Main Track

AAMAS 2022, May 9-13, 2022, Online

Off-Policy Evolutionary Reinforcement Learning with
Maximum Mutations

Karush Suri
University of Toronto

ABSTRACT

Advances in Reinforcement Learning (RL) have demonstrated data
efficiency and optimal control over large state spaces at the cost of
scalable performance. Genetic methods, on the other hand, provide
scalability but depict hyperparameter sensitivity towards evolu-
tionary operations. A combination of the two methods has recently
demonstrated success in scaling RL agents to high-dimensional
action spaces. Parallel to recent developments, we present the
Evolution-based Soft Actor-Critic (ESAC), a scalable RL algorithm.
We abstract exploration from exploitation by combining Evolution
Strategies (ES) with Soft Actor-Critic (SAC). Through this lens,
we enable dominant skill transfer between offsprings by making
use of soft winner selections and genetic crossovers in hindsight.
Simultaneously we improve hyperparameter sensitivity in evolu-
tions using the novel Automatic Mutation Tuning (AMT). AMT
gradually replaces the entropy framework of SAC allowing the
population to succeed at the task while acting as randomly as pos-
sible, without making use of backpropagation updates. In a study
of challenging locomotion tasks consisting of high-dimensional
action spaces and sparse rewards, ESAC demonstrates improved
performance and sample efficiency in comparison to the Maximum
Entropy framework. Additionally, ESAC presents efficacious use of
hardware resources and algorithm overhead. Our implementation
is available at the Project Website.

KEYWORDS
Reinforcement Learning, Evolution Strategies, Mutations.

ACM Reference Format:

Karush Suri. 2022. Off-Policy Evolutionary Reinforcement Learning with
Maximum Mutations. In Proc. of the 21st International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS 2022), Online, May 9-13,
2022, ITFAAMAS, 11 pages.

1 INTRODUCTION

Concepts and applications of Reinforcement Learning (RL) have
seen a tremendous growth over the past decade [24]. These con-
sist of applications in arcade games [24], board games [35] and
lately, robot control tasks [19]. A primary reason for this growth
is the usage of computationally efficient function approximators
such as neural networks [16]. Modern-day RL algorithms make use
of parallelization to reduce training times [23] and boost agent’s
performance through effective exploration giving rise to scalable
methods [7, 12, 43]. However, a number of open problems such
as approximation bias, lack of scalability in the case of long time
horizons and lack of diverse exploration restrict the application of
scalability to complex control tasks.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9-13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Modern-day RL algorithms such as Soft Actor-Critic (SAC) [6]
maximize entropy which is indicative of continued exploration.
However, using a computationally expensive framework limits scal-
ability as it increases the number of gradient-based [30] updates
of the overall algorithm. Moreover, tasks consisting of long time
horizons have higher computational overhead as a result of long
trajectory lengths. For instance, obtaining accurate position esti-
mates [12] over longer horizons require additional computation
times which varies linearly with the hardware requirement. Such a
variation calls for increased scalability in the RL domain.

Diverse exploration strategies are essential for the agent to navi-
gate its way in the environment and comprehend intricate aspects
of less visited states[21]. Various modern-day RL methods lack sig-
nificant exploration [23, 24] which is addressed by making use of
meta-controller[17] and curiosity-driven [3] strategies at the cost
of sample efficiency and scalability.

Recent advances in RL have leveraged evolutionary computing
for effective exploration and scalability [9, 13, 22, 32, 37]. These
methods often fall short of optimal performance and depict sensi-
tivity towards their hyperparameters. A common alternative for
improving performance is to combine gradient-based objectives
with evolutionary methods [13]. Such algorithms allow a popula-
tion of learners to gain dominant skills [29] from modern-day RL
methods and depict robust control while demonstrating scalabil-
ity. However, their applications do not extend to high-dimensional
tasks as a result of sensitivity to mutational hyperparameters which
still remains an open problem.

