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ABSTRACT
Agile software development is a popular and widely adopted prac-

tice due to its flexible and iterative nature that facilitates rapid

prototyping. Recent work presented an agile approach to capturing

requirements in agent systems via user and system stories. User and
system stories present the requirements from the user and system

perspective, respectively. Each story contains a set of acceptance
criteria, which are a set of statements that identify the conditions

under which the system behaviour can be accepted by the users or

stakeholders. In this paper, we present a novel approach to testing

the requirements that are specified via User and System stories in

an agent system. We do this by developing a systematic approach

to validating the execution traces output by the system against the

specified acceptance criteria for each story. The approach identi-

fies acceptance criteria that are met successfully in execution and

those that fail. We present a fault model that categorizes the failures

providing insight to the developers to address the failed cases. We

classify three kinds of faults for a given acceptance criterion: (a)

the trigger condition is never met; (b) when the trigger occurs the

preconditions are not met; or (c) the trigger and preconditions are

met but the resulting actions are not as expected. The motivating

application of our work, which is also the test-bed for evaluation, is

an agent-based simulation application for modelling the behaviours

of civilians in a bushfire emergency scenario that is used in prac-

tice. We show our approach is able to successfully test and uncover

requirements that were not met in this application.

KEYWORDS
AOSE; Engineering MAS; Agile methodologies; Testing; Require-

ments

ACM Reference Format:
Sebastian Rodriguez, John Thangarajah, Michael Winikoff, and Dhirendra

Singh. 2022. Testing Requirements via User and System Stories in Agent

Systems. In Proc. of the 21st International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS,

9 pages.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION
Agile software development is one of the most popular approaches

today due to its flexible and iterative nature that facilitates rapid

prototyping. There has been recent work that has adapted Agile

concepts and processes to agent-oriented software engineering

(AOSE) [5, 9, 10, 30, 36, 38] including the work of Rodriguez et
al. [30] that presented an agile approach to capturing requirements

in agent systems via user and system stories.
User Stories and System Stories present the requirements from

the user and system perspective, respectively. For example, for

a personal assistant system, a possible system story is - As the

System I want to be able to book a calendar appointment. Each story

contains a set of acceptance criteria, which are a set of statements

that identify the conditions under which the system behaviour

can be accepted by the users or stakeholders. For example for the

system story above an acceptance criterion could be - when an

appointment for a time-slot is requested, if the time slot is free then

the appointment is booked and the time-slot is no longer free. The

User & system stories are a valuable tool to capture human behaviors

in a format that Domain Experts andAgent engineers can understand
and discuss.

In this paper, we present a novel approach to testing the re-

quirements that are specified via user and system stories in an

agent system. We do this by developing an approach that validates

the acceptance criteria for each user and system story against the

execution traces.

Testing is an important aspect of any software development

life cycle to ensure that the system is behaving as expected and

there have been several testing approaches proposed in the Agent-

Oriented Software Engineering liteature, e.g. [17, 21, 43].

Our test framework is able to test whether the acceptance criteria

aremet and classify the cases that fail into one of three categories: (a)

the trigger condition is never met (e.g., from the example above, an

appointment was never requested); (b) when the trigger occurs the

preconditions are not true (e.g., the time-slot requested is not free);

or (c) the trigger occurs and preconditions are true but the resulting

actions are not as expected (e.g. the time slot is still showing as free

after the booking).

The motivating application of our work, which is also the test-

bed for evaluation, is an agent-based simulation application formod-

elling the behaviours of civilians in a bushfire emergency scenario

that is used in practice. In developing the user and system stories
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and the acceptance criteria for this application it was also necessary

to extend the representation of acceptance criteria proposed in [30].

Firstly, it was necessary to provide explicit agent-specific constructs

such as Agent-Types, Percepts, and Belief Conditions. For example,

to be able to specify that a given agent is of type “Resident”. Sec-

ondly, to include temporal constructs. For example, the ability to

specify that a person will eventually decide to evacuate the areas

in the sight of fire.

In this paper we make the following contributions: (i) extend

the definition of acceptance criteria for user and system stories

to include agent-specific and temporal constructs; (ii) develop a

testing framework for validating the acceptance criteria (including

the temporal extensions) against the run-time traces; (iii) present

a fault-model for classifying the tests that fail; and (iv) show that

our approach is able to successfully test and uncover faults in a

real-world application.

