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ABSTRACT

The trustors in a reputation system share trust-relevant informa-
tion about trustees; their reputation. The presence of lag in the
sharing mechanism can be exploited by malicious trustees to per-
form otherwise impermissible additional bad actions. This is the
reputation lag attack. In this paper, we use simulations to explore
properties of the reputation lag attack and strategies which im-
prove the attacker’s success. We demonstrate the following key
findings: Attackers in lagged systems clearly outperform attackers
in lag-free systems. The attacker’s success is proportional to the
rate at which they can interact with victims, plateauing at a maxi-
mum. Attackers who wait for their good reputation to disseminate
outperform those who do not. Attackers who perform only good
actions, wait for dissemination and then perform only bad actions
outperform attackers who do not follow this ordering. This implies
reputation-lag attacks are effective exit strategies. In typical social
networks, smart attackers may cheat users with a low centrality,
but in a homogeneous network, this strategy is ineffectual. Our
findings help allow developers of reputation systems defend against
a class of attacks that has not yet received a great deal of attention.
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1 INTRODUCTION

A trustor interacting with a trustee whilst uncertain of their coop-
eration can be considered to be trusting. Trust raises the risk of
interacting with a malicious party. Trustors can reduce their indi-
vidual uncertainty and risk by sharing information about trustees.
We consider this sharing of information to be an instance of a rep-
utation mechanism. The reputation of a trustee from each trustor’s
perspective is comprised of the information each trustor knows
about that trustee.

Reputation systems may possess a weakness in the form of lag. A
source of lag is the time delay present in user-to-user communica-
tion. As a result of such delays, some users may be unaware of new
information when deciding (not) to trust. A malicious trustee may
attempt to actively exploit this lag. This is known as a reputation
lag attack.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
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We use a simulated multi-agent network to model a reputation
system in which users share information about an attacker. This
attacker attempts positive and negative transactions with individual
users, aiming to maximise how many negative transactions they
successfully perform. Reputation is modelled by users sharing the
outcomes of these transactions with each other and then using that
knowledge to decide whether or not to trust the attacker.

This paper discusses factors and strategies which benefit the
attacker. We investigate the the attacker’s choice of action: the
attacker can deal, cheat or wait at each opportunity. We show
the superiority of attacker action "ordering" (perform all planned
deals, wait for the news to spread and then begin cheating). This
strategy’s success highlights the reputation lag attack a malicious
exit strategy. We study the effect of the attacker avoiding users with
high centrality values to minimise spreading cheats and the impact
of network structure on said strategy. We study an attacker who
accesses user trust states before attempting transactions, allowing
them to avoid distrustful users.

Our simulation models users as continuous-time stochastic pro-
cesses, that communicate with each other as defined by a network,
akin to a social network. The attacker is offered opportunities to
act according to a continuous-time stochastic process too, but the
attacker’s choices are determined by the attack strategy. This al-
lows us to compare impact of: how often the attacker can act, the
network topology, and the attacker’s strategy.

We contribute novel insights, in addition to quantifying known
qualitative relations. For the former: the impact of using centralities
to target victims; the relationships between strategies (e.g. the im-
pact of rate on waiting duration and centrality targeting); and the
benefit to the attacker of knowing user trust states before commit-
ting to an action. For the latter: the sigmoid relationship between
the log of the attack rate and the number of cheats, with the sys-
tem rate being the midpoint of the sigmoid; the linear relationship
between successful deals and cheats, with the gradient of the line
increasing with ordering and waiting; and the success of the RLA
as an exit strategy.

2 RELATED WORK

The reputation lag attack (RLA) was first identified in security
literature by Kerr and Cohen [8] who studied it amongst other trust
attacks in a simulated marketplace [9]. However, their informal
definition of the attack was restrictive, lessening its apparent impact.
Almost all the other attacks benefitted somewhat from reputation
lag but this was not attributed to the RLA. The attack remained
largely unstudied after this, presented only in some trust attack
surveys [7, 10].