We introduce the Evolution-based Soft Actor Critic (ESAC), an
algorithm combining ES with SAC for improved equivalent to SAC
and scalability comparable to ES. Our contributions are threefold;

e ESAC abstracts exploration from exploitation by explor-
ing policies in weight space using evolutions and exploiting
gradient-based knowledge using the SAC framework.

e ESAC makes use of soft winner selection function which,
unlike prior selection criteria [13], does not shield winners
from mutation. ESAC carries out genetic crossovers in hind-
sight resulting in dominant skill transfer between members
of the population.

e ESAC introduces the novel Automatic Mutation Tuning (AMT)
which maximizes the mutation rate of ES in a small clipped
region and provides significant hyperparameter robustness
without making use of backpropagation updates.

2 RELATED WORK

2.1 Scalable Reinforcement Learning

Recent advances in RL have been successful in tackling sample-
efficiency [6] and approximation bias (also known as overestima-
tion bias) which stems from value of estimates approximated by

https://karush17.github.io/esac-web/

Main Track

the function approximator. Overestimation bias is a common phe-
nomenon occurring in value-based methods [8, 18, 42] and can be
addressed by making use of multiple critics in [5] in the actor-critic
framework [23]. This in turn limits scalability of algorithms [12]
by increasing the number of gradient-based updates. Moreover,
memory complexity of efficient RL methods increases linearly with
the expressive power of approximators [14], which in turn hinders
scalability of RL to complex control tasks.

2.2 Evolutionary Reinforcement Learning

Intersection of RL and Evolutionary methods has for long been
studied in literature [9, 22, 25, 27, 28, 37]. [32] presents the large-
scale parallelizable nature of Evolution Strategies (ES). Performance
of ES on continuous robot control tasks is comparable to various
gradient-based frameworks such as Trust Region Policy Optimiza-
tion (TRPO) [33] and Proximal Policy Optimization (PPO) [34]. On
the other hand, ES falls short of competitive performance result-
ing in local convergence and is extremely sensitive to mutation
hyperparameters.

An alternative to a pure evolution-based approach is a suitable
combination of an evolutionary algorithm with a gradient-based
method [11], commonly referred to as Evolutionary Reinforcement
Learning (ERL) [13]. ERL makes use of selective mutations and
genetic crossovers which allow weak learners of the population
to inherit skills from strong learners while exploring. ERL meth-
ods are scalable to high-dimensional control problems including
multi-agent settings [29]. Such an approach is suitable but does not
introduce mutation robustness, i.e- the ability to resist mutation
noise when converged. Other methods in literature [9] follow a
similar approach but are often limited to directional control tasks
which require little mutation. Thus, addressing scalability and ex-
ploration while preserving higher returns and mutation robustness
requires attention from a critical standpoint. Our work is parallel
to prior efforts made towards this direction.

3 BACKGROUND

3.1 Reinforcement Learning and Soft
Actor-Critic

We review the RL setup wherein an agent interacts with the envi-
ronment in order to transition to new states and observe rewards
by following a sequence of actions. The problem is modeled as a
finite-horizon Markov Decision Process(MDP) [39] defined by the
tuple (S, A, r, P, y) where the state space is denoted by S and ac-
tion space by A, r presents the reward observed by agent such that
r:SXA = [rminsmax), P : S X8 X A — [0, c0) presents the
unknown transition model consisting of the transition probability
to the next state s;41 € S given the current state s; € S and action
a; € A at time step t and y is the discount factor. We consider a
policy mg(a¢|s:) as a function of model parameters 6. Standard RL
defines the agent’s objective to maximize the expected discounted
reward Ez, [Ztho Y'r(ss,ar)] as a function of the parameters 6.
SAC [6] defines an entropy-based[44] objective expressed as in
Equation 1.

T
J(mg) = > y'[r(se,ar) + AH (mg(-sr))] (1)

t=0

1238

AAMAS 2022, May 9-13, 2022, Online

wherein A is the temperature coefficient and H (g(-|s¢)) is the
entropy exhibited by the policy 7(+|s;) in s;. For a fixed policy, the
soft Q-value function can be computed iteratively, starting from any
function Q : S X A and repeatedly applying a modified Bellman
backup operator 77 given by Equation 2

T7Q(st, ar) = r(se, ar) + YEs,~P [V (st41)] (2)

where V(s;) is the soft state value function expressed in Equation 3.