In the next section we describe some preliminaries including

a description of the Bushfire Simulation application. We present

our extended representations in Section 3 followed by our testing

approach in Section 4. We present our evaluation and results in

Section 5 and conclude with related and future work in Sections 6

and 7 respectively.

2 BACKGROUND
In this section, we present a brief overview of user and system

stories, the type of agents (BDI agents) that this work is based on,

and detail the Bushfire Simulation application that we use as our

testbed.

2.1 User and System Stories
The Agile approach [3] to software development is popular and

widely adopted in industry. For example, 71% of the organizations

consulted in [22] responded that they use agile approaches in their

projects. A key feature of an agile methodology is the way in which

requirements are captured - at a higher level at early stages and

progressively refined and detailed.

Amongst the various approaches to gather requirements (e.g

User Interviews, Questionnaires, Story-Writing workshops) [6], the

most common technique in agile frameworks is User Stories [2]. A
user story is an informal description of a feature described from the

perspective of a user of the system. These are represented using

the template: As (role), I want to (do something), so that (reason) [30].
For example, for a personal assistant system: as a user, I want to see
my daily appointments, so that I can plan my day.

Recently, Rodriguez et. al. [30] introduced the concept of a Sys-
tem Story associated with each user story. In essence, the system

stories further refine the user story from the system’s perspective,

identifying the requirement of the system to satisfy the user’s needs.

They were captured in the same manner as user stories. For exam-

ple, a system story for the user story is: as the system, I want to be

able to retrieve daily appointments, so that the user can plan her

day.

Each story also contains a set of acceptance criteria, which are a

set of statements that identify the conditions under which the sys-

tem behaviour can be accepted by the users or stakeholders. These

are captured via the scenario-oriented format of Given/When/Then,

derived from Behavior Driven Development (BDD) [18]. In this for-

mat, theGiven component describes the necessary preconditions for

the system to execute the behavior being described;When identifies
the triggers of the behavior; and Then details the resulting effects

of executing that behavior. For example, for the above system story,

an acceptance criterion might be: Given a valid date, when a request
for daily appointments is made, then all appointments for that date

are displayed.

Similar to [30], we specify acceptance criteria using an extension

(see Section 3) of the Gherkin format
1
. In essence, in the Gherkin

notation an acceptance criterion is a sequence of steps that include

one or more given statements which specify a pre-condition, a when
statement indicating a trigger for the relevant story, and one ormore

then statements indicating a sequence of outcomes, i.e. observable

conditions. It is also possible to specify a background: a collection of

given statements that are common to a number of scenarios. Finally,

scenarios can be grouped together under a feature.

2.2 BDI Agent systems
Similar to [30], our work is grounded in the BDI (Belief-Desire-

Intention) agent paradigm [28]. BDI agents are a popular and well

established technology for designing [4, 7, 20] and implementing

[23, 39] agent systems. A key feature of BDI agents is the cognitive

concepts used to specify and implement them.

Some of concepts are, for example, percepts in the environment

that the agent responds to, beliefs about itself and the environment,

goals that the agents want to achieve, plans that are used to achieve
the goals and actions that change the state of the environment. The

Bushfire Simulation application described next is implemented as a

BDI agent system.

2.3 The Bushfire Simulation Application
We evaluate our framework on a BDI program to capture the be-

haviours of residents during wildfires, or bushfires, in the Aus-

tralian context. The program is part of an evacuation model that

combines a fire spread model, a population model, and a traffic

simulator [33, 34]. The evacuation model sits within a decision-

support system that is being trialled by emergency services to un-

derstand the threat to a community from predicted wildfires. This

understanding is then used to inform planning and preparedness

measures for mitigating the risk to the community.

The web-based decision-support system allows an emergency

manager or incident controller to setup and run an evacuation

scenario, then visualise and analyse the outputs to gauge the effec-

tiveness of the proposed evacuation plan—a series of zone-based

emergencymessages that inform the community of the approaching

fire threat along with recommendations for appropriate action [29].