Sénger & Pernul tested a visualisation-based detector against
the RLA [13]. They identified two signs of the attack: an increase
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in the number of sales and an increase in the time to rate transac-
tions due to withheld deliveries. They visualise the “not yet rated"
transactions to highlight unusual behaviour. Their system assumes
the attacker remains in the network whereas we use the RLA more
as an exit strategy.

A recent work by Voloch, Gudes & Gal-Oz tested a proposed
privacy-defending trust model against a trust-delay based attack
[17]. In a simulated online social network (OSN), a subgraph of
malicious users try to present a trustworthy front to trick a specific
user into breaking their privacy. In this defensive model, the size of
the subgraph necessary for a successful attack was infeasibly large.

Economic analyses of reputation lag vulnerabilities exist. Shapiro
shows the benefit of buyer knowledge lag for malicious sellers:
lagged optimal product quality is lower than under perfect informa-
tion [14]. He also shows that sellers may seek short-term gains by
exploiting buyers’ lack of foresight, unless compensated by selling
high quality items above cost [15].

A cunning attacker may behave well to users who contribute
greatly to spreading and badly to users who do not. Centralities
provide a metric for the structural importance of a node [18]. Highly
central nodes should contribute more to spreading [3].

Various centrality measures exist, each calculated from differ-
ent properties of the network [12]. In particular, there are four
well-known centrality measures: degree centrality (DC) [11], eigen-
vector centrality (EC) [2, 11], closeness centrality (CC) [5, 11] and
betweenness centrality (SPBC) [4, 11]. Borgatti argues that, while
each centrality predicts some form of “spreading on networks",
none predict a node’s contribution to “infection” or “gossip” style
spreading [3] of the sort present in our model.

3 MODEL SPECIFICATION

In this paper, we study a simulated model of the reputation lag at-
tack. The foundation of the model is a stochastic, continuous-time
Markov chain (CTMC) implemented in Python 1. The model con-
sists of a multi-agent network of users and a malicious reputation
lag attacker. The rationale behind using a continuous-time model
is that timing is extremely important for modelling reputation lag,
and it allows us to increase the attacker’s rate without the issue of
discrete turns distorting results. The continuous progression of time
results in a smooth increase in the probability that the attacker’s
reputation spread. Our choice for stochastic processes (over deter-
ministic) is because the agents we simulate are not deterministic.

The model’s fundamental behaviour is as follows: Attacker ac-
tions are attempted transactions with individual users. The attacker
is free to choose any victims, unconstrained by the network. These
actions can have a positive or negative polarity depending on if
they benefit the user (a deal) or harm them (a cheat). The attacker’s
primary objective is to perform as many cheats as possible.

Users use known transaction outcomes to determine the at-
tacker’s trustworthiness. This knowledge can also be shared with
others via pairwise communications. Users that distrust the attacker
will no longer accept transactions. Each attacker action and pair-
wise communication is a CTMC event. The simulation stops when
it reaches a state in which the attacker is sufficiently distrusted that
they can no longer act.

IThe code can be found at https://github.com/Se-Si/reputation-lag/
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3.1 Users

The system contains a static set of users U. The i" user is denoted
as u;. They are the trustors of the system. Every user has a set of
messages M; which is initially empty and which is a subset of the
complete set of messages in the network M. Each message contains
information about a single transaction: the outcome, the victim and
the time of occurrence. Each user u; will use only its own set of
messages M; to decide whether the attacker is trustworthy or not.
The subset of the messages with deal (cheat) as outcome is denoted
as Mideal (Micheat)'

Every user u; has a judgement function §; that takes in their set
of messages and returns a binary value to trust or not to trust. This
defines the attacker’s reputation from the perspective of u;. For
u;, the decision to accept a transaction depends solely on ;. This
avoids confounding effects from other potential attacker vectors.

