
Properties of Reputation Lag Attack Strategies
S. Sirur

University of Oxford
United Kingdom

sean.sirur@gmail.com

Tim Muller
University of Nottingham

United Kingdom
t.j.c.muller@gmail.com

ABSTRACT
The trustors in a reputation system share trust-relevant informa-
tion about trustees; their reputation. The presence of lag in the
sharing mechanism can be exploited by malicious trustees to per-
form otherwise impermissible additional bad actions. This is the
reputation lag attack. In this paper, we use simulations to explore
properties of the reputation lag attack and strategies which im-
prove the attacker’s success. We demonstrate the following key
findings: Attackers in lagged systems clearly outperform attackers
in lag-free systems. The attacker’s success is proportional to the
rate at which they can interact with victims, plateauing at a maxi-
mum. Attackers who wait for their good reputation to disseminate
outperform those who do not. Attackers who perform only good
actions, wait for dissemination and then perform only bad actions
outperform attackers who do not follow this ordering. This implies
reputation-lag attacks are effective exit strategies. In typical social
networks, smart attackers may cheat users with a low centrality,
but in a homogeneous network, this strategy is ineffectual. Our
findings help allow developers of reputation systems defend against
a class of attacks that has not yet received a great deal of attention.

KEYWORDS
Reputation System; Social Simulation; Reputation Lag; Attacks

ACM Reference Format:
S. Sirur and Tim Muller. 2022. Properties of Reputation Lag Attack Strate-
gies. In Proc. of the 21st International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS,
9 pages.

1 INTRODUCTION
A trustor interacting with a trustee whilst uncertain of their coop-
eration can be considered to be trusting. Trust raises the risk of
interacting with a malicious party. Trustors can reduce their indi-
vidual uncertainty and risk by sharing information about trustees.
We consider this sharing of information to be an instance of a rep-
utation mechanism. The reputation of a trustee from each trustor’s
perspective is comprised of the information each trustor knows
about that trustee.

Reputation systems may possess a weakness in the form of lag. A
source of lag is the time delay present in user-to-user communica-
tion. As a result of such delays, some users may be unaware of new
information when deciding (not) to trust. A malicious trustee may
attempt to actively exploit this lag. This is known as a reputation
lag attack.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

We use a simulated multi-agent network to model a reputation
system in which users share information about an attacker. This
attacker attempts positive and negative transactions with individual
users, aiming to maximise how many negative transactions they
successfully perform. Reputation is modelled by users sharing the
outcomes of these transactions with each other and then using that
knowledge to decide whether or not to trust the attacker.

This paper discusses factors and strategies which benefit the
attacker. We investigate the the attacker’s choice of action: the
attacker can deal, cheat or wait at each opportunity. We show
the superiority of attacker action "ordering" (perform all planned
deals, wait for the news to spread and then begin cheating). This
strategy’s success highlights the reputation lag attack a malicious
exit strategy. We study the effect of the attacker avoiding users with
high centrality values to minimise spreading cheats and the impact
of network structure on said strategy. We study an attacker who
accesses user trust states before attempting transactions, allowing
them to avoid distrustful users.

Our simulation models users as continuous-time stochastic pro-
cesses, that communicate with each other as defined by a network,
akin to a social network. The attacker is offered opportunities to
act according to a continuous-time stochastic process too, but the
attacker’s choices are determined by the attack strategy. This al-
lows us to compare impact of: how often the attacker can act, the
network topology, and the attacker’s strategy.

We contribute novel insights, in addition to quantifying known
qualitative relations. For the former: the impact of using centralities
to target victims; the relationships between strategies (e.g. the im-
pact of rate on waiting duration and centrality targeting); and the
benefit to the attacker of knowing user trust states before commit-
ting to an action. For the latter: the sigmoid relationship between
the log of the attack rate and the number of cheats, with the sys-
tem rate being the midpoint of the sigmoid; the linear relationship
between successful deals and cheats, with the gradient of the line
increasing with ordering and waiting; and the success of the RLA
as an exit strategy.

2 RELATEDWORK
The reputation lag attack (RLA) was first identified in security
literature by Kerr and Cohen [8] who studied it amongst other trust
attacks in a simulated marketplace [9]. However, their informal
definition of the attackwas restrictive, lessening its apparent impact.
Almost all the other attacks benefitted somewhat from reputation
lag but this was not attributed to the RLA. The attack remained
largely unstudied after this, presented only in some trust attack
surveys [7, 10].

Sänger & Pernul tested a visualisation-based detector against
the RLA [13]. They identified two signs of the attack: an increase

Main Track AAMAS 2022, May 9–13, 2022, Online

1210

AAMAS ’22, May 9–13, 2022, Online S. Sirur and Tim Muller

in the number of sales and an increase in the time to rate transac-
tions due to withheld deliveries. They visualise the “not yet rated"
transactions to highlight unusual behaviour. Their system assumes
the attacker remains in the network whereas we use the RLA more
as an exit strategy.

A recent work by Voloch, Gudes & Gal-Oz tested a proposed
privacy-defending trust model against a trust-delay based attack
[17]. In a simulated online social network (OSN), a subgraph of
malicious users try to present a trustworthy front to trick a specific
user into breaking their privacy. In this defensive model, the size of
the subgraph necessary for a successful attack was infeasibly large.

