slots 𝑗 and their budget constraint 𝐵(𝑖) to the platform,

as well as their short-video ad content. Upon receiving these inputs,

the platform must immediately allocate each slot 𝑗 to an advertiser

𝑖∗, and the allocation is not revokable. Therefore, this is an online

problem. The platform is interested in maximizing the revenue

collected from the advertisers and the user traffic generated by

displaying these ads.

An advertiser can submit two types of ads. One is the platform ad

which is a short video created by the advertiser that introduces their

products. This type of ad can be displayed to a very broad range of

users. The other isthe influencer ad where an influencer embeds the

advertisement into an engaging short video so that the users enjoy

the video content and are more likely to appreciate the products.

This type of ad usually is displayed to the influencer’s followers only.

A unique feature of the influencer ad is that it not only generates

revenue for the platform, but also attracts users. Since maintaining

as many users as possible is vital to the development of a platform,

the platform needs to consider the dual effects of influencer ads and

maximize the overall benefit, including the short-term revenue and

long-term user traffic bonus. However, a practical consideration for

the platform is that displaying any particular advertiser’s ads too

many times a day may have a negative effect on attracting users,

even though this advertiser may have a big budget and high bid

prices. Given this structure, we develop a two-stage solution for

this problem.

Potential Ad Slots Advertiser

j

j-2

j-1

j+1

j+2

RTB Budget
B(x)Bid

y(i-1,j)=0
y(i,j)=1

y(i+1,j)=0

-b(i,j)

Traffic Bonus
R(x) T(x)

h(i)-1

ሻܠሺܚ ൌ
ሻܠሺ܀
ሻܠሺ܂

Traffic Bonus 
per Impression

Figure 2: During the online ad slot allocation stage, each
advertiser has a budget and traffic impression target. The
platform displays ads in real-time.

The Traffic Bonus Estimation Stage. As shown in Fig. 2, the ad-

vertisers participate in the online short-video ad slot auction, a.k.a.

real-time bidding (RTB). Let 𝑛 denote the number of advertisers and

𝑚 the number of ad slots. Assume there are 𝐾 influencers available

for collaboration with advertisers on a platform. With a slight abuse

of notation, let 𝑖 denote the influencer who produces an ad with

advertiser 𝑖 . In case an advertiser 𝑖 only bids for platform ads, its

corresponding influencer 𝑖 is null. Let𝑇 (𝑖) be the impression upper

limit that a platform will display advertiser/influencer 𝑖’s ads, as

going beyond it will bore the users. Let 𝑅(𝑖) denote the platform’s

estimation on the benefit of the user traffic if they display advertiser

𝑖’s ad 𝑇 (𝑖) times.

In the first stage, we devise an algorithm by deploying badge
design to estimate the bonus of attaining user traffic when display-

ing influencer ads. Badges or other equivalent rewards are used to

recognize a user’s contributions to a site. When properly designed,

it can be used to gear users’ incentive to make an effort to win the

badges and hence make a significant contribution to the booming of

a platform. The algorithm estimates an upper bound of impressions

𝑇 (𝑖) the platform will display an advertiser’s ad and the user traffic

bonus 𝑅(𝑖).
The Online Allocation Stage. In the second stage, we devise an

online algorithm that balances the bid prices (short-term revenue)

and user traffic bonus (long-term impact) to achieve a competitive

ratio of 1 − 1

𝑒 .
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We denote the allocation variable of slot 𝑗 to the advertiser 𝑖

by 𝑦 (𝑖, 𝑗). That is, 𝑦 (𝑖, 𝑗) = 1 if the advertiser 𝑖 gets slot 𝑗 and 0

otherwise. Letℎ(𝑖) be the outstanding impressions for the advertiser

𝑖 , and 𝑇 (𝑖) − ℎ(𝑖) the number of impressions that the advertiser 𝑖’s

ad has been displayed. Let 𝑟 (𝑖) = 𝑅(𝑖)/𝑇 (𝑖) be the estimated user

traffic bonus per impression for advertiser 𝑖 . Given these inputs,

the platform’s offline optimal revenue is captured by the following

linear programming.

(P) max

𝑦 (𝑖, 𝑗), ℎ (𝑖)

𝑚∑︁
𝑗=1

𝑛∑︁
𝑖=1

𝑏 (𝑖, 𝑗)𝑦 (𝑖, 𝑗) +
𝑛∑︁
𝑖=1

(
𝑇 (𝑖) − ℎ(𝑖)

)
𝑟 (𝑖)

s.t.

∑︁𝑛

𝑖=1
𝑦 (𝑖, 𝑗) ≤ 1, ∀𝑗 ∈ {1, . . . ,𝑚} (1)∑︁𝑚

𝑗=1
𝑏 (𝑖, 𝑗)𝑦 (𝑖, 𝑗) ≤ 𝐵(𝑖), ∀𝑖 ∈ {1, . . . , 𝑛} (2)∑︁𝑚

𝑗=1
𝑦 (𝑖, 𝑗) + ℎ(𝑖) ≥ 𝑇 (𝑖), ∀𝑖 ∈ {1, . . . , 𝑛} (3)

𝑦 (𝑖, 𝑗), ℎ(𝑖) ≥ 0, ∀𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . ,𝑚} (4)

The first term of the objective function captures the platform’s

revenue collected from RTB
2
. The second term captures its revenue

collected from the user traffic bonus. Constraint (1) guarantees that

each slot is allocated to at most one advertiser. Constraint (2) is due

to the advertisers’ budget limit. Constraint (3) is by the definition of

outstanding impressions ℎ(𝑖). When

∑𝑚
𝑗=1 𝑦 (𝑖, 𝑗) ≥ 𝑇 (𝑖), ℎ(𝑖) = 0,

it indicates the extra traffic allocation is accomplished.