V(st) = Eaqy~n [Q(st, ar) —log(m(atlse))] 3

We consider a parameterized state value function V¢,(st), a soft Q-
function Qg (s¢, a;) and a policy 7g (a¢|s;) which can be represented
with nonlinear function approximators such as neural networks
with ¢/, ¢ and 6 being the parameters of these networks.

3.2 Evolution Strategies

We review the Evolution Strategies [32] framework which is mo-
tivated by natural evolution. ES is a heuristic search procedure in
which a population of offsprings is mutated using random pertur-
bations. Upon mutation, the fitness objective corresponding to each
member of the population is evaluated and offsprings with greater
scores are recombined to form the population for the next genera-
tion. Let n be the number of offsprings in the population. The param-
eter vectors of the model can then be represented as 0, (;) such that
i =1,2,..n. A total of n random perturbations €, i =1,2,..nare
sampled from a Gaussian distribution N (0, 1) in order to mutate
Oes,(i) and evaluate the fitness objective Ee) ~N(0.1) [0(Oes, (i) +
(76(0)] = %Ee(,-)~N(0,1) [O(ees,(i) + O'e(,-))e(i)]. Here, o is the mu-
tation rate which controls the extent of mutation. In the case of RL,
the fitness objecive O(e; (;)) is the episodic reward observed by
members of the population.

4 A MOTIVATING EXAMPLE: THE DISCRETE
CYCLIC MDP

Figure 1: The long-horizon discrete Cyclic MDP. The agent
observes a reward of +1 for moving clockwise and -1 other-
wise.

We consider a long-horizon discrete cyclic MDP as our motivation
for the work. The MDP has a state space S> consisting of 3 states-
50,51 and S2 and a discrete action space A°> consisting of 3 actions-

Main Track

clockwise, anticlockwise and stay. The agent starts in state S0. The
reward function r : 83 x A assigns a reward of +1 for moving
clockwise and —1 otherwise. Each episode lasts 2000 timesteps
and terminates if the agent reaches the end of horizon or incurs a
negative reward. Figure 1 presents the long-horizon discrete cyclic
MDP.

The cyclic MDP, being a long-horizon problem, serves as a suit-
able benchmark for agent’s behavior consisting of minimum compu-
tational overhead and is a small-scale replication of policy-search
for scalable policy-based agents. The environment consists of a
global objective which the agents can achieve if they solve the
environment by obtaining the maximum reward of +2000. In order
to assess evolution-based behavior, we compare the performance of
a population of 50 offsprings utilizing ES with PPO [34] and Deep
Deterministic Policy Gradient (DDPG) [19], an efficient off-policy
RL method. Actions are sampled by the DDPG policy based on a
running average of mean and variance of the categorical action
distribution. Figure 3 (left) presents the performance of ES in com-
parison to gradient-based agents in the cyclic MDP averaged over 5
runs. The ES population presents sample efficiency by solving the
task within the first 100 episodes. DDPG, on the other hand, starts
solving the task much later during training. The use of a determin-
istic policy allows DDPG to continuously move left whereas in the
case of ES, the population carries out exploration in the weight
space and moves along the direction of the strong learners. Lastly,
PPO finds a local solution and does not converge towards solv-
ing the task. Driven by clipped updates, PPO restricts the search
horizon in policy space leading to a sub-optimal policy.

ES has proven to be scalable to large-scale and high dimensional
control tasks [32]. We assess this property of ES in the cyclic MDP
by varying the operational hardware (number of CPUs) [4] and
algorithm overhead (population size). We measure the average
wall-clock time per episode [1]. As shown in Figure 3 (center), ES
is parallelizable in nature and can be scaled up to larger population
sizes by reducing the computation time. The large-scale readily
parallelizable nature of ES is a convincing characteristic for utilizing
CPU-based hardware. However, ES relies on excessively sensitive
hyperparameters such as mutation rate. Figure 3 (right) presents
the sensitivity of ES to mutation rate within a small range with
a constant population size of 50. Varying population size does
not present a trend in sensitivity indicating that mutation rate is
the dominant hyperparameter governing policy behavior among
offsprings. Hyperparameter sensitivity requires attention in the
case of RL applications such as for real-world continuous control
[20]. These include excessive tuning of parameters and detailed
ablation studies. The cyclic MDP highlights this sensitive nature
of ES and serves as a motivating example for tackling sensitivity
while preserving optimal performance in a scalable manner.