Economic analyses of reputation lag vulnerabilities exist. Shapiro
shows the benefit of buyer knowledge lag for malicious sellers:
lagged optimal product quality is lower than under perfect informa-
tion [14]. He also shows that sellers may seek short-term gains by
exploiting buyers’ lack of foresight, unless compensated by selling
high quality items above cost [15].

A cunning attacker may behave well to users who contribute
greatly to spreading and badly to users who do not. Centralities
provide a metric for the structural importance of a node [18]. Highly
central nodes should contribute more to spreading [3].

Various centrality measures exist, each calculated from differ-
ent properties of the network [12]. In particular, there are four
well-known centrality measures: degree centrality (𝐷𝐶) [11], eigen-
vector centrality (𝐸𝐶) [2, 11], closeness centrality (𝐶𝐶) [5, 11] and
betweenness centrality (𝑆𝑃𝐵𝐶) [4, 11]. Borgatti argues that, while
each centrality predicts some form of “spreading on networks",
none predict a node’s contribution to “infection" or “gossip" style
spreading [3] of the sort present in our model.

3 MODEL SPECIFICATION
In this paper, we study a simulated model of the reputation lag at-
tack. The foundation of the model is a stochastic, continuous-time
Markov chain (CTMC) implemented in Python 1. The model con-
sists of a multi-agent network of users and a malicious reputation
lag attacker. The rationale behind using a continuous-time model
is that timing is extremely important for modelling reputation lag,
and it allows us to increase the attacker’s rate without the issue of
discrete turns distorting results. The continuous progression of time
results in a smooth increase in the probability that the attacker’s
reputation spread. Our choice for stochastic processes (over deter-
ministic) is because the agents we simulate are not deterministic.

The model’s fundamental behaviour is as follows: Attacker ac-
tions are attempted transactions with individual users. The attacker
is free to choose any victims, unconstrained by the network. These
actions can have a positive or negative polarity depending on if
they benefit the user (a deal) or harm them (a cheat). The attacker’s
primary objective is to perform as many cheats as possible.

Users use known transaction outcomes to determine the at-
tacker’s trustworthiness. This knowledge can also be shared with
others via pairwise communications. Users that distrust the attacker
will no longer accept transactions. Each attacker action and pair-
wise communication is a CTMC event. The simulation stops when
it reaches a state in which the attacker is sufficiently distrusted that
they can no longer act.

1The code can be found at https://github.com/Se-Si/reputation-lag/

3.1 Users
The system contains a static set of usersU. The 𝑖th user is denoted
as 𝑢𝑖 . They are the trustors of the system. Every user has a set of
messages𝑀𝑖 which is initially empty and which is a subset of the
complete set of messages in the networkM. Each message contains
information about a single transaction: the outcome, the victim and
the time of occurrence. Each user 𝑢𝑖 will use only its own set of
messages𝑀𝑖 to decide whether the attacker is trustworthy or not.
The subset of the messages with deal (cheat) as outcome is denoted
as𝑀deal

𝑖
(𝑀cheat

𝑖
).

Every user 𝑢𝑖 has a judgement function 𝛿𝑖 that takes in their set
of messages and returns a binary value to trust or not to trust. This
defines the attacker’s reputation from the perspective of 𝑢𝑖 . For
𝑢𝑖 , the decision to accept a transaction depends solely on 𝛿𝑖 . This
avoids confounding effects from other potential attacker vectors.

The judgement function 𝛿 applied by all users is the same:

𝛿𝑖 (𝑀𝑖) = 𝛿 (𝑀𝑖) = |𝑀cheat
𝑖 | − |𝑀deal

𝑖 | ≤ 𝜏 (1)

Where 𝜏 is a threshold set to 4 in our simulations.
There are two ways to interpret this threshold. It could denote a

preexisting degree of “tolerance" exhibited by each user. It can also
be interpreted as the good reputation that the attacker has built
prior to events captured in the simulation. Section 5.1.3 provides
further discussion on this interpretation.

Users have undirected, pairwise connections called “edges" in the
network. Every user has at least one edge connecting it to another
user. There are no self-edges. An edge denotes that there is proba-
bility that those two users communicate. After a communication,
they learn all information about the attacker from each other. In
other words,𝑀𝑖 ← 𝑀𝑖 ∪𝑀𝑗 and𝑀𝑗 ← 𝑀𝑖 ∪𝑀𝑗 .

The time intervals between pairs of events in a CTMC are expo-
nentially distributed with some constant event rate 𝑟 . As such, the
probability that two users 𝑢𝑖 and 𝑢 𝑗 communicate at a given time 𝑡
is exponentially distributed with constant rate 𝑟𝑖 𝑗 :

𝑃

(
𝑐𝑜𝑚𝑚(𝑖, 𝑗) at time 𝑡

)
= 𝑟𝑖 𝑗𝑒

−𝑟𝑖 𝑗 𝑡 (2)

where 𝑟𝑖 𝑗 = 1 if they are connected and 𝑟𝑖 𝑗 = 0 if not. We also
define the system rate as the total sum of rates:

𝑟𝑠𝑦𝑠 =
∑

𝑖, 𝑗 ∈U
𝑟𝑖 𝑗 ≈ 4000 (3)

where the edge rates are 1 and the number of edges is 3900 for
BA graphs and 4000 for CWS graphs as described in Section 3.3.