Whether or when agents (BDI) in the simulation react to the

broadcast emergency messages, or the sight of fire or smoke, de-

pends on how risk averse they are (beliefs) and how anxious they

become from the cumulative perception of those events (situation

awareness). When agents do decide to react, then what actions

they take depends on their situation, such as whether they need

to go home before evacuating, and personal circumstances, such

as whether they have vulnerable or dependent others that they

1
https://cucumber.io/docs/gherkin/reference/
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Story ::= Feature: name, StoryDescription,
(AcceptanceCriteria)

∗

StoryDescription ::= As role, I want to task, so that reason
AcceptanceCriteria ::= Scenario: description , GivenStatement

∗

WhenStatement ThenStatement
+

GivenStatement ::= Given (AgentTypeCondition | BeliefCondition)

WhenStatement ::= When Perception | When BeliefCondition

ThenStatement ::= Then
(immediately | eventually | never | always )
BeliefCondition

AgentTypeCondition ::= Agent is Type agentValue
BeliefCondition ::= It believes

(beliefName | current_plan | current_goal)
is [less than | greater than] beliefValue

Perception ::= It sees percept

Figure 1: BNF syntax for capturing a Story and the corre-
sponding set of acceptance criteria. In bold are keywords and
in italics are terminals (strings, except for beliefName which
is an identifier, and beliefValue which is string, number, or
Boolean).

need to attend to first. Collectively, the agents exhibit the kinds of

behaviours that are commonly seen in bushfire situations [35].

The BDI program was created using a process of model co-

development with end users. The BDI model is particularly useful

here as a way of modelling human decision-making, because it

uses the familiar concepts that we use to discuss human planning

and acting (e.g. goals, plans, beliefs). Additionally: (i) it is intuitive

for domain experts to comprehend and collaborate over, (ii) it can

capture rich behaviours in a compact form (e.g. see [42]), and (iii)

agreed goal-plan visualisations can readily be converted into a

program with minimal errors in translation [19].

Our evaluation (§5) is performed on behaviour traces of BDI

agents collected from output log files of the evacuation simulation.

The traces include time-stamped information about the reasoning

of every agent during the simulation, such as what plans were

being considered and selected in response to which triggers when,

and what subsequent actions were being taken. These traces were

already being used by the BDI programmers to manually verify

behaviours in discussions with domain experts [35]. Our intent in

this evaluation was to extract first some system and user stories

from discussions with domain experts and the programmers, and

then automatically parse the simulation log files to check for the

existence of those stories in the BDI behaviour traces.

3 REPRESENTATION
In utilising the approach of [30] in the bushfire evacuation simula-

tion system (§2.3), it was necessary to extend the representation of

the acceptance criteria to capture what the domain experts wanted

to express and subsequently test via the approach we propose.

Specifically, it was necessary to extend the notation in two ways:

(i) to allow reference to agent-specific aspects; and (ii) to allow

temporal expressions.

Figure 1 presents the syntax for capturing a user or system story

and the corresponding acceptance criteria. In this representation

we introduce agent-specific concepts as follows:

Feature : Handl ing o f dependent s f o r f u l l − t ime

r e s i d e n t s

As Re s i d en t Fu l lT ime ,

I want to a lways a t t e nd to my dependent s

so t h a t they a r e s a f e

Scenario : f i r s t r e sponse i s a lways to

a t t e nd to dependent s ( e xp e r t )

Given agen t i s type Re s i d en t Fu l l T ime

Given i t b e l i e v e s HasDependents i s t r u e

When i t b e l i e v e s c u r r e n t _ g o a l i s

G o a l I n i t i a l R e s p o n s e

Then e v e n t u a l l y i t b e l i e v e s s t a t u s i s

t o : Dependen t sP l ace

Figure 2: Example user story and acceptance criterion

• AgentTypeCondition which allow Given statements to refer

to the agent type (“Given agent is type Type”).
• Percept that triggers an acceptance criterion (“When it sees

PerceptName”).
• BeliefConditions where Beliefs can be numerical, true/false,

or other types (“. . . it believes BeliefName is (true | false |

some_value)”, and “. . .BeliefName is [less than | greater than]

numerical_value”.
• BeliefConditions also afford a degree of introspection by

allowing the statements to refer to beliefs regarding the

current plan and current goal. (“. . . it believes (current_plan |

current_goal) is Name”).

In addition, we also enrich the language with basic temporal

constructs, allowing the then statements about the belief updates

to include one of “immediately”, “always”, “never” and “eventually”,

with their usual meaning.

Figure 2 shows an example story and acceptance criterion as

used in our bushfire simulation application. The story captures the

expected behaviour of a Fulltime Resident with dependents. In line

4 the story description is captured. Aligned with the approach pre-

sented in [30], we can extract from the story description a top level

goal of the agent to attend to dependents. The current implementa-

tion of the simulator uses the generic goal GoalInitialResponse to
represent this goal. The acceptable behaviors to achieve this goal

are described in the acceptance criterion scenario. The text after the
Scenario keyword is the description of the expected behaviour.