5 EVOLUTION-BASED CONTINUOUS
CONTROL

The motivation behind ESAC stems from translating the scalability
and tackling the mutation sensitivity of ES observed in discrete
cyclic MDP to continuous control tasks. ESAC combines the scalable
nature of ES with the limited approximation bias of SAC to yield a
CPU-friendly improved algorithm.

1239

AAMAS 2022, May 9-13, 2022, Online

5.1 Overview

Environment

Experiences

Evaluation
Fitness Population Replay Buffer
Actor 1
. Actor 2
Soft Winner
Selection -
SAC Critic
Actorn Palicy
Gradient
Mutation SAC Actor
New Updated
Population Actor
Automatic
Mutation
Tuning

Figure 2: Workflow of ESAC combining ES with SAC. ESAC
makes use of soft winner selections, hindsight crossovers
and AMT for scalable performance.

Figure 2 provides a high-level schematic of the ESAC algorithm and
its components. The population is evaluated in the environment
with the fitness metric as episodic rewards obtained by each off-
spring. Top w winners are then segregated for mutation consisting
of ES update followed by crossovers between perturbed offsprings
and winners. The new population is formed using crossed-over off-
springs and SAC agent. The SAC agent executes its own episodes at
fixed timesteps and stores these experiences in a dedicated replay-
buffer following policy update. During the SAC update timesteps,
ESAC utilizes AMT which maximizes the mutation rate in a clipped
region. SAC update timesteps are exponentially annealed to reduce
entropy noise and abstract exploration in weight space.

5.2 Algorithm

Algorithm 1 presents the ESAC algorithm. We begin by initializing
Y, 0, Oes, ¢ being the parameters of state-value function, SAC policy,
ES policy and Q-function respectively. We then initialize learning
rate for SAC agent a, learning rate of ES population a,g, mutation
rate o, psqc Which is the probability of SAC updates, i/ is the param-
eter vector of the target value function, ¢ is the clip parameter, 7 is
the target smoothing coefficient, e is the fraction of winners and g
is the gradient interval. A population of n actors popy, is initialized
along with an empty replay buffer R. Following the main loop, for
each offspring i in the population, we draw a noise vector ¢; from
N (0,1) and perturb the ES policy vector 85 to yield the perturbed
parameter vector O (;) as per the expression 8 (;) + 0€(). es, (i)
is then evaluated to yield the fitness F(;) as episodic rewards. These

Main Track

Episodic Performance

2000 —— 5 offsprings 2000
35 10 offsprings
1750 —— 20 offsprings 1750
— 30 —— 50 offsprings
1500 @ 1500
B Z B
2 1250 g2 g 1250
g =B 2 g
> 1000 PPO a?* o 1000
g p—— 3 15 g
o 750 2 s 750
< o <<
500 E 10 500
250 5 250
0 0 N 0

0 500 1000 1500 2000 2500 3000 0

Episodes

Scalability of ES

40

Number of CPUs

AAMAS 2022, May 9-13, 2022, Online

Hyperparameter Sensitivity

60 0.2 0.4 0.6

Mutation Rate

0.8 1.0

Figure 3: Comparison of ES, DDPG and PPO in the discrete cyclic MDP. ES depicts sample-efficient behavior (left) due to the
presence of strong learners in the population. Scalable nature of ES (center) with readily available computational resources
allows in reduction of average episode execution time. However, ES is sensitive to hyperparameters (right) which results in
inconsistency across different seeds and rigorous fine-tuning,.