If, after a communication, 𝛿𝑖 (𝑀𝑖) is false (cheats minus deals
exceeds threshold 𝜏), the 𝑢𝑖 will reject any transaction attempt,
causing the attacker to waste that opportunity. It is possible for
such a user to learn new information from other users such that
they re-evaluate the attacker as trustworthy. If all users have gone
sour of the attacker and no new information is sufficient to change
anyone’s mind, we say the network is saturated. Upon the network
becoming saturated, the simulation stops, as the attacker can no
longer interact with any users.

Main Track AAMAS 2022, May 9–13, 2022, Online

1211

Properties of Reputation Lag Attack Strategies AAMAS ’22, May 9–13, 2022, Online

3.2 Attacker
The malicious attacker A may attempt to transact with any user
they wish, when given the opportunity to act. The attacker’s op-
portunities to act happen at random intervals, with some rate in a
continuous-time Markov chain. The probability that the attacker
has an opportunity to act at a given time 𝑡 is exponentially dis-
tributed with rate 𝑟A .

𝑃
(
𝑎𝑐𝑡𝑖𝑜𝑛 at time 𝑡

)
= 𝑟A𝑒

−𝑟A𝑡 (4)

For each of their turns, the attacker can attempt the following ac-
tions: deal, cheat or choose not to act (i.e. to just wait). The RLA has
been discussed previously inmarketplace contexts. The terms “deal"
and “cheat" reflect this. However, as we present a security-focused
analysis, we wish to avoid restricting the scope of the attacker to
that of a seller. Hence, “deal" and “cheat" simply represent some
positive or negative interaction with the users respectively. The
choices the attacker makes when given the opportunity to act com-
prise the attacker’s strategy. The attacker seeks to employ a strategy
which best manages their reputation to allow them to perform the
maximal cheats. This is achieved when each user is aware of the
same (relatively) small set of deals, but a different equal-sized set
of cheats. Therefore, the theoretical maximal cheat values for both
a single user 𝑢𝑖 and the entire system depend solely on the number
of deals, the judgement function threshold 𝜏 (as defined in Equation
3.1) and the size of the set of usersU:

𝑚𝑎𝑥 (|𝑀cheat
𝑖 |) =𝑚𝑎𝑥 (|𝑀deal

𝑖 |) + 𝜏 + 1 = |Mdeal | + 𝜏 + 1 (5)

𝑚𝑎𝑥 (|Mcheat |) =
|U |∑
𝑖=1

𝑚𝑎𝑥 (|𝑀cheat
𝑖 |) = |U| · (|Mdeal | + 𝜏 + 1) (6)

In all sections where the attacker performed deals, it was nec-
essary to cap the number of attempts the attacker had to cheat.
Once the attacker has used all their cheat attempts, the simulation
is stopped. Note that this value is distinct from the maximal cheats
𝑚𝑎𝑥 (|Mcheat |) defined in Equation 3.2. The chosen cheat cap was
80000 with smaller scale uncapped sub-tests being used to deter-
mine that, in reality, the attacker’s last successful cheat attempt
came far before their 80000𝑡ℎ attempt.

The cheat cap was a pragmatic decision to keep the run-times
of the simulation within a reasonable bound. When the network is
almost saturated, a number of communications is required to fully
saturate the network but almost no cheat attempts will be successful
in the meantime. This can lead to disproportionally long run-times
with little meaningful behaviour for very high rate attackers: a
vast number of attacker actions must be simulated per remaining
communication yet most if not all of these will be rejected. The
cheat cap prevents this.

3.3 Network
The networks in this model represent the communication struc-
ture of the users. For example, the network edges could represent
“friends" on an OSN, nearby nodes on an ad-hoc network or cor-
responding enterprises on a business network. The attacker’s in-
teractions are not bounded by the network. As such, they could
represent a common mutual “friend" on an OSN, a node in a central
location of an ad-hoc network or a common news source.

Figure 1: Number of successful cheats at various attacker
rates.

The user networks in this paper were randomly generated. Every
attacker was simulated formultiple runs, with the outcomes of these
runs being aggregated. Each run used a different network drawn
from a fixed set of networks, the networks are fixed to reduce noise.

The primary network model used to generate the user networks
was the Barabási-Albert (BA)model [1]. Thismodel is parameterised
by the total number of nodes 𝑛 and the number of neighbours𝑚
that each new node connects to as the network is grown. In this
case, 𝑛 = 400 and𝑚 = 10 resulting in 3900 edges. The networks
were generated using the NetworkX [6] Python package.

In Section 5.2.2, centrality metrics were compared on Connected
Watts-Strogatz networks [19]. This model is parameterised by the
total number of nodes 𝑛, the number of neighbours 𝑘 and rewiring
probability 𝑟𝑝 . Three sets of parameters were used. In all cases,
𝑛 = 400 and 𝑘 = 20 resulting in 4000 edges. However, three 𝑟𝑝
values were used: 0.001, 0.01 and 0.1. This was to cover the range
of usable 𝑟𝑝 values found by Watts and Strogatz [19].