The judgement function & applied by all users is the same:

8i(My) = 8(M;) = [MEe| — | Mol < ¢ (1)

Where 7 is a threshold set to 4 in our simulations.

There are two ways to interpret this threshold. It could denote a
preexisting degree of “tolerance” exhibited by each user. It can also
be interpreted as the good reputation that the attacker has built
prior to events captured in the simulation. Section 5.1.3 provides
further discussion on this interpretation.

Users have undirected, pairwise connections called “edges" in the
network. Every user has at least one edge connecting it to another
user. There are no self-edges. An edge denotes that there is proba-
bility that those two users communicate. After a communication,
they learn all information about the attacker from each other. In
other words, M; < M; UM; and M; < M; U M;.

The time intervals between pairs of events in a CTMC are expo-
nentially distributed with some constant event rate r. As such, the
probability that two users u; and u; communicate at a given time ¢
is exponentially distributed with constant rate r;;:

P(comm(i, j) at time t) =rije it (2)

where r;; = 1 if they are connected and r;; = 0 if not. We also
define the system rate as the total sum of rates:
3

Feys = D, Tij ~ 4000
i,jeU

where the edge rates are 1 and the number of edges is 3900 for
BA graphs and 4000 for CWS graphs as described in Section 3.3.

If, after a communication, §; (M;) is false (cheats minus deals
exceeds threshold 7), the u; will reject any transaction attempt,
causing the attacker to waste that opportunity. It is possible for
such a user to learn new information from other users such that
they re-evaluate the attacker as trustworthy. If all users have gone
sour of the attacker and no new information is sufficient to change
anyone’s mind, we say the network is saturated. Upon the network
becoming saturated, the simulation stops, as the attacker can no
longer interact with any users.
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3.2 Attacker

The malicious attacker A may attempt to transact with any user
they wish, when given the opportunity to act. The attacker’s op-
portunities to act happen at random intervals, with some rate in a
continuous-time Markov chain. The probability that the attacker
has an opportunity to act at a given time t is exponentially dis-
tributed with rate r 4.

©

For each of their turns, the attacker can attempt the following ac-
tions: deal, cheat or choose not to act (i.e. to just wait). The RLA has
been discussed previously in marketplace contexts. The terms “deal"
and “cheat" reflect this. However, as we present a security-focused
analysis, we wish to avoid restricting the scope of the attacker to
that of a seller. Hence, “deal" and “cheat" simply represent some
positive or negative interaction with the users respectively. The
choices the attacker makes when given the opportunity to act com-
prise the attacker’s strategy. The attacker seeks to employ a strategy
which best manages their reputation to allow them to perform the
maximal cheats. This is achieved when each user is aware of the
same (relatively) small set of deals, but a different equal-sized set
of cheats. Therefore, the theoretical maximal cheat values for both
a single user u; and the entire system depend solely on the number
of deals, the judgement function threshold 7 (as defined in Equation
3.1) and the size of the set of users U:

P(action at time t) = rge A"

max(IM)) = max(IMEN) + 7+ 1= M%) 1241 (5)

U]
max(IMe) = 3" max(IME)) = U] - (M@ +7+1) (6)
i=1

In all sections where the attacker performed deals, it was nec-
essary to cap the number of attempts the attacker had to cheat.
Once the attacker has used all their cheat attempts, the simulation
is stopped. Note that this value is distinct from the maximal cheats
max(|M¢heat|) defined in Equation 3.2. The chosen cheat cap was
80000 with smaller scale uncapped sub-tests being used to deter-
mine that, in reality, the attacker’s last successful cheat attempt
came far before their 80000/ attempt.

The cheat cap was a pragmatic decision to keep the run-times
of the simulation within a reasonable bound. When the network is
almost saturated, a number of communications is required to fully
saturate the network but almost no cheat attempts will be successful
in the meantime. This can lead to disproportionally long run-times
with little meaningful behaviour for very high rate attackers: a
vast number of attacker actions must be simulated per remaining
communication yet most if not all of these will be rejected. The
cheat cap prevents this.