4 ALGORITHMS AND ANALYSIS
In this section, we first propose an algorithm that estimates the

user traffic bonus for each influencer. We then present an online ad

slot allocation algorithm for short-video advertising and show that

it is (1 − 1

𝑒 )-competitive.

4.1 The User Traffic Bonus Estimation
Algorithm

Let phase 𝑙 denote the time span that an influencer 𝑖’s short videos

are displayed and 𝑁 (𝑖, 𝑙) the number of times they are displayed

in phase 𝑙 . In a phase, some users who viewed influencer 𝑖’s short

videoswill become its follower. For each phase, a platformmaintains

the quality level 𝑞(𝑖, 𝑙) ∈ [0, 1], which is a probability estimation

of how likely users will become influencer 𝑖’s followers in phase 𝑙 .

The higher 𝑞(𝑖, 𝑙) is, the more users who viewed influencer 𝑖’s short

videos become 𝑖’s follower in phase 𝑙 . When the platform wants

to stimulate the number of influencer 𝑖’s followers 𝑁 (𝑖, 𝑙)𝑞(𝑖, 𝑙) in
phase 𝑙 , they can do it by increasing the number of times influencer

𝑖’s short videos are displayed. Suppose the platform display influ-

encer 𝑖’s short videos 𝑇 (𝑖, 𝑗) additional times in this phase. In that

case, more users could have become its follower, and influencer 𝑖’s

quality level would be updated to 𝑝 (𝑖, 𝑗). Therefore, we have that
(𝑁 (𝑖, 𝑙) +𝑇 (𝑖, 𝑙))𝑞(𝑖, 𝑙) = 𝑁 (𝑖, 𝑙)𝑝 (𝑖, 𝑙) .

2
We adopt the First-Price auction (the bidder with the highest bidding price pays their

bid) for two reasons. First, our algorithm and competitive analysis can be generalized

to the Second-Price auction while maintaining the same competitive ratio as in the

case in [28]. Second, Google recently switched from Generalized Second Price (GSP) to

Generalized First Price (GFP) auction in Ad Manager [9, 22]. Although GSP has been

used since Google’s sponsored search auctions, for various reasons, such as reducing

programmatic inefficiencies, it is not dominating GFP everywhere anymore.

Hence, in order to increase influencer 𝑖’s followers to 𝑁 (𝑖, 𝑙)𝑝 (𝑖, 𝑙),
the platform needs to allocate influencer 𝑖 additional user traffic

𝑇 (𝑖, 𝑙) = 𝑝 (𝑖, 𝑙)𝑁 (𝑖, 𝑙)
𝑞(𝑖, 𝑙) − 𝑁 (𝑖, 𝑙) . (5)

We note that the platform allocates user traffic to an influencer

at a cost. The more the influencer 𝑖’s short videos are displayed,

the less the other influencers’ short videos could be displayed as

the total traffic in a period is limited. Also, the marginal benefit

of allocating more traffic to any particular influencer decreases as

users will be bored with viewing the same influencer too many

times. Therefore, we assume that the platform maintains a cost

function 𝑉 (𝑖, 𝑥) to evaluate the user traffic opportunity cost by

allocating 𝑥 additional user traffic to influencer 𝑖 . Let𝑈 (𝑖, 𝑙) denote
the platform’s utility generated by displaying influencer 𝑖’s short

videos in phase 𝑙 . Following [2], we associate the platform’s utility

with a time discount factor 𝛾 . For 𝛾 ∈ [0, 1], the discounted utility

of the platform is

∑∞
𝑙=0

𝑈 (𝑖, 𝑙)𝛾𝑙 .
Wedenote by 𝑠𝑙 ∈ {0, 1, 2..., 𝑡 (𝑖)} the number of additional follow-

ers influencer 𝑖 attracts through additional user traffic and 𝑈 (𝑖, 𝑠𝑙 )
the optimal discounted utility generated by influencer with 𝑠𝑙 . Note

that 𝑈 (𝑖, 𝑠𝑙 ) depends only on 𝑠𝑙 , not on the history state. Let 𝑣 (𝑖)
denote the value to the platform that influencer 𝑖 attracts every

additional 𝑡 (𝑖) followers. We will use 𝑠𝑙 = 𝑡 (𝑖) and𝑈 (𝑖, 𝑡 (𝑖)) = 𝑣 (𝑖)
as the initial input of our algorithm. For 𝑙 = 1, 2, ..., 𝑡 (𝑖) − 1, since
influencer 𝑖 can attract a new follower with probability 𝑝 (𝑖, 𝑙). Fol-
lowing [2], the time discount factor𝛾 associates with the probability

of reaching the next phase and in each phase there are two poten-

tial actions to be taken. With probability 𝑝 (𝑖, 𝑙), a user will become

a follower and phase 𝑙 + 1 will be reached, and with probability

1 − 𝑝 (𝑖, 𝑙), the user will not follow the influencer. Hence, We have

the following equation,

𝑈 (𝑖, 𝑙) = 𝛾 [𝑝 (𝑖, 𝑙)𝑈 (𝑖, 𝑙 + 1) + (1 − 𝑝 (𝑖, 𝑙))𝑈 (𝑖, 𝑙)]
−𝑉 (𝑖,𝑇 (𝑖, 𝑙)) .