are collected in a normalized and ranked set F. We now execute
soft winner selection wherein the first w = (n * e) offsprings from
F are selected for crossovers by forming the set W. The soft winner
selection allows dominant skill transfer between winners and next
generation offsprings. Mutation is carried out using the ES update
[32]. SAC gradient updates are executed at selective gradient inter-
vals g during the training process. psqc is exponentially annealed
to reduce entropy noise and direct exploration in the weight space.
During each g, the agent executes its own episodes by sampling
a; ~ mg(az|st), observing r(s¢|a;) and s;41 and storing these experi-
ences in R as a tuple (s¢, ar, r(st, ar), Sr+1)- Following the collection
of experiences, we update the parameter vectors i/, ¢ and 6 by com-
puting Vy Jv (¥), Vg Jo(4(i)) and Vg] (0) where Jv (), Jo(())
and J;(0) are the objectives of the state-value function, each of the
two Q-functions i € {1, 2} and policy as presented in [6] respec-
tively. Gradient updates are followed by AMT update(section 6)
which leads to hindsight crossovers between winners in W and ES
policy parameter vector 5. Crossovers are carried out as random
replacements between elements of weight vectors. In the case of
hindsight crossovers, replacements between weight vector elements
of current & immediate previous generations are carried out. This
allows the generation to preserve traits of dominant offsprings in
hindsight. Finally, the new population is formed using 6, 6.5 and
w.

6 AUTOMATIC MUTATION TUNING (AMT)
6.1 Maximization in Weight Space

Maximization of randomness in the policy space is akin to maxi-
mization in the weight space as both formulations are a multi-step
replica of generalized policy improvement algorithm. This allows
one to leverage the more suitable weight space for parallel com-
putations. Policy updates during execution of offsprings require
tuning the exploration scheme. To this end, we automatically tune o
starting with the intial value (). o is updated at fixed timesteps in
a gradient-ascent manner without making use of backpropagation

1240

Algorithm 1 Evolution-based Soft Actor-Critic (ESAC)

1: Initialize parameter vectors ¢, 1[, 0, Oes, ¢

2: Initialize @, des, 0, {, 7, €, g, Psac

3: Initialize a population of n actors pop, and an empty replay
buffer R

4: for generation=1,00 do

5 for i € pop, do

6: sample €(;y ~ N(0, 1)

7 F(;) < evaluate (0 (;) + 0€(;)) in the environment

8 end for

9 normalize and rank F(;) € F

10: select the first w = (n = e) offsprings from F to form the set
of winners W

11: set Oes «— Oes + % er-lzl F(i) €(i)

12: if generation mod g == 0 & 1 ~ N'(0,1) < psqc then

13: for each environment step do

14: ar ~ mg(alst)

15: observe r(s¢|ay) and sy+1 ~ P

16: R < RU (s¢, ag,r(st, ar), St+1)

17: end for

18: for each gradient step do

19: Y=y -aVylv(y)

20: [0) <—¢—aV¢JQ(¢(1)) forie {1,2}

21: 0 — 0—aVgr(0)

22: Ve—tp+Q-1)y

23: end for

24: Update o using Equation 6

25: end if

26: crossover between 0, (;) and Oes for i = 1,2,..w

27: Form new population popy, using 0, Oes, W

28: end for

updates. AMT motivates guided exploration towards the objective
as a result of the expansion of the search horizon of population.
This in turn enables the agent to maximize rewards as randomly as

Main Track

possible. AMT makes use of the SmoothL1 (Huber) [10] loss func-
tion provided in Equation 4 and the update rule is mathematically
expressed in Equation 5.

0.5(x; — y;)%,if |x; —y;| < 1
SmoothL1(x;,y;) = (xi = yi)% if |x; yzl @)
|xi — yi| — 0.5, otherwise
a
O(t41) < O(p) + GEs) SmoothL1(Rmax, Ravg) 5)
t

Here, Rmax is the reward observed by winner offspring, Rgyg is the
mean reward of the population with o(;) and 0(;41) the mutation
rates at timesteps t and ¢ +1 respectively. While exploring in weight
space, the SmoothL1 loss tends to take up large values. This is
indicative of the fact that the deviation between the winner and
other learners of the population is significantly high. In order to
reduce excessive noise from weight perturbations ¢;, we clip the
update in a small region parameterized by the new clip parameter
{. Suitable values for { range between 107 to 1072. The clipped
update is mathematically expressed in Equation 6.