This scenario states thatWhen the goal GoalInitialResponse (i.e.
attend to dependents) becomes the current_goal; Then the agent

should eventually be going to its dependents’ location (i.e believe

its status to be status=to:DependentsPlace at some future stage). This

example illustrates the need for the temporal constructs. In some

cases the agent may need to immediately go to the dependents

location, and in other cases (such as in this example), the agents

may do this at a later stage (i.e. eventually) perhaps after completing

some other activities.
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Figure 3: Process overview

4 TESTING APPROACH
A key feature of user and system stories is enabling domain experts
to intuitively specify requirements and for the developers to easily

interpret and implement them into the final agent system.

The aim of our approach is to validate the implemented system

against those requirements. We do this by using the log traces that

are produced during execution. These traces contain reasoning

events such as belief updates, goal and plan applicability, agent’s

perceptions, etc. An overview of the process is presented in figure 3.

Our prototype system is composed of three top-level components:

(1) Log Parser: Responsible for parsing system logs and input

them in a standard format to a simulation history database

(see §4.1).

(2) Requirement Analyzer: The core of the system, responsible

for transforming user and system stories and their respective

acceptance criteria into queries that can be executed against

the simulation history database (§4.1). These queries include

temporal validations of agents’ beliefs (§3).

(3) Report Server: Presents the outcomes of the analysis in a

human-friendly format for Domain Experts to review and

potential enrich the current systems specification (§4.2).

4.1 Traces
We now describe the structure of the traces generated by the agent

based simulation system. The traces generated by execution take

the form of a list of records, where each record has the following

fields, separated by |:

(1) Step number in the simulation, with−1 denoting steps before
the start of simulation;

(2) Simulated time;

(3) Agent archetype;

42930|11:55:30|ResidentFullTime|8344|saw embers

42930|11:55:30|ResidentFullTime|8344|

believes anxietyFromSituation=0.3

42930|11:55:30|ResidentFullTime|8344|

believes futureValueOfVisibleEmbers=0.0

42930|11:55:30|ResidentFullTime|8344|

believes responseThresholdInitReached=true

42930|11:55:30|ResidentFullTime|8344|

believes responseThresholdFinReached=true

Figure 4: A perception and belief update trace example.

...|thinks GoalFullResponse >PlanFullResponse is applicable

...|thinks GoalInitialResponse >

PlanResponseWhenDependentsAfar is not applicable

...|thinks GoalInitialResponse >

PlanResponseWhenDependentsNearby is applicable

...|thinks GoalInitialResponse >

PlanResponseWithoutDependents is not applicable

...|thinks GoalInitialResponse >PlanDoNothing is applicable

...|will go to ... GoalInitialResponse >PlanResponseWhenDependentsNearby

Figure 5: Reasoning information traces example (header of
trace removed for brevity).

(4) Agent ID; and

(5) Step details (discussed below).

Step details can take a number of forms. They can represent a per-

cept (“saw PerceptName”), a belief (“believes beliefName=value”),
and plan selectionwhich includes both indication of which plans are

applicable (“thinks GoalName~>PlanName is [not] applicable”) and
which applicable plan is selected (“will GoalName~>PlanName”).
Figures 4 and 5 shows example traces for perception and belief

updates, and reasoning information, respectively. Based on these

traces we are able to reconstruct the agent’s belief states and rea-

soning at each step of the simulation.

For every agent, trace information pertaining to the agent is

first filtered out from the simulation log. Conceptually, these agent

related traces contain the complete evolution of the agent’s state

from the beginning of the simulation to its end, including when

it perceived what external event (‘saw’ traces), when it updated

its beliefs due to external percepts or internal reasoning (‘believes’

traces), and what course of action it took when (‘will do’ traces).

The parser therefore traverses the traces in order of simulation

time stamp, and records belief transitions
2
in the database for each

agent for every time step. This greatly simplifies the subsequent

step of requirements checking since the full state of every agent

at every time step can be directly queried. This is done to improve

the performance of the Requirement Analyzer and render it more

reactive to human interaction. The result is stored in the Simulation
history DB.

Once the DB is populated, the Requirement Analyzer processes
the User and System Stories requirements and creates queries to

verify whether they are respected by the agent traces stored in the

2
For this exercise, all events related to the agent, such as external percepts received,

beliefs updated, and goals/actions triggered, can be treated as state transitions, or

simply, belief changes.
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Figure 6: Scenario report example (scenario in figure 8)

Simulation DB. The result of this analysis is stored in the Require-
ments Analysis DB.