Thus, we have

𝑈 (𝑖, 𝑙) =
−𝑉 (𝑖, 𝑝 (𝑖,𝑙)𝑁 (𝑖,𝑙)

𝑞 (𝑖,𝑙) − 𝑁 (𝑖, 𝑙)) + 𝛾𝑝 (𝑖, 𝑙)𝑈 (𝑖, 𝑙 + 1)
1 − 𝛾 + 𝑝 (𝑖, 𝑙)𝛾 ,

which can be solved efficiently. We can use backward induction

to compute 𝑈 (𝑖, 0) and determine 𝑇 (𝑖) and 𝑅(𝑖) as shown in Algo-

rithm 1.

4.2 The Online Allocation Algorithm
Our insight on designing a competitive online algorithm is to bal-

ance the user traffic bonus and bid prices properly. We employ a

primal-dual method to construct the least scaling factor to ensure

dual feasibility.

Firstly, we derive the dual problem of the primal LP (P) as fol-
lows.

(D) min

𝑥 (𝑖),𝜙 (𝑖)
𝑧 ( 𝑗)

𝑛∑︁
𝑖=1

𝐵(𝑖)𝑥 (𝑖) +
𝑛∑︁
𝑖=1

𝑇 (𝑖)𝑟 (𝑖) (1 − 𝜙 (𝑖)) +
𝑚∑︁
𝑗=1

𝑧 ( 𝑗)
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Algorithm 1 Stage 1: The User Traffic Bonus Estimation Algorithm.

Input: The incremental follower target 𝑡 (𝑖) and influencer quality

level 𝑞(𝑖, 𝑙) ∀0 ≤ 𝑙 ≤ 𝑡 (𝑖); original traffic 𝑁 (𝑖, 𝑙); platform value

𝑣 (𝑖) and platform opportunity cost function 𝑉 (𝑖, 𝑥) for required x.

Output: The additional impression target 𝑇 (𝑖) and user traffic

bonus 𝑅(𝑖).
Initialize 𝑇 (𝑖, 𝑙), 𝑝 (𝑖, 𝑙),𝑇 (𝑖), 𝑅(𝑖),𝑈 (𝑖, 𝑙) ← 0 for ∀0 ≤ 𝑙 ≤ 𝑡 (𝑖)
1: 𝑈 (𝑖, 𝑡 (𝑖)) ← 𝑣 (𝑖)
2: for 𝑙 in 𝑡 (𝑖) − 1, . . . , 0 do

3: 𝑝 (𝑖, 𝑙) ← argmax

𝑝∈[0,1]

−𝑉 (𝑖, 𝑝 (𝑖,𝑙 )𝑁 (𝑖,𝑙 )
𝑞 (𝑖,𝑙 ) −𝑁 (𝑖,𝑙))+𝛾𝑝 (𝑖,𝑙)𝑈 (𝑖,𝑙+1)

1−𝛾+𝑝 (𝑖,𝑙)𝛾

4: 𝑈 (𝑖, 𝑙) ←
−𝑉 (𝑖, 𝑝 (𝑖,𝑙 )𝑁 (𝑖,𝑙 )

𝑞 (𝑖,𝑙 ) −𝑁 (𝑖,𝑙))+𝛾𝑝 (𝑖,𝑙)𝑈 (𝑖,𝑙+1)
1−𝛾+𝑝 (𝑖,𝑙)𝛾

5: 𝑇 (𝑖, 𝑙) ← 𝑇 (𝑖, 𝑙 + 1) + 𝑝 (𝑖,𝑙)𝑁 (𝑖,𝑙)
𝑞 (𝑖,𝑙) − 𝑁 (𝑖, 𝑙)

6: end for
7: 𝑇 (𝑖) ← 𝑇 (𝑖, 0)
8: 𝑅(𝑖) ← max{𝑈 (𝑖, 0), 0}

s.t. 𝑧 ( 𝑗) + 𝑏 (𝑖, 𝑗)𝑥 (𝑖) − 𝑟 (𝑖)𝜙 (𝑖) ≥ 𝑏 (𝑖, 𝑗) (6)

∀𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . ,𝑚}
0 ≤ 𝜙 (𝑖) ≤ 1, ∀𝑖 ∈ {1, . . . , 𝑛} (7)

𝑥 (𝑖), 𝑧 ( 𝑗) ≥ 0, ∀𝑖 ∈ {1, . . . , 𝑛}, 𝑗 ∈ {1, . . . ,𝑚} (8)

where 𝑧 ( 𝑗), 𝑥 (𝑖), and 𝜙 (𝑖) are dual variables that correspond to

constraints (1), (2), and (3) in (P), respectively.
Secondly, we will derive an allocation rule that hits two birds

with one stone. That is, to ensure dual feasibility and to upper bound

the value increase of (D) by the value increase of (P) multiplying

a constant, so that we can achieve the desired competitive ratio at

the same time.