4 REPUTATION LAG AND ATTACKER RATE
To demonstrate that the reputation lag attack is a vulnerability in a
particular system, it is sufficient to demonstrate that an attacker in
the lagged version of the system can perform cheat actions that an
attacker in the lag-free version cannot. In a lag-free system, all users
acquire new information instantly. For all users 𝑢𝑖 ∈ U,𝑀𝑖 =M.

The crucial attacker property here is their rate of action. This
dictates how frequently the attacker may attempt to transact with
the users and, as such, can be seen to dictate the “degree of lag".
Figure 1 was generated by an attacker that chooses random targets
and only cheats. It shows that their average success is proportional
to their rate. The red line denotes the maximal cheats that can be
achieved when no deals are performed. As defined in Equation 3.2,
𝑚𝑎𝑥 (|Mcheat |) = 2000 for our system where |U| = 400 and 𝜏 = 5.
(Note: an attacker who performs deals can exceed this value.)

The plot of the logarithm of the rate resembles a sigmoid function.
At low rates, the number of cheats is around that of a lag-free system.
Then, the attacker’s success begins rapidly increasing. The centre
of the sigmoid rests where the attack rate matches the system rate

Main Track AAMAS 2022, May 9–13, 2022, Online

1212

AAMAS ’22, May 9–13, 2022, Online S. Sirur and Tim Muller

Table 1: Difference in mean cheats between randomly deal-
ing attackers and the non-dealing attacker all at rate 107.

Deal Cap 4 16 64 256
Cheats Difference 4.05 15.86 64.22 255.95

(defined in Equation 3.1 as 𝑟𝑠𝑦𝑠 ≈ 4000). Eventually the increase
tapers, approaching the maximal value𝑚𝑎𝑥 (|Mcheat |).

5 ATTACKER STRATEGIES
In reality, it would be infeasible for the attacker to increase their ac-
tion rate arbitrarily. Two other key variables in attacker’s behaviour
are their choice of action and choice of user (if the chosen action is
a deal or cheat). In this section, we explore how these remaining
two factors impact the success of the attacker and how the attacker
might use them to their advantage.

5.1 Choice of Attacker Action
At each opportunity, the attacker must choose to perform an action
or to wait. The potential actions are to deal or cheat an arbitrary
user. That user may refuse to interact with the attacker, in which
case no action is recorded. First, we explore the impact of including
a limited number of randomly distributed deal actions in the at-
tacker’s strategy, showing that it increases the number of cheats the
attacker successfully performs. Next, we investigate the attacker’s
success if they randomly wait between deals and cheats. Finally, we
discuss the importance of the order of these behaviours. We show
that an attacker which attempts all of their deals then waits for
some time before performing cheats will perform optimally.

5.1.1 Random Deals. Here, we discuss the effect of randomly at-
tempting deals in addition to cheats. A collection of 32 attackers of
different rates which randomly perform deal and cheat messages
were simulated. For each attacker, a cap was placed on the number
of deals they could attempt. This was varied by factors of 4 from
4 to 256. The rate was varied by factors of 10 from 1 to 107. First,
we note that Figure 2 shows that the rate has the biggest impact on
the success of the attackers. However, it can also be seen that the
number of cheats performed at each rate increases with the number
of deals the attacker may attempt.

A vital question is that of how much better the dealing attackers
did in comparison to the non-dealing attacker. Table 1 illustrates
the difference in mean cheats between a dealing attacker and a
non-dealing attacker for each deal cap (at rate 107). From Table 1,
it is clear that attacker is only performing a single additional cheat
for each deal that it performs. This is expected if there were no
reputation lag, meaning mixing deals amongst cheats is ineffective
in combination with the reputation lag attack.

Unsuccessful attempts to cheat made by the attacker are shown
in Figure 3. The number of rejected cheats varies only very slightly
with the deal cap. This is likely because the attacker only gains
one additional cheat for each deal, allowing them to be just as
unsuccessful otherwise. Further evidence for this is discussed in
sections 5.1.2 and 5.1.3.

Figure 2: Success of unordered attackers at various rates and
deal caps.

Figure 3: Unsuccessful cheat attempts of unordered attack-
ers at various rates and deal caps.

Figure 4: Success of non-waiting versus short waiting un-
ordered attackers at various rates and deal caps.

Main Track AAMAS 2022, May 9–13, 2022, Online

1213

Properties of Reputation Lag Attack Strategies AAMAS ’22, May 9–13, 2022, Online

Figure 5: Success of short waiting versus long waiting un-
ordered attackers at various rates and deal caps.

Figure 6: Success of unordered versus ordered non-waiting
attackers at various rates and deal caps.

Figure 7: Success of non-waiting versus short waiting or-
dered attackers at various rates and deal caps.

5.1.2 Waiting. Attackers who perform deals out-perform attackers
who do not but are also rejected often with high rate attackers con-
sistently reaching the cheat cap (Figure 3). Table 1 demonstrates that
these attackers only gain a single cheat per dealdue to insufficient
spreading of the attacker’s deals.

Reputation spread can work in favor of the attacker, if the rep-
utation is mostly positive. While the attacker wishes to avoid the
spread of cheat messages, they wish for deal messages to spread as
much as possible. Well-spread deals provide the greatest number of
opportunities for subsequent cheats.