Finally, the Report Server provides theDomain Expert with means

to explore and understand the outcome. For example, Figure 6 shows

the result of a failing acceptance criterion. Using this information

the Domain expert can review requirements using the fault model

presented in the following section.

In practice, we found it useful and often necessary to add user

and system stories from the perspective of the developer. This was

because the domain expert would typically have a high-level and

incomplete view of agent behaviours they expected the system to ex-

hibit, without necessarily having thought through any implications

of those decisions on the overall behaviour of that agent or groups

of agents. The developer on the other hand, was fully involved in

the nuances of the modelled behaviours and how they manifested

in all possible situations within the simulated evacuation scenarios,

and would therefore augment the set with new stories. This further

benefited the co-development process between the domain expert

and developer, through the expanded set of agreed user stories. The

approach then fosters the discussion between experts and develop-

ers that is not only encouraged by agile methodologies but also the

original intention of user stories.

In applications such as the disaster management simulation,

where agents mimic human behaviours in disaster situations, the

experts are presented with the simulation results to further refine

their understanding of behaviours and improve the quality of the

results. This “review” can be associated with practices similar to

“Sprint Review” in Scrum, where the experts provide feedback and,

often, review the requirements based on the results. Details of this

practice can be found in [29].

Intuitively in the process, the Log Parser reconstructs the beliefs
of the agents in each step of the simulation by updating them in the

Simulation DB according to the traces. Then the Requirements Ana-
lyzer translates the User and System Stories into database queries to

verify that the belief states of the agent comply with the specifica-

tion. Finally, the Report Server presents an interactive view of the

outcomes to Domain Experts and the Development Team.

Fault Name
Fault
Type Interpretation

NO_TRIGGER Weak

Trigger (perception or belief update)

was not observed for any agent

in the simulation

TRIGGERED
BUT_GIVEN
NOT_MET

Weak

Trigger observed, but belief state of

the agent did not meet the given

conditions

FAIL Strong

Trigger observed, conditions met,

but the observed behavior of the agent

does not comply with the specification.

PASS
Trigger observed, conditions met,

and the observed behavior of the agent

complies with the specification

Table 1: Fault type summary

4.2 Fault Model
The fault model operates at the level of the acceptance criteria,

being, given some preconditions, when a trigger occurs, then some

behaviour should be observed. In this sense, a fault can potentially

exist if the desired criteria are not met together. If given and when
conditions do not hold true together, the reason could be an under-

lying fault, a poor specification of the conditions, or poor coverage

of the behaviours (and the situations that induce them) in the simu-

lation output. For this reason, we call such casesweak failures. On
the other hand, if both those conditions hold, but the then condition
fails, it indicates a failed expectation in the traditional sense of

software testing, and we call it a strong failure.
The checking process is able to detect a number of types of faults.

(1) When a scenario is triggered (given and when match trace

steps), but the then statements do not all match. This is a

(strong) failure to meet the requirements. The system is

doing the wrong thing, and the system needs to be fixed

(or, possibly, the scenario specification corrected, e.g. it may

have incorrect or additional statements).

(2) When a scenario is never triggered. This is regarded as a

weak failure: a given desired behaviour is never observed in
the given traces. This may reflect an error in the system or in

the specification (e.g. too restrictive given/when conditions),

or it may reflect that more extensive testing is needed. There

are sub-cases here, corresponding to why the scenario is

never triggered.

(a) when never occurs - in this case, the behaviours covered by
the trace do not test the acceptance criterion in question

at all, and either the acceptance criterion is obsolete and

should be removed, or, arguably more likely, the range of

tests is inadequate and needs to be extended.

(b) the when occurs in the trace, but in each case, the given
fails to hold. In this sub-case the tests do attempt to ex-

ercise the behaviour in question, but there is a mismatch

between the specified given (precondition) and the ob-

served situation. This may reflect an incorrect (too strict)

given, or a mistaken assumption about the behaviour that

is observed.

(3) In addition to considering scenarios and whether they are

met by the trace, we also consider what parts of the trace
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are matched against at least one scenario instance. When a

trace step is not matched against any scenario, this reflects

an underspecification, i.e. the specification is missing stories

to cover the situations and behaviours in which the trace

steps occur.

This situation could also correspond to one where a relevant

story does exist, but its trigger and context are too strong

(which would be covered by the immediately preceding case).