3.3 Network

The networks in this model represent the communication struc-
ture of the users. For example, the network edges could represent
“friends" on an OSN, nearby nodes on an ad-hoc network or cor-
responding enterprises on a business network. The attacker’s in-
teractions are not bounded by the network. As such, they could
represent a common mutual “friend" on an OSN, a node in a central
location of an ad-hoc network or a common news source.
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Figure 1: Number of successful cheats at various attacker
rates.

The user networks in this paper were randomly generated. Every
attacker was simulated for multiple runs, with the outcomes of these
runs being aggregated. Each run used a different network drawn
from a fixed set of networks, the networks are fixed to reduce noise.

The primary network model used to generate the user networks
was the Barabasi-Albert (BA) model [1]. This model is parameterised
by the total number of nodes n and the number of neighbours m
that each new node connects to as the network is grown. In this
case, n = 400 and m = 10 resulting in 3900 edges. The networks
were generated using the NetworkX [6] Python package.

In Section 5.2.2, centrality metrics were compared on Connected
Watts-Strogatz networks [19]. This model is parameterised by the
total number of nodes n, the number of neighbours k and rewiring
probability rp. Three sets of parameters were used. In all cases,
n = 400 and k = 20 resulting in 4000 edges. However, three rp
values were used: 0.001, 0.01 and 0.1. This was to cover the range
of usable rp values found by Watts and Strogatz [19].

4 REPUTATION LAG AND ATTACKER RATE

To demonstrate that the reputation lag attack is a vulnerability in a
particular system, it is sufficient to demonstrate that an attacker in
the lagged version of the system can perform cheat actions that an
attacker in the lag-free version cannot. In a lag-free system, all users
acquire new information instantly. For all users u; € U, M; = M.

The crucial attacker property here is their rate of action. This
dictates how frequently the attacker may attempt to transact with
the users and, as such, can be seen to dictate the “degree of lag".
Figure 1 was generated by an attacker that chooses random targets
and only cheats. It shows that their average success is proportional
to their rate. The red line denotes the maximal cheats that can be
achieved when no deals are performed. As defined in Equation 3.2,
max (| M¢heat]) = 2000 for our system where |U| = 400 and 7 = 5.
(Note: an attacker who performs deals can exceed this value.)

The plot of the logarithm of the rate resembles a sigmoid function.
Atlow rates, the number of cheats is around that of a lag-free system.
Then, the attacker’s success begins rapidly increasing. The centre
of the sigmoid rests where the attack rate matches the system rate
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Table 1: Difference in mean cheats between randomly deal-
ing attackers and the non-dealing attacker all at rate 10.

16
15.86

64
64.22

256
255.95

Deal Cap
Cheats Difference

4.05

(defined in Equation 3.1 as Tsys & 4000). Eventually the increase
tapers, approaching the maximal value max(| Mcheat)y,

5 ATTACKER STRATEGIES

In reality, it would be infeasible for the attacker to increase their ac-
tion rate arbitrarily. Two other key variables in attacker’s behaviour
are their choice of action and choice of user (if the chosen action is
a deal or cheat). In this section, we explore how these remaining
two factors impact the success of the attacker and how the attacker
might use them to their advantage.

5.1 Choice of Attacker Action

At each opportunity, the attacker must choose to perform an action
or to wait. The potential actions are to deal or cheat an arbitrary
user. That user may refuse to interact with the attacker, in which
case no action is recorded. First, we explore the impact of including
a limited number of randomly distributed deal actions in the at-
tacker’s strategy, showing that it increases the number of cheats the
attacker successfully performs. Next, we investigate the attacker’s
success if they randomly wait between deals and cheats. Finally, we
discuss the importance of the order of these behaviours. We show
that an attacker which attempts all of their deals then waits for
some time before performing cheats will perform optimally.