In the following, let 𝑅max = max

𝑖, 𝑗

{
𝑏 (𝑖, 𝑗)
𝐵 (𝑖)

}
denote the largest ratio

of bid price to budget and 𝑇 = min𝑖 {𝑇 (𝑖)} the minimum extra

impression target
3
. Define the scalar 𝑐 = (1 + 𝑅𝑚𝑎𝑥 )1/𝑅𝑚𝑎𝑥

. In

Algorithm 2, the allocation takes into account each advertiser’s

bid price 𝑏 (𝑖, 𝑗) as well as the bonus-per-impression 𝑟 (𝑖), which is

decided by a weighted sum of these two terms.

We remark that Algorithm 2 balances the short-term revenue

and the long-term user traffic bonus for the platform.

We combine the two stages and present Algorithm 3 as below.

4.3 Competitive Ratio Analysis
In this section, we show that the algorithm achieves a competitive

ratio (1− 1/𝑒) under mild assumptions. Firstly, we prove the follow-

ing proposition which provides an upper bound of the variables

𝜙 (𝑖).

Proposition 1. During the execution of Algorithm 2, if advertiser
𝑖’s impression playback task as per the extra impression target is
accomplished, then 𝜙 (𝑖) < 𝑐

(𝑐−1) (𝑇 (𝑖)+1) .

Proof. Let 𝜙 (𝑖)𝑘 be the value of 𝜙 (𝑖) after the 𝑘𝑡ℎ (𝑘 ≥ 1) play-
back of advertiser 𝑖’s ads. In particular, 𝜙 (𝑖)0 = 1. According to the

3
To be precise, in the definition of 𝑅max we dismiss the advertisers who do not partici-

pate in RTB; in the definition of𝑇 , we exclude the advertisers who do not cooperate

with influencers or the influencers whose extra impression targets are 0.

Algorithm 2 Stage 2: The Online Allocation Algorithm.

Input: The bid prices 𝑏 (𝑖, 𝑗) and budgets 𝐵(𝑖); extra impression

target 𝑇 (𝑖) and bonus-per-impression 𝑟 (𝑖).
Output: The slot allocation 𝑦 (𝑖, 𝑗) and outstanding impressions

ℎ(𝑖).
Initialize 𝑥 (𝑖), 𝑦 (𝑖, 𝑗), 𝑧 ( 𝑗) ← 0, 𝜙 (𝑖) ← 1, ℎ(𝑖) ← 𝑇 (𝑖).
1: Let 𝑖∗ = argmax

𝑖
{𝑏 (𝑖, 𝑗) (1 − 𝑥 (𝑖)) + 𝑟 (𝑖)𝜙 (𝑖)}.

2: Set 𝑦 (𝑖∗, 𝑗) = 1. Allocate slot 𝑗 to advertiser 𝑖∗.
3: Charge advertiser 𝑖∗ by

min{𝑏 (𝑖∗, 𝑗), 𝐵(𝑖∗) −∑
𝑘< 𝑗 𝑏 (𝑖∗, 𝑗)𝑦 (𝑖∗, 𝑗)}.

4: if ℎ(𝑖∗) > 0 : ℎ(𝑖∗) ← ℎ(𝑖∗) − 1.
5: Set 𝑧 ( 𝑗) ← 𝑏 (𝑖∗, 𝑗) (1 − 𝑥 (𝑖∗)) + 𝑟 (𝑖∗)𝜙 (𝑖∗).
6: Set 𝑥 (𝑖∗) ← 𝑥 (𝑖∗) (1 + 𝑏 (𝑖∗, 𝑗)

𝐵 (𝑖∗) ) +
𝑏 (𝑖∗, 𝑗)
(𝑐−1)𝐵 (𝑖∗) .

7: Set 𝜙 (𝑖∗) = max{0, 𝜙 (𝑖∗) (1 + 1

𝑇 (𝑖∗) ) −
𝑐

(𝑐−1)𝑇 (𝑖∗) }
8: if ℎ(𝑖∗) = 0: Set 𝜙 (𝑖∗) = 0

Algorithm 3 The combined Algorithm.

Input: The influencer quality level 𝑞(𝑖, 𝑙) and incremental follower

target 𝑡 (𝑖); original traffic 𝑁 (𝑖, 𝑙); platform value 𝑣 (𝑖) and platform

opportunity cost function 𝑉 (𝑖, 𝑥). The bid prices 𝑏 (𝑖, 𝑗) and
budgets 𝐵(𝑖) for ∀1 ≤ 𝑖 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑚, 0 ≤ 𝑙 ≤ 𝑡 (𝑖) and required x.

Output: The slot allocation 𝑦 (𝑖, 𝑗) and outstanding impressions

ℎ(𝑖).
1: for 𝑖 in 1, . . . , 𝑛 do
2: Compute T(i),R(i) using the user traffic bonus

estimation algorithm:
𝑇 (𝑖), 𝑅(𝑖, 𝑗) ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 1(𝑞(𝑖, 𝑙), 𝑡 (𝑖), 𝑁 (𝑖, 𝑙), 𝑣 (𝑖),𝑉 (𝑖, 𝑥)).