The attacker may allow their deals to spread more effectively
by waiting. By intentionally not taking opportunities to act, the
attacker allows their good reputation to spread. Here, we investigate
the impact of randomly waiting whilst continuing to randomly deal
and cheat. We do so by simulating 48 attackers. Half of the attackers
are capped at 4 dealswhilst the other half are capped at 64 deals. The
attacker rates vary from 100 to 107 by a factor of 10. The omission
of the rate 1 and rate 10 attackers is due to prohibitive simulation
run-times when waiting. Similarly, half the attackers can wait for a
total duration of 103 time steps and the other can wait for a total
duration of 104 time steps.

Long-duration waiting attackers appear to have a small but con-
sistent decrease in success compared to short-duration waiting
attackers. The above findings combined with the small, directly-
proportional constant improvement seen in Section 5.1.1 demon-
strate that performing deal amongst cheats provides little benefit to
the attacker. In the event that the attacker does not wait, each deal
provides only one additional cheat. When the attacker does wait,
their performance simply worsens.

These are reasonable outcomes. deals have the most impact when
each deal is known by many users and each cheat is known by few.
By mixing the performance of deals with that of cheats, the attacker
is effectively nullifying their primary benefit. In Section 5.1.3, we
explore a strategy that takes advantage of these facts to construct
a superior strategy with respect to when the attacker chooses to
deal, cheat or wait.

5.1.3 Ordering. Above, we demonstrated that, on average, it is
somewhat beneficial to add some random deals to the attacker’s
behaviour but that it is detrimental to randomly wait. Here, we
investigate the impact that the order of these actions have on the
attacker’s success.

Given a finite, constant number of deals present in the system,
the attacker can only perform the maximum possible number of
cheats if each user is aware of every deal in the system but only the
cheats that resulted from their own transactions with the attacker.

For the attacker to guarantee these conditions, the deals it per-
forms must spread completely through the system before any cheats
do. A clear limitation of the randomly attackers introduced in 5.1.2
is that waiting entailed spreading cheats in addition to deals.

To ensure that waiting only spreads deals, the attacker can act
as follows: perform all possible deals, wait for some time and then
begin attempting cheats. We refer to this strategy as ordering. The
superiority of this strategy (under certain basic assumptions) has
been shown formally [16]. We attempt to empirically investigate
the quantitative impact of ordering in terms of the attacker’s deal
cap and their total waiting duration.

Main Track AAMAS 2022, May 9–13, 2022, Online

1214

AAMAS ’22, May 9–13, 2022, Online S. Sirur and Tim Muller

First, we compare unordered and ordered attackers that do deal
but do not wait in Figures 6. Next, we compare ordered attackers
that do not wait with ordered attackers that do wait for a short
duration (103 time steps) in Figure 7. Finally, we compare ordered
attackers that wait for a short duration with those that wait for a
long duration (104 time steps) in Figure 8.

Figures 6-8 demonstrate the superiority of ordering. With order-
ing, attackers who wait outperform non-waiting attackers. We note
that, for the fastest and slowest attackers, the difference between
long waiting times and short waiting times is minimal with the
biggest effect being seen at rates 104 and 105. Also, the markedly
increased success of the rate 105 attacker. The large divergence in
this attacker’s performance will be discussed in Section 5.1.4

5.1.4 Optimal Waiting Times. We assert that the reason for this
large increase at rates 104 and 105 in Figure 8 is a result of two
phenomena. Firstly, the the attacker must wait a sufficiently long
time for deals to spread around the network. Secondly, the attacker
must be sufficiently fast to cheat the users before these cheats spread
around the network. Attackers with rate less than 104 are too slow
and their bad reputation outpaces their ability to cheat. On the
other hand, the attackers with rate greater than 105 do not wait a
sufficiently long time due to the waiting period being relative to
the attacker’s rate rather than the system rate.

In Figure 9, we demonstrate that the success of a sufficiently fast
attacker who waits long enough will achieve the maximal number
of cheats for their deal cap of 64. As defined in 3.2, the maximal
value here will be 27600 (as indicated by the red line).

We offer the following explanation. As the attacker performs all
of their deals before waiting, they only need to wait long enough
for the last deal to spread to guarantee that, on average, all deals
are spread. In the simulation, the mean time for a single deal to
spread throughout the system was found to be 0.835, with a 10th

percentile of 0.674 and a 90th percentile of 1.000.
Given that the mean is very close to 1 time step, the attacker need

only wait around 1 time step for the deals to spread. Furthermore,
the attacker rate defines the number of attacks, on average, that an
attacker can perform in 1 time step. As seen in Figure 9, it is only
once each attacker waits at least 1 time step worth of opportunities
that they begin to approach the maximal cheats.

These results evidence three key points. It demonstrates the
attacker’s rate to be their most crucial asset. Secondly, it shows
that efficient communication in a social network (model) is only a
benefit against a sufficiently slow attacker. Finally, it highlights the
reputation lag attack as a malicious exit strategy.

5.2 Choice of User/Victim
The attacker attempts each transaction with a specified user. The
chosen user impacts the outcome of current and future attempts.
Attempting to transact with a mistrustful user effectively wastes
a turn. Cheating talkative users risks spreading cheats across the
network faster than cheating quiet users.