It could also correspond to a situation where a story is miss-

ing statements: e.g. if the scenario has “Then 𝑡1; Then 𝑡3”

but the trace is 𝑡1, 𝑡2, 𝑡3, or, of course, the trace may have

additional incorrect steps. It is important to notice that in

the case of temporal statements a particular step might need

to comply with multiple requirements.

A summary of the fault types is presented in Table 1. Note that

a scenario is reported as failed even if only one step matching the

specification fails.

5 EVALUATION
In order to evaluate our approach we used traces generated by the

bushfire simulator presented in section 2.3. The simulator has been

in development for a number of years based on the requirements

expressed by domain experts. However, requirements for the human

behaviours of the simulator were not originally captured using User
and System Stories. Therefore, in collaboration with the simulator

developer, we reverse-engineered the requirements in the format

of Stories and Acceptance criteria. We developed 3 User and System
Stories (i.e. Feature files) containing 9 different Acceptance Criteria
with 35 Given/When/Then statements. The same set of stories and

acceptance criteria were used in the experiments described below.

Our first set of experiments (§5.1) aimed to validate the require-

ments on a real setting using traces from a simulation previously

accepted by domain experts. We refer to this type of simulations as

validated simulations. These experiments are presented in Section

5.1. The second set of experiments (§5.2) aimed to validate the ef-

fectiveness of the approach to detect agent behaviours that does

not comply with the requirements. To this end, we intentionally

modified agent’s traces to introduce faults. In this controlled envi-

ronment we evaluate the ability of the approach to detect known

faults.

User and system stories were created in a high-level language
that was suitable for discussions with Domain experts not familiar

to agent terminology.

5.1 Evaluation on validated simulations
In order to validate the accuracy of the requirements represented

by the User and System Stories, we used traces from a previously

validated simulation. The goal of these experiments is twofold: (a)

understand the complexity and performance of the process; and (b)

ensure that the stories are not inconsistent with the behaviour.

A simulation of this nature contains thousands of agents of vari-

ous types. We created random samples of agents and extracted their

behaviour traces. We obtained 4 sets of simulations traces of 10

agents each. Since the requirements in our application domain rep-

resent expected behaviours of each agent, extracting merged agent

execution traces do not affect the analysis process. On the other

hand, creating smaller sets of agents, make the analysis process

faster and more manageable.

A summary of the results is presented in table 2. In all the traces

combined we parsed over 41,000 lines of log traces generated by 40

agents. As noted in §4.1 a major step in the process is to expand

the belief transitions observed for agents in each simulation step

into complete belief states for those agents for that time step for

storage in the database that can be queried. This step yields over 5

million belief states. Agents received 12,413 perceptions from their

environment. Notice that the perceptions are only external events

observed by the agents (i.e. fire, embers, emergency messages, etc.)

and does not include belief updates (i.e. internal triggers).

We use the following terminology:

• A Step is a simulation tick for a particular agent in the simu-

lation. A step is then a unique combination of a timestamp

and an agent.

• A Triggerable Step is a step in which all given conditions of a

scenario are met. In essence, it captures the step where when

the trigger occurs, the behaviour is ready to be executed, as

the preconditions are met. Note that the same Step could be

Triggerable for multiple scenarios.

• An Event Step is a Step in which the scenario’s trigger hap-

pens. A trigger can be a perception or belief update. Notice,

that a step where the trigger happens may not initiate the

agent’s behaviour if the given conditions are not met.

• A Triggered Step: is a Step that is an Event Step and also a

Triggerable Step. These steps are evaluated with the then
statement.

With that information, the Requirements Analyzer used the 3

Stories and identified 220,812 Triggerable steps of which 7,462 were

actually triggered.

While in most cases the agents behaved according to the specifi-

cation, 6 of them were flagged as Fail.

Figure 7: Step information report example

Upon investigation of those 6 cases, we found that the failing

acceptance criterion was the one presented in Figure 8. The asso-

ciated Story is concerned with validating the agent’s situational
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Steps Scenarios
Num Traces Num Agents Beliefs Expanded Perceptions Total Triggerable Triggered Pass Fail Pass Fail

Trace 1 9662 10 1410320 2909 10370 60590 1687 1686 1 8 1

Trace 2 11488 10 1319200 3515 9700 55586 2256 2256 0 9 0

Trace 3 5290 10 1077120 1469 7920 48888 1068 1066 2 8 1

Trace 4 14565 10 1358640 4520 9990 55748 2451 2448 3 8 1

Totals 41005 40 5165280 12413 37980 220812 7462 7456 6

Table 2: Evaluation results for the validated simulation

awareness and in particular, this Acceptance Criterion specifies that

the agent should eventually start the evacuation of the area (i.e.

adopt the goal GoalFinalResponse) when the final response threshold
is reached. In a closer analysis in colalaboration with domain ex-

perts, we concluded that in all 6 cases the simulation ended before

the agent could adopt the goal. A simulation with an extended time

confirmed that all agents completed the goals as expected.