5.1.1  Random Deals. Here, we discuss the effect of randomly at-
tempting deals in addition to cheats. A collection of 32 attackers of
different rates which randomly perform deal and cheat messages
were simulated. For each attacker, a cap was placed on the number
of deals they could attempt. This was varied by factors of 4 from
4 to 256. The rate was varied by factors of 10 from 1 to 107. First,
we note that Figure 2 shows that the rate has the biggest impact on
the success of the attackers. However, it can also be seen that the
number of cheats performed at each rate increases with the number
of deals the attacker may attempt.

A vital question is that of how much better the dealing attackers
did in comparison to the non-dealing attacker. Table 1 illustrates
the difference in mean cheats between a dealing attacker and a
non-dealing attacker for each deal cap (at rate 10”). From Table 1,
it is clear that attacker is only performing a single additional cheat
for each deal that it performs. This is expected if there were no
reputation lag, meaning mixing deals amongst cheats is ineffective
in combination with the reputation lag attack.

Unsuccessful attempts to cheat made by the attacker are shown
in Figure 3. The number of rejected cheats varies only very slightly
with the deal cap. This is likely because the attacker only gains
one additional cheat for each deal, allowing them to be just as
unsuccessful otherwise. Further evidence for this is discussed in
sections 5.1.2 and 5.1.3.
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dered attackers at various rates and deal caps.
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5.1.2  Waiting. Attackers who perform deals out-perform attackers
who do not but are also rejected often with high rate attackers con-
sistently reaching the cheat cap (Figure 3). Table 1 demonstrates that
these attackers only gain a single cheat per dealdue to insufficient
spreading of the attacker’s deals.

Reputation spread can work in favor of the attacker, if the rep-
utation is mostly positive. While the attacker wishes to avoid the
spread of cheat messages, they wish for deal messages to spread as
much as possible. Well-spread deals provide the greatest number of
opportunities for subsequent cheats.

The attacker may allow their deals to spread more effectively
by waiting. By intentionally not taking opportunities to act, the
attacker allows their good reputation to spread. Here, we investigate
the impact of randomly waiting whilst continuing to randomly deal
and cheat. We do so by simulating 48 attackers. Half of the attackers
are capped at 4 deals whilst the other half are capped at 64 deals. The
attacker rates vary from 100 to 107 by a factor of 10. The omission
of the rate 1 and rate 10 attackers is due to prohibitive simulation
run-times when waiting. Similarly, half the attackers can wait for a
total duration of 103 time steps and the other can wait for a total
duration of 10* time steps.

Long-duration waiting attackers appear to have a small but con-
sistent decrease in success compared to short-duration waiting
attackers. The above findings combined with the small, directly-
proportional constant improvement seen in Section 5.1.1 demon-
strate that performing deal amongst cheats provides little benefit to
the attacker. In the event that the attacker does not wait, each deal
provides only one additional cheat. When the attacker does wait,
their performance simply worsens.

These are reasonable outcomes. deals have the most impact when
each deal is known by many users and each cheat is known by few.
By mixing the performance of deals with that of cheats, the attacker
is effectively nullifying their primary benefit. In Section 5.1.3, we
explore a strategy that takes advantage of these facts to construct
a superior strategy with respect to when the attacker chooses to
deal, cheat or wait.

5.1.3 Ordering. Above, we demonstrated that, on average, it is
somewhat beneficial to add some random deals to the attacker’s
behaviour but that it is detrimental to randomly wait. Here, we
investigate the impact that the order of these actions have on the
attacker’s success.

Given a finite, constant number of deals present in the system,
the attacker can only perform the maximum possible number of
cheats if each user is aware of every deal in the system but only the
cheats that resulted from their own transactions with the attacker.

For the attacker to guarantee these conditions, the deals it per-
forms must spread completely through the system before any cheats
do. A clear limitation of the randomly attackers introduced in 5.1.2
is that waiting entailed spreading cheats in addition to deals.