Here, we explore the impact of user choice strategies. The fol-
lowing attackers do not deal or wait. The strategies in Section 5.2.1
depend only on centrality as defined in Equation 5.2.1. The strategy
in section 5.2.3 depends only on the attacker’s knowledge of user
trust states.

Table 2: Entropy of different centralities.

Flat DC SPBC CC EC

5.991 5.795 5.806 5.988 5.793

5.2.1 Network Centrality Metrics. A user’s network position affects
how it spreads information. Users with many connections may con-
tribute more to spreading. The attacker would avoid cheating such
users. If centralities accurately measure a user’s impact on spread-
ing, an attacker would deal with central nodes and cheat less central
nodes. We explore four well-known centrality measures: degree
centrality (𝐷𝐶), eigenvector centrality (𝐸𝐶), closeness centrality
(𝐶𝐶) and betweenness centrality (𝑆𝑃𝐵𝐶). We also include 𝑓 𝑙𝑎𝑡 , the
Section 4 attacker who cheats users at random. The centralities are
defined as follows:

(1) Degree Centrality 𝐷𝐶: The degree centrality of of 𝑢𝑖 is the
the number of edges connected to 𝑢𝑖 : 𝐷𝐶 (𝑢𝑖) = 𝑑𝑒𝑔(𝑢𝑖).

(2) Eigenvector Centrality 𝐸𝐶: Similar to 𝐷𝐶 but each edge is
weighted by the 𝐸𝐶 of the node that it is connected to. If v is
the leading eigenvector of the network’s adjacency matrix
𝐴 then: 𝐸𝐶 (𝑢𝑖) = v𝑖 .

(3) Shortest-Path Betweenness Centrality 𝑆𝑃𝐵𝐶 : This measures
the proportion of shortest paths running through a user. If
there are 𝑔𝑠,𝑡 shortest paths between two users 𝑢𝑠 and 𝑢𝑡
and 𝑔𝑖𝑠,𝑡 of those paths run through user𝑢𝑖 then: 𝑆𝑃𝐵𝐶 (𝑢𝑖) =∑
𝑠,𝑡 ∈U

𝑔𝑖𝑠,𝑡
𝑔𝑠,𝑡

.
(4) Closeness Centrality This is the reciprocal of the mean dis-

tance from user 𝑢𝑖 to every other user. If 𝑑 (𝑢 𝑗 , 𝑢𝑖) is the dis-
tance fromuser𝑢𝑖 to user𝑢 𝑗 then:𝐶𝐶 (𝑢𝑖) = 1∑

𝑢𝑗 ∈(U\𝑢𝑖) 𝑑 (𝑢 𝑗 ,𝑢𝑖) .

The attacker wishes to prioritise less central users for cheats.
If, for some centrality measure 𝐶𝑀 , 𝐶𝑀∗ (𝑢𝑖) = 1

𝐶𝑀 (𝑢𝑖) , then the
probability of choosing 𝑢𝑖 is:

𝑃 (𝑣𝑖𝑐𝑡𝑖𝑚 = 𝑢𝑖) =
𝐶𝑀∗ (𝑢𝑖)∑

𝑢 𝑗 ∈U 𝐶𝑀∗ (𝑢𝑖)
(7)

This preserves the pairwise relative probabilities of the users
(e.g. a user with half the centrality of another will be twice as likely
to be chosen).

In Figure 10, it can be seen that 𝐷𝐶 and 𝐸𝐶 have similar per-
formance and slightly but consistently outperform 𝑓 𝑙𝑎𝑡 , 𝑆𝑃𝐵𝐶 and
𝐶𝐶 as predicted by Borgatti [3]. In Figure 11, the previous pattern
begins breaking down at 103. Eventually, the dominant and inferior
metrics swap until the highest rate where all attackers are equal.
Table 2 shows the Shannon entropy of each centrality.

The Shannon entropy is a measure of the “flatness" of a distri-
bution with 𝑓 𝑙𝑎𝑡 having the highest entropy. The entropy values
are similar but those of the high rate attackers are in the same
order as their success. This implies that “flatness" is a good pre-
dictor of success at high rates. At rates 10, 102 and 103, predicting
the spread is beneficial. As the rate increases, users cannot spread
the cheats fast enough. Yet, attackers with skewed user weight-
ings will blindly keep cheating some users more often, leading to
unnecessary rejections.

Main Track AAMAS 2022, May 9–13, 2022, Online

1215

Properties of Reputation Lag Attack Strategies AAMAS ’22, May 9–13, 2022, Online

Figure 8: Success of short waiting versus long waiting or-
dered attackers at various rates and deal caps.

Figure 9: Success of very high rate ordered attackers with
extremely long waiting times with deal cap of 64.

Figure 10: Success of slow attackers with different victim
centralities.

Figure 11: Success of fast attackers with different victim cen-
tralities.

Figure 12: Success of fast attackers with different victim cen-
tralities on a CWS network with 𝑟𝑝 = 0.01.

5.2.2 Network Structure. A sample of the results is shown in Figure
12. Effectively no difference was seen between any of the attackers
on the Connected-Watts-Strogatz (CWS) networks bar the 𝑆𝑃𝐵𝐶
attacker doing marginally worse. This demonstrates that the ad-
vantages gained by the centrality-weighted attackers is lost when
attacking a CWS network.