3: 𝑟 (𝑖) ← 𝑅 (𝑖)
𝑇 (𝑖)

4: end for
5: for 𝑗 in 1, . . . ,𝑚 do
6: Compute y(i,j), h(i) using the online allocation

algorithm:
𝑦 (𝑖, 𝑗), ℎ(𝑖) ← 𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 2(𝑏 (𝑖, 𝑗), 𝐵(𝑖),𝑇 (𝑖), 𝑟 (𝑖))

7: end for

update of 𝜙 (𝑖) during the execution of the algorithm (line 7), the

closed-form of 𝜙 (𝑖)𝑘 can be written as

𝜙 (𝑖)𝑘 =

{
max{0,

𝑐−(1+ 1

𝑇 (𝑖 ) )
𝑘

𝑐−1 } if 𝜙 (𝑖)𝑘−1 > 0

0 if 𝜙 (𝑖)𝑘−1 = 0

If 𝜙 (𝑖)𝑇 (𝑖) = 0, the proposition holds. If 𝜙 (𝑖)𝑇 (𝑖) > 0, then one more

iteration leads to

𝜙 (𝑖)𝑇 (𝑖) (1 +
1

𝑇 (𝑖) ) −
𝑐

(𝑐 − 1)𝑇 (𝑖) =
𝑐 − (1 + 1

𝑇 (𝑖) )
𝑇 (𝑖)+1

𝑐 − 1
For 𝑇 (𝑖) ≥ 1, it holds that

𝑐 = (1 + 𝑅𝑚𝑎𝑥 )
1

𝑅𝑚𝑎𝑥 < 𝑒 < (1 + 1

𝑇 (𝑖) )
𝑇 (𝑖)+1,

so,𝜙 (𝑖)𝑇 (𝑖) (1+ 1

𝑇 (𝑖) )−
𝑐

(𝑐−1)𝑇 (𝑖) < 0, indicating𝜙 (𝑖)𝑇 (𝑖) < 𝑐
(𝑐−1) (𝑇 (𝑖)+1) ,

which completes the proof. □

Then we show the main theorem.
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Theorem 1. The competitive ratio of Algorithm 2 is 1 − 1

𝑒 .

Proof. Let 𝑃 and 𝐷 denote the objective functions of the primal

problem (P) and the dual problem (D), respectively. We prove the

theorem by showing three facts:

(𝑖) At the completion of allocating𝑚 ad slots, the value of 𝑥 (𝑖), 𝜙 (𝑖),
and 𝑧 ( 𝑗) is a feasible solution to the dual problem;

(𝑖𝑖) 𝐷 ≤ (1 + 1

𝑐−1 ) (1 +
𝑐

(𝑐−1) (𝑇+1) ) · 𝑃 ;
(𝑖𝑖𝑖) The value of 𝑦 (𝑖, 𝑗) and ℎ(𝑖) is an almost feasible solution to

the primal problem, with slightly violating constraint (2).

Proof of (𝑖). For any slot 𝑗 , according to the allocation rule de-

fined by line 1 and 2 of the algorithm and the update of 𝑧 ( 𝑗) defined
by line 5, the Constraint (5) of (D) is satisfied for every advertiser.

In addition, 𝑥 (𝑖), 𝜙 (𝑖), and 𝑧 ( 𝑗) are non-negative; 𝜙 (𝑖) is initialized
to be 1 and is non-increasing according to line 7. So, the solution is

feasible for the dual problem.

Proof of (𝑖𝑖). Define 𝑃 = 𝑃1+𝑃2, where 𝑃1 =
∑𝑚

𝑗=1

∑𝑛
𝑖=1 𝑏 (𝑖, 𝑗)𝑦 (𝑖, 𝑗)

and 𝑃2 =
∑𝑛
𝑖=1

(
𝑇 (𝑖) − ℎ(𝑖)

)
𝑟 (𝑖). For every slot 𝑗 , according to

the line 5 of the algorithm, define 𝑧 ( 𝑗) = 𝑧1 ( 𝑗) + 𝑧2 ( 𝑗), where
𝑧1 ( 𝑗) = 𝑏 (𝑖∗, 𝑗) (1 − 𝑥 (𝑖∗)) and 𝑧2 ( 𝑗) = 𝑟 (𝑖∗)𝜙 (𝑖∗). Similarly, de-

fine 𝐷 = 𝐷1 + 𝐷2, where 𝐷1 =
∑𝑛
𝑖=1 𝐵(𝑖)𝑥 (𝑖) +

∑𝑚
𝑗=1 𝑧1 ( 𝑗) and

𝐷2 =
∑𝑛
𝑖=1𝑇 (𝑖)𝑟 (𝑖) (1 − 𝜙 (𝑖)) +

∑𝑚
𝑗=1 𝑧2 ( 𝑗).

When allocating slot 𝑗 , let 𝐷
𝑗

1
and 𝑃

𝑗

1
denote the increase of 𝐷1

and 𝑃1 during the 𝑗-th iteration. Obviously, 𝐷
𝑗

1
= (1 + 1

𝑐−1 )𝑏 (𝑖, 𝑗) =
(1 + 1

𝑐−1 )𝑃
𝑗

1
. Since it holds for every iteration, summing over 𝑗 =

1, · · · ,𝑚 leads to the equality

𝐷1 =

(
1 + 1

𝑐 − 1

)
𝑃1 . (9)

Next, we show that

𝐷2 ≤
(
1 + 1

𝑐 − 1

) (
1 + 𝑐

(𝑐 − 1) (𝑇 + 1)

)
𝑃2 . (10)

Let 𝑃
𝑗

2,𝑖
and 𝐷

𝑗

2,𝑖
denote the value of 𝑃2 and 𝐷2 derived from al-

locating slot 𝑗 to advertiser 𝑖 , respectively. Let 𝑃2,𝑖 =
∑

𝑗 𝑃
𝑗

2,𝑖
and

𝐷2,𝑖 =
∑

𝑗 𝐷
𝑗

2,𝑖
. At the 𝑗-th iteration when the algorithm is allocat-

ing the slot, there are three possible cases according to the extend

to which advertiser 𝑖’s contract has accomplished.