To ensure that waiting only spreads deals, the attacker can act
as follows: perform all possible deals, wait for some time and then
begin attempting cheats. We refer to this strategy as ordering. The
superiority of this strategy (under certain basic assumptions) has
been shown formally [16]. We attempt to empirically investigate
the quantitative impact of ordering in terms of the attacker’s deal
cap and their total waiting duration.
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First, we compare unordered and ordered attackers that do deal
but do not wait in Figures 6. Next, we compare ordered attackers
that do not wait with ordered attackers that do wait for a short
duration (10° time steps) in Figure 7. Finally, we compare ordered
attackers that wait for a short duration with those that wait for a
long duration (10* time steps) in Figure 8.

Figures 6-8 demonstrate the superiority of ordering. With order-
ing, attackers who wait outperform non-waiting attackers. We note
that, for the fastest and slowest attackers, the difference between
long waiting times and short waiting times is minimal with the
biggest effect being seen at rates 10* and 10°. Also, the markedly
increased success of the rate 10° attacker. The large divergence in
this attacker’s performance will be discussed in Section 5.1.4

5.1.4 Optimal Waiting Times. We assert that the reason for this
large increase at rates 10* and 10° in Figure 8 is a result of two
phenomena. Firstly, the the attacker must wait a sufficiently long
time for deals to spread around the network. Secondly, the attacker
must be sufficiently fast to cheat the users before these cheats spread
around the network. Attackers with rate less than 10 are too slow
and their bad reputation outpaces their ability to cheat. On the
other hand, the attackers with rate greater than 10° do not wait a
sufficiently long time due to the waiting period being relative to
the attacker’s rate rather than the system rate.

In Figure 9, we demonstrate that the success of a sufficiently fast
attacker who waits long enough will achieve the maximal number
of cheats for their deal cap of 64. As defined in 3.2, the maximal
value here will be 27600 (as indicated by the red line).

We offer the following explanation. As the attacker performs all
of their deals before waiting, they only need to wait long enough
for the last deal to spread to guarantee that, on average, all deals
are spread. In the simulation, the mean time for a single deal to
spread throughout the system was found to be 0.835, with a 10th
percentile of 0.674 and a 90" percentile of 1.000.

Given that the mean is very close to 1 time step, the attacker need
only wait around 1 time step for the deals to spread. Furthermore,
the attacker rate defines the number of attacks, on average, that an
attacker can perform in 1 time step. As seen in Figure 9, it is only
once each attacker waits at least 1 time step worth of opportunities
that they begin to approach the maximal cheats.

These results evidence three key points. It demonstrates the
attacker’s rate to be their most crucial asset. Secondly, it shows
that efficient communication in a social network (model) is only a
benefit against a sufficiently slow attacker. Finally, it highlights the
reputation lag attack as a malicious exit strategy.

5.2 Choice of User/Victim

The attacker attempts each transaction with a specified user. The
chosen user impacts the outcome of current and future attempts.
Attempting to transact with a mistrustful user effectively wastes
a turn. Cheating talkative users risks spreading cheats across the
network faster than cheating quiet users.

Here, we explore the impact of user choice strategies. The fol-
lowing attackers do not deal or wait. The strategies in Section 5.2.1
depend only on centrality as defined in Equation 5.2.1. The strategy
in section 5.2.3 depends only on the attacker’s knowledge of user
trust states.
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Table 2: Entropy of different centralities.

[Flat [DC [SPBC | CC [EC |
| 5.991 | 5.795 | 5.806 | 5.988 | 5.793 |

5.2.1 Network Centrality Metrics. A user’s network position affects
how it spreads information. Users with many connections may con-
tribute more to spreading. The attacker would avoid cheating such
users. If centralities accurately measure a user’s impact on spread-
ing, an attacker would deal with central nodes and cheat less central
nodes. We explore four well-known centrality measures: degree
centrality (DC), eigenvector centrality (EC), closeness centrality
(CC) and betweenness centrality (SPBC). We also include flat, the
Section 4 attacker who cheats users at random. The centralities are
defined as follows:

(1) Degree Centrality DC: The degree centrality of of u; is the
the number of edges connected to u;: DC(u;) = deg(u;).