5.2.3 Clairvoyance: Access to User Trust States. The attacker is lim-
ited by their unawareness of user trust states. The intractability of
predicting the deals and cheats known by each user means that the
attacker can’t know which users will accept or reject an attempted
transaction. Here, we study an attacker with “clairvoyance": direct
access to users’ trust states before they act.

For example, clairvoyance is relevant to systems where users
openly post their trust state (i.e. their beliefs about the attacker);
where the attacker can eavesdrop on network edges; or where
they can force users to reveal their trust state before choosing a
target. Various mechanisms could enable such cases. The attacker
may have (some) control over the network or they may be on a
platformwhich openly displays their current trust rating (e.g. online
marketplaces). If the attacker is a news source, they may receive
feedback directly from consumers regardless of how consumers

Main Track AAMAS 2022, May 9–13, 2022, Online

1216

AAMAS ’22, May 9–13, 2022, Online S. Sirur and Tim Muller

Figure 13: Cheats for a normal versus a clairvoyant attacker.

share knowledge amongst themselves. The clairvoyant attacker
also provides a theoretical upper-bound on the attacker’s success
with respect to their ability to estimate or predict user knowledge.

Figure 13 demonstrates that clairvoyance primarily benefits
medium-rate attackers. Fast attackers do not benefit because they
already act very quickly relative to user sharing. Despite being
rejected far more than they are accepted (in the order of 105: Figure
3), they eventually perform almost the maximal number of cheats
as their bad reputation has no time to spread.

6 DISCUSSION
In this paper, we studied an attacker attempting to exploit the lag
present in a networked reputation system. Real-world trust systems
are conceptually rich and reputation lag effects can become con-
flated with other exploitable artefacts. The model was constructed
to avoid confounding effects (e.g. value imbalance attacks due to
non-unitary interactions or playbook attacks due to reputation
decay). This ensured that reputation lag was the only angle for
an attacker Thus, we focus on timing as the main commonality
between the relevant example systems. Furthermore, centralised
reputation systems (e.g. marketplaces) are well-studied whilst we
aim to capture distributed systems such as P2P gossip protocols,
ad-hoc networks (MANETs, VANETs), business networks, news
outlets and OSNs.

First, we focused on the attacker’s rate. The attacker’s rate was
the dominant factor in their success. A sufficiently high rate was
also necessary for other strategies to succeed. Second, we stud-
ied the impact of performing deals (i.e. good behaviour) and of
waiting. Randomly performing deals did not provide any unfair
benefit and randomly waiting in addition to this actually worsened
the attacker’s success, giving users more time to spread known
cheats. We then showed that a “deal then wait then cheat" ordering
to attacker actions outperforms all previous strategies. Ordering
ensures that only positive reputation spreads in the waiting period.
Also, if a sufficiently fast attacker waits for the mean duration of
just a single deal to spread through the network, they approach the
maximal number of cheats.

Third, we investigated the efficacy of using network centrality
measures to rank users’ impact on information spreading. This

attacker would focus their cheats on low ranked users. We found
that, while the ranking does improve the attackers success, it is
a somewhat marginal improvement, likely due to the lack of cen-
trality measures that correctly capture this model’s infection-style
spreading. This strategy also relies on the network structure being
suitably non-homogeneous. Otherwise, the centrality measures fail
to give distinct values for the users.

Finally, we tested an attacker with clairvoyance: the ability to
access users’ trust states before acting. This was of a modest but
clear benefit to medium rate attackers as they are the most likely
to suffer due to repeated rejections.

Generally, this model shows the attack to be feasible. The model
is abstract so we must interpret the findings realistically. In a sys-
tem with high-speed communications, it may be unrealistic for the
attacker to act at 105 or 107 times the speed of other parties. How-
ever, in systems where communications typically occur in the order
of hours, days or weeks, it is certainly possible. (Indeed, monitor-
ing for such suspicious activity levels offers a potential mitigation
strategy.)

We consider the clairvoyant attacker for theoretical and practical
reasons. Theoretically, it demonstrates the impact of such knowl-
edge on the attacker’s success and provides an upper bound on the
efficacy of reputation lag attacks. Practically, some systems allow
the attacker to directly access users’ knowledge without the need
for prediction. For example, in transparent systems or compromised
systems.

We simulated distributed reputation mechanisms (e.g. some
forms of social network, ad-hoc networks or MANETs). While
reputation lag exists in centralised systems (e.g. eBay or Amazon),
our results may not directly apply. There is potential for a compar-
ative study via simulation. This work does not investigate explicit
mitigation methods against the attack or any particular strategies.
This is a vital area of further work.

Our study aims to focus on the reputation lag attack alone. Other
attacks include the value imbalance attack, where attackers do
cheap deals and expensive cheats. A richer system may allow us to
study the interplay between different attacks and is a natural next
step after we understand the reputation lag attack.

7 CONCLUSION
The reputation lag attack is viable and effective on reputation sys-
tems. Its efficacy is most impacted by attacker action rate relative to
the lag period. Reducing the lag period or limiting transaction rate
can mitigate the attack. The reputation lag attack is most effective
as an exit strategy. Centrality-based victim choice strategies have a
minor impact on more homogeneous networks. Access to current
user trust states is of benefit to medium-rate attackers.