If ℎ(𝑖) = 0, i.e., advertiser 𝑖’s (influencer 𝑖’s) extra impression

target is already accomplished, ℎ(𝑖) and 𝜙 (𝑖) are equal to 0 and

won’t change anymore. So, we have that

𝐷
𝑗

2,𝑖
= 𝑃

𝑗

2,𝑖
= 0.

If ℎ(𝑖) > 1, i.e., advertiser 𝑖’s (influencer 𝑖’s) extra impression target

has multiple outstanding impressions, then

𝐷
𝑗

2,𝑖
≤

(
1 + 1

𝑐 − 1

)
𝑟 (𝑖) =

(
1 + 1

𝑐 − 1

)
𝑃
𝑗

2,𝑖
(11)

If ℎ(𝑖) = 1, i.e., advertiser 𝑖’s (influencer 𝑖’s) extra impression tar-

get has only one outstanding impression, (11) also holds. How-

ever, the algorithm would set 𝜙 (𝑖) = 0, which may cause an ex-

tra increase ext(𝑖). According to Proposition 1, we have ext(𝑖) =
𝑇 (𝑖)𝑟 (𝑖)𝜙 (𝑖)𝑇 (𝑖) < 𝑇 (𝑖)𝑟 (𝑖) · 𝑐

(𝑐−1) (𝑇 (𝑖)+1) = ( 𝑐𝑇 (𝑖)
(𝑐−1) (𝑇 (𝑖)+1 )𝑟 (𝑖).

Should advertiser 𝑖’s (influencer 𝑖’s) extra impression target be

accomplished with the allocation of slot 𝑗 , we have that 𝐷2,𝑖 =

𝑇 (𝑖)𝑟 (𝑖). Therefore, ext(𝑖) will not cause a large deviation from

𝐷2,𝑖 . In fact, it holds that

ext(𝑖) + 𝐷2,𝑖 <

(
1 + 𝑐

(𝑐 − 1) (𝑇 (𝑖) + 1)

)
𝐷2,𝑖 . (12)

As (12) holds for every advertiser 𝑖 , we have that

𝐷2 ≤
∑︁
𝑖

𝑒𝑥𝑡 (𝑖) + 𝐷2,𝑖

<
∑︁
𝑖

(
1 + 𝑐

(𝑐 − 1) (𝑇 (𝑖) + 1)

)
𝐷2,𝑖

≤
∑︁
𝑖

(
1 + 1

𝑐 − 1

) (
1 + 𝑐

(𝑐 − 1) (𝑇 + 1)

)
𝑃2,𝑖

=

(
1 + 1

𝑐 − 1

) (
1 + 𝑐

(𝑐 − 1) (𝑇 + 1)

)
𝑃2

In all cases, (10) holds. The fact (𝑖𝑖) follows immediately by com-

bining (9) and (10).

Proof of (𝑖𝑖𝑖). It is obvious that the algorithm execution always

meets the constraints (1), (3), and (4). The only slight violation to

the budget constraint (2) may happen when an advertiser wins an

ad slot as per line 2 of the algorithm, but its outstanding budget is

less than 𝑏 (𝑖, 𝑗). Following a similar proof to [3], we can conclude

that when

∑
𝑗 𝑏 (𝑖, 𝑗)𝑦 (𝑖, 𝑗) ≥ 𝐵(𝑖), 𝑥 (𝑖) ≥ 1 holds for 𝑖 ∈ {1, . . . , 𝑛}.

Therefore, there can be at most one iteration in which the advertiser

is charged less than 𝑏 (𝑖, 𝑗). Hence, it holds that∑︁
𝑗

𝑏 (𝑖, 𝑗)𝑦 (𝑖, 𝑗) ≤ 𝐵(𝑖) +𝑚𝑎𝑥 𝑗𝑏 (𝑖, 𝑗).

So, (𝑖𝑖𝑖) is true.

Let 𝑂𝑃𝑇 denote the optimal offline revenue and 𝑃𝑅 the online

revenue achieved by Algorithm 2. Let 𝑃𝑅 = 𝑃𝑅1+𝑃𝑅2, where 𝑃𝑅1 =∑
𝑖 𝑃𝑅1,𝑖 =

∑
𝑖

∑
𝑗 𝑏 (𝑖, 𝑗)𝑦 (𝑖, 𝑗) is the revenue collected from RTB

and 𝑅2 the user traffic bonus collected from the extra impression

allocation. By (𝑖𝑖𝑖), for each advertiser 𝑖 ,

𝑃𝑅1,𝑖 ≥ 𝑃1,𝑖 ·
𝐵(𝑖)

𝐵(𝑖) +𝑚𝑎𝑥 𝑗𝑏 (𝑖, 𝑗)
≥ 𝑃1,𝑖 · (1 − 𝑅𝑚𝑎𝑥 ) .