(2) Eigenvector Centrality EC: Similar to DC but each edge is
weighted by the EC of the node that it is connected to. If v is
the leading eigenvector of the network’s adjacency matrix
A then: EC(u;) = v;.

(3) Shortest-Path Betweenness Centrality SPBC: This measures
the proportion of shortest paths running through a user. If
there are g, shortest paths between two users us and u;
and gi)t of those paths run through user u; then: SPBC(u;) =

Zs,tE‘ZI Z:_; .

(4) Closeness Centrality This is the reciprocal of the mean dis-
tance from user u; to every other user. If d(uj, u;) is the dis-

tance from user u; to user uj then: CC(u;) = W
uje u;j joUi

The attacker wishes to prioritise less central users for cheats.

If, for some centrality measure CM, CM* (u;) = CM;(u) then the
probability of choosing u; is:
CM* (u;
P(victim = u;) = —(u,z (7)
Zujeru CM* (ui)

This preserves the pairwise relative probabilities of the users
(e.g. a user with half the centrality of another will be twice as likely
to be chosen).

In Figure 10, it can be seen that DC and EC have similar per-
formance and slightly but consistently outperform flat, SPBC and
CC as predicted by Borgatti [3]. In Figure 11, the previous pattern
begins breaking down at 103. Eventually, the dominant and inferior
metrics swap until the highest rate where all attackers are equal.
Table 2 shows the Shannon entropy of each centrality.

The Shannon entropy is a measure of the “flatness” of a distri-
bution with flat having the highest entropy. The entropy values
are similar but those of the high rate attackers are in the same
order as their success. This implies that “flatness” is a good pre-
dictor of success at high rates. At rates 10, 102 and 10°, predicting
the spread is beneficial. As the rate increases, users cannot spread
the cheats fast enough. Yet, attackers with skewed user weight-
ings will blindly keep cheating some users more often, leading to
unnecessary rejections.
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Figure 10: Success of slow attackers with different victim
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Figure 11: Success of fast attackers with different victim cen-
tralities.
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Figure 12: Success of fast attackers with different victim cen-
tralities on a CWS network with rp = 0.01.

5.2.2  Network Structure. A sample of the results is shown in Figure
12. Effectively no difference was seen between any of the attackers
on the Connected-Watts-Strogatz (CWS) networks bar the SPBC
attacker doing marginally worse. This demonstrates that the ad-
vantages gained by the centrality-weighted attackers is lost when
attacking a CWS network.

5.2.3 Clairvoyance: Access to User Trust States. The attacker is lim-
ited by their unawareness of user trust states. The intractability of
predicting the deals and cheats known by each user means that the
attacker can’t know which users will accept or reject an attempted
transaction. Here, we study an attacker with “clairvoyance": direct
access to users’ trust states before they act.

For example, clairvoyance is relevant to systems where users
openly post their trust state (i.e. their beliefs about the attacker);
where the attacker can eavesdrop on network edges; or where
they can force users to reveal their trust state before choosing a
target. Various mechanisms could enable such cases. The attacker
may have (some) control over the network or they may be on a
platform which openly displays their current trust rating (e.g. online
marketplaces). If the attacker is a news source, they may receive
feedback directly from consumers regardless of how consumers
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Figure 13: Cheats for a normal versus a clairvoyant attacker.

share knowledge amongst themselves. The clairvoyant attacker
also provides a theoretical upper-bound on the attacker’s success
with respect to their ability to estimate or predict user knowledge.

Figure 13 demonstrates that clairvoyance primarily benefits
medium-rate attackers. Fast attackers do not benefit because they
already act very quickly relative to user sharing. Despite being
rejected far more than they are accepted (in the order of 10°: Figure
3), they eventually perform almost the maximal number of cheats
as their bad reputation has no time to spread.