REFERENCES
[1] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex

networks. Reviews of modern physics 74, 1 (2002), 47.
[2] Phillip Bonacich. 1987. Power and centrality: A family of measures. American

journal of sociology 92, 5 (1987), 1170–1182.
[3] Stephen P Borgatti. 2005. Centrality and network flow. Social networks 27, 1

(2005), 55–71.
[4] Linton C Freeman. 1977. A set of measures of centrality based on betweenness.

Sociometry (1977), 35–41.
[5] Linton C. Freeman. 1978. Centrality in social networks conceptual clarification.

Social Networks 1, 3 (1978), 215–239. https://doi.org/10.1016/0378-8733(78)90021-

Main Track AAMAS 2022, May 9–13, 2022, Online

1217

https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1016/0378-8733(78)90021-7

Properties of Reputation Lag Attack Strategies AAMAS ’22, May 9–13, 2022, Online

7
[6] Aric A. Hagberg, Daniel A. Schult, and Pieter J. Swart. 2008. Exploring Network

Structure, Dynamics, and Function using NetworkX. In Proceedings of the 7th
Python in Science Conference, Gaël Varoquaux, Travis Vaught, and Jarrod Millman
(Eds.). Pasadena, CA USA, 11 – 15.

[7] Audun Jøsang and Jennifer Golbeck. 2009. Challenges for robust trust and
reputation systems. In Proceedings of the 5th International Workshop on Security
and Trust Management (SMT 2009), Saint Malo, France, Vol. 5. Citeseer.

[8] Reid Kerr and Robin Cohen. 2006. Modeling Trust Using Transactional, Numerical
Units. In Proceedings of the 2006 International Conference on Privacy, Security and
Trust: Bridge the Gap Between PST Technologies and Business Services (Markham,
Ontario, Canada) (PST ’06). Association for Computing Machinery, New York,
NY, USA, Article 21, 11 pages. https://doi.org/10.1145/1501434.1501460

[9] Reid Kerr and Robin Cohen. 2009. Smart cheaters do prosper: defeating trust
and reputation systems. In Proceedings of The 8th International Conference on
Autonomous Agents and Multiagent Systems-Volume 2. 993–1000.

[10] Tim Muller, Yang Liu, Sjouke Mauw, and Jie Zhang. 2014. On robustness of trust
systems. In IFIP International Conference on Trust Management. Springer, 44–60.

[11] Mark Newman. 2018. Networks. Oxford university press.
[12] Francisco Aparecido Rodrigues. 2019. Network centrality: an introduction. In

A mathematical modeling approach from nonlinear dynamics to complex systems.

Springer, 177–196.
[13] Johannes Sänger and Günther Pernul. 2016. TRIVIA: visualizing reputation

profiles to detect malicious sellers in electronic marketplaces. Journal of Trust
Management 3, 1 (2016), 1–22.

[14] Carl Shapiro. 1982. Consumer information, product quality, and seller reputation.
The Bell Journal of Economics (1982), 20–35.

[15] Carl Shapiro. 1983. Premiums for high quality products as returns to reputations.
The quarterly journal of economics 98, 4 (1983), 659–679.

[16] Sean Sirur and Tim Muller. 2019. The Reputation Lag Attack. In Trust Manage-
ment XIII, Weizhi Meng, Piotr Cofta, Christian Damsgaard Jensen, and Tyrone
Grandison (Eds.). Springer International Publishing, Cham, 39–56.

[17] Nadav Voloch, Ehud Gudes, and Nurit Gal-Oz. 2021. Analyzing the Robustness of
a Comprehensive Trust-Based Model for Online Social Networks Against Privacy
Attacks. In Complex Networks & Their Applications IX, Rosa M. Benito, Chantal
Cherifi, Hocine Cherifi, Esteban Moro, Luis Mateus Rocha, and Marta Sales-Pardo
(Eds.). Springer International Publishing, Cham, 641–650.

[18] Stanley Wasserman and Katherine Faust. 1994. Social network analysis : methods
and applications [electronic resource]. Cambridge.

[19] Duncan J Watts and Steven H Strogatz. 1998. Collective dynamics of ‘small-
world’networks. nature 393, 6684 (1998), 440–442.

Main Track AAMAS 2022, May 9–13, 2022, Online

1218

https://doi.org/10.1016/0378-8733(78)90021-7
https://doi.org/10.1145/1501434.1501460

	Abstract
	1 Introduction
	2 Related Work
	3 Model Specification
	3.1 Users
	3.2 Attacker
	3.3 Network

	4 Reputation Lag and Attacker Rate
	5 Attacker Strategies
	5.1 Choice of Attacker Action
	5.2 Choice of User/Victim

	6 Discussion
	7 Conclusion
	References

 HistoryItem_V1
 AddMaskingTape

 Range: all pages
 Mask co-ordinates: Horizontal, vertical offset 42.74, 719.92 Width 522.14 Height 18.44 points
 Origin: bottom left

 1
 0
 BL

 2
 AllDoc
 2

 CurrentAVDoc

 42.7436 719.9225 522.1424 18.4384

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 8
 9
 8
 9

 1

 HistoryList_V1
 qi2base