Summarize over 𝑖 we get 𝑃𝑅1 ≥ (1−𝑅𝑚𝑎𝑥 )𝑃1. Also, 𝑃𝑅2,𝑖 = 𝑃2,𝑖 ,∀𝑖
implies 𝑃𝑅2 = 𝑃2. Therefore,

𝑃𝑅 = 𝑃𝑅1 + 𝑃𝑅2 ≥ (1 − 𝑅𝑚𝑎𝑥 )𝑃1 + 𝑃2
≥ (1 − 𝑅𝑚𝑎𝑥 ) (𝑃1 + 𝑃2) = (1 − 𝑅𝑚𝑎𝑥 )𝑃

≥ (1 − 𝑅𝑚𝑎𝑥 ) (1 −
1

𝑐
)
(
1 − 1

𝑐−1
𝑐 (𝑇 + 1) + 1

)
· 𝐷

≥ (1 − 𝑅𝑚𝑎𝑥 ) (1 −
1

𝑐
)
(
1 − 1

𝑐−1
𝑐 (𝑇 + 1) + 1

)
·𝑂𝑃𝑇

where the second to last inequality is due to (𝑖𝑖) and the last equality
due to the principle of weak duality. This gives us the competitive

ratio of (1− 1

𝑐 ) (1−
1

𝑐−1
𝑐
(𝑇+1)+1 ) (1−𝑅𝑚𝑎𝑥 ). Following the literature,

a bid price is often considered much smaller than one’s budget. So,

𝑅𝑚𝑎𝑥 tends to 0. Therefore, 𝑐 = (1 + 𝑅𝑚𝑎𝑥 )1/𝑅𝑚𝑎𝑥
approaches 𝑒 .

Furthermore, the impression tasks 𝑇 are usually large. Given these,

we conclude that the competitive ratio is 1 − 1

𝑒 . □
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Figure 3: The Revenue Algorithm3-to-OPT ratio on average.

Figure 4: Revenue per slot of compared algorithms.

Figure 5: Revenue per slot vs. different proportions of coop-
erative advertisers.

In addition, the ratio is tight.

Corollary 1. The competitive ratio 1 − 1/𝑒 is tight.

The proof follows the fact that our short-video advertising frame-

work degenerated to Adwords problem [28] when the user traffic

bonus 𝑅(𝑖) = 0 and all advertisers’ budget are used on RTB. A lower

bound of 1 − 1/𝑒 is proved for randomized algorithms for Adwords

problem [28].We remark that Algorithm 2 is time-efficient. It selects

the advertiser 𝑖∗ returned by Algorithm 2 and updates the variables

of the advertiser 𝑖∗. Thus, selecting the maximum dominates the

run-time of the algorithm, i.e., 𝑂 (𝑛𝑚) in total.

5 EXPERIMENTAL RESULTS
5.1 Experimental Setting
Data acquisition and processing. We construct an ad auction

dataset from a short-video playback dataset [19]. Each piece of data

in the dataset records the video playback history information, in-

cluding user id, video id, and the frequency and duration that users

have watched the videos. We select the top 1,000 most-frequently

played videos as short-video ads, and regard each of them as owned

by an individual advertiser. We further divide these 1,000 adver-

tisers into two categories: 50% of the advertisers will cooperate

with influencers to bid for influencer ad (cooperative advertisers
for short) and 50% of the advertisers will only bid for platform ad

(non-cooperative advertisers for short). Given the dataset [19], we

observe that the density curves of 𝑅(𝑖) and𝑇 (𝑖) exhibit a bell shape,
so we assume they follow Gaussian distributions. We compute their

means and use the 68–95–99.7 rule to find the variance best fits

the data points. To conclude, 𝑅(𝑖) and𝑇 (𝑖) identically and indepen-

dently follow the Gaussian distribution 𝑁 (15, 1) and 𝑁 (120, 49),
respectively. The advertisers’ budgets 𝐵(𝑖) are independent and

identically drawn from the Gaussian distribution 𝑁 (150, 64). For
influencers, their quality levels 𝑞(𝑖) are i.i.d. variables drawn from

the Gaussian distribution 𝑁 (0.5, 0.01). Based on the observation

that the ads that are played more often would better fit the con-

tent of the short videos, we set the bid prices 𝑏 (𝑖, 𝑗) proportional
to the average watching duration and playback times. We set the

number of users and the number of ad slots as 5,000 and 250,000,

respectively. The code of the experiments is available online here.
4

Baseline algorithms. For a comprehensive comparison, apart from

our algorithm, we implement four other algorithms. One of them is

a direct adaptation of the algorithm devised by Buchbinder et al. [3],

and the other three employ heuristic strategies in the short-video

advertising framework.

Budget-Constrained (BC) Algorithm [3]: The algorithm is a basic

primal-dual online one devised in the classical ad auction context

with a tight competitive ratio of 1-1/e. To implement it on our

dataset, we keep the advertiser 𝑖’s budget 𝐵(𝑖) and their bid price

𝑏 (𝑖, 𝑗) the same as ours, while ignoring the user traffic bonus.