6 DISCUSSION

In this paper, we studied an attacker attempting to exploit the lag
present in a networked reputation system. Real-world trust systems
are conceptually rich and reputation lag effects can become con-
flated with other exploitable artefacts. The model was constructed
to avoid confounding effects (e.g. value imbalance attacks due to
non-unitary interactions or playbook attacks due to reputation
decay). This ensured that reputation lag was the only angle for
an attacker Thus, we focus on timing as the main commonality
between the relevant example systems. Furthermore, centralised
reputation systems (e.g. marketplaces) are well-studied whilst we
aim to capture distributed systems such as P2P gossip protocols,
ad-hoc networks (MANETs, VANETS), business networks, news
outlets and OSNs.

First, we focused on the attacker’s rate. The attacker’s rate was
the dominant factor in their success. A sufficiently high rate was
also necessary for other strategies to succeed. Second, we stud-
ied the impact of performing deals (i.e. good behaviour) and of
waiting. Randomly performing deals did not provide any unfair
benefit and randomly waiting in addition to this actually worsened
the attacker’s success, giving users more time to spread known
cheats. We then showed that a “deal then wait then cheat" ordering
to attacker actions outperforms all previous strategies. Ordering
ensures that only positive reputation spreads in the waiting period.
Also, if a sufficiently fast attacker waits for the mean duration of
just a single deal to spread through the network, they approach the
maximal number of cheats.

Third, we investigated the efficacy of using network centrality
measures to rank users’ impact on information spreading. This
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attacker would focus their cheats on low ranked users. We found
that, while the ranking does improve the attackers success, it is
a somewhat marginal improvement, likely due to the lack of cen-
trality measures that correctly capture this model’s infection-style
spreading. This strategy also relies on the network structure being
suitably non-homogeneous. Otherwise, the centrality measures fail
to give distinct values for the users.

Finally, we tested an attacker with clairvoyance: the ability to
access users’ trust states before acting. This was of a modest but
clear benefit to medium rate attackers as they are the most likely
to suffer due to repeated rejections.

Generally, this model shows the attack to be feasible. The model
is abstract so we must interpret the findings realistically. In a sys-
tem with high-speed communications, it may be unrealistic for the
attacker to act at 10° or 107 times the speed of other parties. How-
ever, in systems where communications typically occur in the order
of hours, days or weeks, it is certainly possible. (Indeed, monitor-
ing for such suspicious activity levels offers a potential mitigation
strategy.)

We consider the clairvoyant attacker for theoretical and practical
reasons. Theoretically, it demonstrates the impact of such knowl-
edge on the attacker’s success and provides an upper bound on the
efficacy of reputation lag attacks. Practically, some systems allow
the attacker to directly access users’ knowledge without the need
for prediction. For example, in transparent systems or compromised
systems.

We simulated distributed reputation mechanisms (e.g. some
forms of social network, ad-hoc networks or MANETs). While
reputation lag exists in centralised systems (e.g. eBay or Amazon),
our results may not directly apply. There is potential for a compar-
ative study via simulation. This work does not investigate explicit
mitigation methods against the attack or any particular strategies.
This is a vital area of further work.

Our study aims to focus on the reputation lag attack alone. Other
attacks include the value imbalance attack, where attackers do
cheap deals and expensive cheats. A richer system may allow us to
study the interplay between different attacks and is a natural next
step after we understand the reputation lag attack.

7 CONCLUSION

The reputation lag attack is viable and effective on reputation sys-
tems. Its efficacy is most impacted by attacker action rate relative to
the lag period. Reducing the lag period or limiting transaction rate
can mitigate the attack. The reputation lag attack is most effective
as an exit strategy. Centrality-based victim choice strategies have a
minor impact on more homogeneous networks. Access to current
user trust states is of benefit to medium-rate attackers.
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