04
O(t41) —0(s) + clip(———SmoothL1(Rmax, Ravg), 0,{) ~ (6)
no(,)

6.2 Relation to Initial Mutations

The update can be expanded recursively and written in terms of
the initial mutation rate o). We derive this expression using the
AMT and ES update rules,

(1) < O(t-1) + *— SmoothL1(Rpax, (1-1)> Ravg, (1-1))

N
T
i=1

Using the expression for o(;) in the ES update yields the following,

O(t-1)

o,
Or+1) —Op) + — (7)

nU(t)

9(t+1) «— Q(t)+

n

Res
Rje;
n(o'(t—l) no'(SmOOthLl(Rmax(t 1)> Ravg, (- 1))) =1 o
(8)
=0(e1) <O+
@ n
s = Riei
no(¢— 1)(l+)SmOOthLl(Rmax (t-1)» Ravg (t— 1)))
)
n
=0 —Op + — Rie; (10)
) O * oy 2R
where,
A(t =1+ SmoothLl(Rmax (t-1)> Ravg (t— 1)) (11)

"%y
Expanding o(;_;) using the AMT update rule leads to the fol-
lowing expression for the denominator,

"A(tfl)(g(tfz) + n SmOOthLl(Rmux,(hZ)’Ravg,(tfz))) (12)

O(t-2)

1241

AAMAS 2022, May 9-13, 2022, Online

nA(4-1)0(t-2) (1 + SmoothL1(Rpmax, (¢-2) Ravg,(t-2)))

(t 2)
(13)
a n
=0 —0p + s Rie; (14)
(t+1) (1) nA(t—l)O'(t—z)A(t—z) - i€i
where,
A(t 2 =1+ SmoothLl(Rmax (t-2)> Ravg(t 2)) (15)
nol,_y)
Expanding this recursively gives us the following,
a n
0 —0 + s Rie; (16)
DO T ne A A-g-Aw S
a n
= 9(t+1) <—9(t) + te_sl Rie; 17)
nao(1) Ht':l A(t’) i=1
=0 — 0O+ Rje; 18
(t+1) () nd(l)/\z i€i (18)

Hence, yielding the AMT update in the form of initial mutation
rate o(q). Here, A is defined as the Tuning Multiplier.

6.3 Policy Improvement

It can be additionally shown that AMT, when combined with soft
winner selection, leads to policy improvement with high probability
among the set of winners. To see this, consider two successive
gradient intervals g indexed by (I) and (I - 1). Let p(;) and p(;_q)
be the probabilities of convergence to the optimal policy n;es (at|st)
in the weight space at (I) and (I — 1) respectively.

We start by evaluating the mutation rates at (I) and (I —1) which
are given as o() > o(;_1). We can now evaluate the probabilities
of convergence to Jz;es (at|st) as

(19)

Using this fact, we can evaluate the winners (indexed by g) in the
sorted reward population F.

Py 2 P-1)

(@) pla) o (@ gl
Zp(l) = Zp(z nEu= (20)
= (@) F@
g,) 2 By g, (F) @)
=E[Wpl = E[Wy)] (22)

(@)
0]

observed reward F ((q) to its optimal policy Ty () (at|st) at interval

Here, p,;’ is the probability of convergence of actor g (having

(1). W(;) represents the set of winners at (l) The mathematical
expression obtained represents that the set of winners W(;, formed
at the next gradient interval (/) is at least as good as the previous
set of winners W(;_y), i.e.- ﬂéi)’(l) (at|sy) = ”éi),(l—l) (at|st) . This

guarantees policy improvement among winners of the population.