Given the above findings, we conclude that we can successfully

query large simulation traces to verify that scenarios represent

behaviours observed in validated simulations.

It is also important to note the reduction in analysis effort to de-

bug and understand agent behaviours that this approach represents

for the agent system developers and domain experts. We were able

to reduce the scope from over 220,000 triggerable steps to only 6

cases.

Furthermore, for these 6 cases the step’s report (shown in Figure

7) displays investigative information about the beliefs changes in a

given step, highlighting modifications. This helps identify possible

unwanted behaviours and provides insights to the developers and

domain experts.

Scenario : when anx i e t y r e a che s 2nd l i m i t

i t shou ld s t a r t a r e sponse

Given agen t i s type Re s i d en t Fu l l T ime

When i t b e l i e v e s

r e s pon s eTh r e sho l d F i n a lR e a ched i s t r u e

Then i t e v e n t u a l l y b e l i e v e s

c u r r e n t _ g o a l i s Goa l F i na lRe spon s e

Figure 8: Failed Acceptance Criterion in validated simulation

5.2 Evaluation with faulty traces
Our previous evaluation analyzed the capabilities of our approach

in a real application setting. We were able to confirm all steps that

complied to the specifications are correctly identified. However,

while some non-complying traces were found (i.e. 6 cases discussed

previously) we need to evaluate the accuracy of our system to

ensure that it captures all known errors in the agents’ behaviours.

To this end, we manually modified a log of valid traces of 10

agents to deliberately introduce errors. Starting from that valid

log where all 10 agents exhibited correct behaviours, we created 4

new trace logs (10 agents each) and manually introduced errors of

different characteristics.

Type of error introduced Fault Type Total Found
Then Immediately Strong 5 5

Then Eventually Strong 3 3

Then Never Strong 8 8

Triggered but Given not met Weak 19 19

Table 3: Summary of errors detected

As presented in Table 3, we introduced 35 errors distributed in

the 4 traces and 40 agents. These errors covered all types of Then

statements presented in §3. Additionally, we included 19 errors of

Event Steps that were not Triggerable (i.e the given conditions are

not met).

As shown in Table 3, our prototype was able to successfully

capturing all types of faults introduced.

Furthermore, the prototype system identified the steps where

the faulty behavior was triggered and/or the follow-on steps that

caused the fault. This information is reported as shown in Figure 6

for step 38.

These results show that our system is capable of validating cor-

rect behaviours against requirements and furthermore capture be-

haviours non-compliant with the specifications.

6 RELATEDWORK
The work of Abushark et al. [1] is similar to this paper in that they

presented an approach to testing requirements specified via scenar-

ios (use cases) by matching traces against scenario specifications.

However, it differs to this paper in that it aims to provide early

detection of issues, and so tests requirements against a detailed

design (the plans of the agents) prior to implementation. In contrast,

our approach validates acceptance criteria specified at the design

stage against execution traces generated at run-time.

The work of Poutakidis et al. [25–27] is broadly similar in aim to

this paper in that it monitors a running multi-agent system against

design artefacts to detect mismatches (which may indicate an error

in the implementation or in the design artefacts). Specifically, they

focus on interaction protocols and monitoring messages, and on

detecting cases where the design specifies that a BDI agent should

have a particular number of applicable plans for a given goal (e.g. at

least 1) but this is violated at runtime. By contrast, this paper focuses

on a particular representation for acceptance criteria that derives

from agile software development practices.

Thangarajah et al. [37] extend the notation of scenarios of the

Prometheus methodology, and, amongst other things, look at using

the extended scenarios for testing. Scenarios are a sequence of steps
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which captures a particular run of the system akin to use cases in

UML. Scenarios are much more simplistic and limited in capturing

requirements compared to User and System Stories. Their work

developed an agent-based simulator to the test the agent system

and use the scenarios to generate test cases that are executed. The

resulting steps are recorded and validated against the scenario

specifications. The testing is limited to one scenario per time, hence

does not consider scenarios that may interact.