Traffic Bonus-First (TBF) Algorithm: This algorithm takes extra

impression target completion as its priority, so its main difference

to our algorithm is the set of advertisers that is taken into con-

sideration in Algorithm 2, Line 1. While the argmax operation of

our algorithm takes all advertisers into consideration, TBF selects

the most suitable advertiser in the set of advertisers who still have

unaccomplished impression targets to win the ad slot. After all

extra impression targets are completed, TBF performs the same as

our algorithm.

Bid-Price-First (BPF) Algorithm [27]: This is a greedy algorithm

based on the first-price sealed-bid auction that directly chooses

the advertiser who is willing to pay the highest bid price and is

available to pay that amount for the slot, with a competitive ratio

of 1/2.

Virtual-Bonus (VB) Algorithm: This algorithm is an adaptation

of the BC algorithm by assuming that the platform has an extra

impression target 𝑇 (𝑖) for each advertiser (influencer), but there is

no option to reach a consensus with the platform explicitly. In this

context, the platform gets 𝑏 (𝑖, 𝑗) + 𝑟 (𝑖) when the advertiser 𝑖 have

not got𝑇 (𝑖) slots yet and 𝑏 (𝑖, 𝑗) once the advertiser 𝑖 have achieved
𝑇 (𝑖) extra impressions. The allocation and pricing of the algorithm

are the same as the BC algorithm.

4
https://github.com/TreceyJueves/Revenue_traffic_maximize_Alg
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Figure 6: The average revenue gained by advertisers.

Figure 7: The percentage of slots allocated to different types
of advertisers.

Figure 8: The impression target-completion rate (TCR) of
influencers.

5.2 Results
Revenue Algorithm3-to-OPT ratio. While the competitive anal-

ysis provides us the worst-case guarantee of the revenue achieved

by our algorithm, compared to the optimal (OPT) revenue, we are

interested in how much the revenue ratio is on average when the

parameters vary. We randomly choose 10 to 30 advertisers from

the set of advertisers and sample 2,000 ad slots. Fig. 3 shows that

the revenue ratio is over 0.93, much better than (1 − 1

𝑒 ) ≈ 0.632.

Revenue per slot of compared algorithms. Fig. 4 shows the

revenue comparison of our algorithm against the other baseline

algorithms. We construct a video playback trace set with 5,000-

50,000 slots by sampling the dataset uniformly at random and run

the experiments 1,000 times. We construct 100 different bidding

scenarios with the same average bidding price per slot such that the

experiment settings are more comprehensive. In some situations,

the slots available for bidding run up before advertisers’ budgets

while others do not. Since slots are usually in short supply for the

platform and are the only resource it has, the platform needs to ob-

serve the average revenue per slot. Compared to other algorithms,

Algorithm 3 exhibits the greatest superiority by generating the high-

est revenue per slot for the platform. The VB algorithm, which to

some extent, resembles our algorithm, achieves the second-highest

average revenue. Results show that taking user traffic bonus into

consideration indeed improves the platform’s revenue. Sensitivity
analysis. Fig. 5 shows the influence of altering the proportion of

cooperative advertisers. The results show that as the percentage of

advertisers cooperating with influencers increases, the revenue of

the platform gained from each slot increases as well. Our algorithm

achieves the best performance among all algorithms by providing

the platform with the highest revenue all along.

Incentive for advertiser participation. Fig. 6 shows the ad-

vertising profit gained by advertisers using different algorithms

throughout the experiment. It is generally recognized that influ-

encer ads have higher conversion rates than platform ads, so we

set the conversion rate of cooperative advertisers 10% higher than

non-cooperative advertisers. It can be inferred from our experiment

results that during the first one-third of an auction, our algorithm is

among the three leading algorithms in average advertiser revenue

per slot and becomes the sole leader in the last two-thirds. This

provides a great incentive for advertisers to accept a bidding system

using our algorithm. Fig. 7 shows that under different conditions,

advertisers who cooperate with influencers can always get more

slots for advertisement than those who do not cooperate, by approx-

imately 8%, while the numbers of the two types of advertisers are

the same. Combining with the higher conversion rate of influencer

ads, it incentivizes advertisers to cooperate with influencers.

Impression target completion rate (TCR). Fig. 8 show the extra

impression target completion rate of influencers. The extra impres-

sion target completion rate (TCR) is the proportion of influencers

who have completed their targets. Normally, besides finishing tar-

gets, influencers would like to display their videos smoothly in a

way that spans a reasonable period, rather than having users con-

sume all their impressions in a short time. That is to say, different

influencers expect to complete their targets as close as possible,

and thus the ideal state of TCR curve would be a rapid rise in the

short term, indicating the fairness amongst influencers. As shown

in figure 8, Traffic Bonus-First (TBF) algorithm is the benchmark for

TCR, whose TCR curve is the steepest. The TCR curves of BPF and

VB are relatively flat, indicating the undesired impression target

completion scheme. Algorithm 3 and BC perform similar to TBF,

which are much better in fulfilling influencers expectations.

6 CONCLUSION
With the recent rise of short-video apps and the reforming short-

video ads allocation problem, in this paper, we devise Algorithm 3

consisting of a user traffic bonus estimation algorithm and a (1-1/e)-

competitive algorithm that maximize the short-term revenue and

long-term user traffic of the platform. Experimental results show

that the revenue achieved by the framework against the optimal

revenue is much higher than the worst-case ratio of 0.632, and it

achieves a higher revenue than the other four baseline methods.
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