Our work can be seen as a particular form of run-time verifica-

tion (e.g. [8, 11, 31]). It differs from standard run-time verification

in adopting a given-when-then format for requirements that is more

accessible to domain experts, and that distinguishes between the

trigger, the pre-conditions, and the expected behaviour. By contrast,

run-time verification typically uses temporal logic which is less

accessible, but richer. Our extended representation has temporal

features, but only supports a single temporal operator (e.g. “even-

tually”), not arbitrary nesting of temporal and logical operators.

One example of run-time verification in a simulation setting

is the work of Herd et al. [12, 13] which considers how to extend

testing a trace of a single entity against a specification (in linear tem-

poral logic) to: (i) deal with traces of hierarchical entities (e.g. agents

in a multi-agent system), and (ii) deal with multiple traces, using

probabilistic statements.

Finally, one of this paper’s contributions is a taxonomy of faults

in agent systems.

Winikoff [40] also proposes a taxonomy of faults (and failures)

for Goal programs. Unlike this paper, the aim is to understand

what faults are made by (novice) agent programmers, and how they

manifest as failures, not provide a mechanism for detecting faults.

Abushark et al. define a simple taxonomy of failures and their

causes [1, Table 1], which has three cases: (1) The specification has

remaining steps to be performed, but the trace is empty, which indi-

cates that the (abstract) trace generated from the plan graph should

have more steps. This corresponds to a failure in our taxonomy. (2)

The specification has been met, but the trace still has unmatched

steps. This corresponds to our third case: steps in simulation that

do not match a scenario. (3) The next step in the specification does

not match with the next step in the (abstract) trace, which can indi-

cate a missing step, or a difference in ordering. This corresponds

to our first case. By contrast, because our specifications have not

just expected steps, but also a trigger, we are able to distinguish

between cases where an acceptance criterion is triggered and fails,

and one where it is never triggered.

Finally, Potiron et al. [24] takes a broad taxonomy of faults of

systems, which includes not just programming errors, but also

hardware errors, and extends it with some additional fault types.

For example, an autonomous agent exercising its autonomy in

deciding to not respond to a request. The fault model used is quite

high level and broad.

7 CONCLUSION AND FUTUREWORK
In this work we presented a novel approach to testing the require-

ments specified via user and system stories in developing an agent

system. We extended the representation of acceptance criteria in

[30] to allow agent-specific constructs and temporal constructs that

were necessary to capture the requirements and subsequent test

cases for our testbed system - a bushfire simulation application. We

presented a formal syntax for our representation. We presented the

testing process that validates the execution log traces generated by

the simulation system against the specified acceptance criteria for

each story. Finally, we showed that our testing approach was able

to accurately detect and capture faults, when present.

Beyond the debugging features for agent systems, this approach

(and support tooling) can help foster discussions between domain

experts and the development teams, enhancing the understanding

of agents’ behaviours in large scale systems. With the benefit of

a high-level language (i.e. stories) to describe the expected agent

behaviours, the tests can be executed and verified directly without

additional steps to interpret them into testing code. This reduces

the possibility of human-introduced errors when translating the

specifications into relevant tests.

There are a number of directions for future work. Firstly, inves-

tigating a new standardized logging format for agent systems to

enable improved queries on agent states. This could help in the

creation of shared approaches and tooling for heterogeneous appli-

cation domains. These could build on previous work in this area

such as [41].

Secondly, more sophisticated approaches to query simulation

traces are required. While our prototype shows that our approach

is feasible and sound, expanding the agents’ states to a format that

can be queried requires large space and computational resources. In

future work, we will explore new ways of representing the agents

states. In doing this, it may be possible to build on work on efficient

omniscient debugging for agent systems [16].

Thirdly, the approach has potential to be used in a wider range

of software systems including applications developed using other

paradigms and non-simulated environments. Future applications

will explore this option.

Fourthly, we plan to extend the approach to take into account

interactions between agents. A Story captures the “acceptable” be-

haviour from one agent’s perspective. When there is an interaction

between two agents, there will be two scenarios capturing that, one

from each agent’s perspective. There is future work to be done on

deriving the interactions between multiple parties and validating

them.

Finally, conducting further evaluation would be valuable. In

particular, it would be useful to conduct evaluations with human

subjects to gauge the usability of the tool and approach, and to

quantify its benefit. It would also be useful to conduct evaluation

by systematically exploring mutations of BDI programs, to assess

to what extent a reasonable collection of acceptance criteria are

able to detect mutants. In doing this, we would build on existing

work on mutation testing for BDI agents [14, 15, 32].
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