Main Track

AAMAS 2022, May 9-13, 2022, Online

Domain Tasks ESAC SAC TD3 PPO ES
HalfCheetah-v2 10277.16+403.63 10985.90+319.56 7887.32+532.60 1148.54+1455.64 3721.85+371.36
Humanoid-v2 5426.82+229.24 5888.55+44.66 5392.89+363.11 455.09+213.88 751.65+95.64
Ant-v2 3465.57+337.81 3693.08+708.56 3951.76+370.00 822.34+15.76 1197.69+132.01
Walker2d-v2 3862.82+49.80 3642.27+512.59 3714.89+90.35 402.33+£27.38 1275.93+243.78
MuJoCo Swimmer-v2 345.44+17.89 31.68+0.41 110.85+23.02 116.96+0.74 254.42+109.91
Hopper-v2 3461.63+118.61 3048.69+467.21 3255.27+184.18 1296.17+£1011.95 1205.73+185.25
LunarLanderContinuous-v2 285.79+9.60 66.52+26.75 273.75+4.51 124.47+11.58 74.41+£109.69
Reacher-v2 -2.01+0.07 -0.50+0.05 -5.12+0.17 -0.21+0.07 -4.43+2.06
InvertedDoublePendulum-v2 ~ 9359.35+0.60 9257.96+86.54 5603.72+3213.51 88.52+4.73 259.39+36.75
HumanoidStand 805.08+135.67 759.08+125.67 745.15+£291.377 8.41+3.33 10.57+0.30
HumanoidWalk 883.00+21.97 843.00+7.97 686.33+56.23 2.20+0.18 10.59+0.34
HumanoidRun 358.82+101.12 341.45+18.14 291.82+2101.12 2.29+0.16 10.55+0.30
DeepMind Control Suite CheetahRun 773.14+3.00 227.66+13.07 765.22+27.93 371.70+19.82 368.62+32.87
WalkerWalk 971.02+2.87 175.75+15.51 941.45+27.01 316.54+£79.54 308.94+44.36
FishUpright 914.96+2.04 285.69+21.03 838.32+34.86 561.39+111.59 997.58+0.26

Table 1: Average returns on 15 locomotion tasks from MuJoCo & DeepMind Control Suite. Results are averaged over 5 random
seeds with the best performance highlighted in bold. ESAC demonstrates improved performance on 10 out of 15 tasks. Fur-
thermore, ESAC presents consistency across different seeds in the case of large action spaces and sparse rewards indicating

the suitability of evolutionary methods to RL and control tasks.

Figure 4: Robust behavior of ESAC observed on the WalkerWalk task. The ESAC policy prevents the walking robot from falling
down when the robot loses its balance while walking. The robot successfully retains its initial posture within 50 timesteps.
ESAC exhibits robust policies on complex tasks as a result of successive evolutions and hindsight genetic crossovers between

winners and actors of the population.

7 EXPERIMENTS

Our experiments aim to evaluate performance, sample efficiency,
scalability and mutation sensitivity of ESAC. Specifically, we aim
to answer the following questions-

e How does the algorithm compare to modern-day RL methods
for complex tasks?

e What kind of behaviors do evolution-driven policies present
under varying task dynamics?

e How do evolutionary operations impact scalability in the
presence of gradients?

e Which components of the method contribute to sensitivity
and scalability?

7.1 Performance

We assess performance and sample efficiency of ESAC with state-of-
the-art RL techniques including on-policy and off-policy algorithms.
We compare our method to ES [32]; SAC [6]; Twin-Delayed Deep
Deterministic Policy Gradient (TD3)[5] and PPO [34] on a total
of 9 MuJoCo [41] and 6 DeepMind Control Suite [40] tasks. We
refer the reader to Appendix A.1 for complete results. The tasks
considered consist of sparse rewards and high-dimensional action
spaces including 4 different versions of Humanoid. Additionally, we
consider the LunarLander continuous task as a result of its narrow

1242

basin of learning. All methods were implemented using author-
provided implementations except for ES in which Virtual Batch
Normalization [31] was omitted as it did not provide significant
performance boosts and hindered scalability.

Agents were trained in OpenAI’s Gym environments [2] frame-
work for a total of 5 random seeds. Training steps were interleaved
with validation over 10 episodes. For all agents we use nonlinear
function approximators as neural networks in the form of a mul-
tilayer architecture consisting of 2 hidden layers of 512 hidden
units each activated with ReLU [26] nonlinearity and an output
layer with tanh activation. We use this architecture as a result of
its consistency in baseline implementations. We use Adam [15]
as the optimizer (refer to Appendix B for hyperparameters). For
ESAC and SAC, we use a Diagonal Gaussian (DG) policy [36] with-
out automatic entropy tuning for a fair comparison. Training of
gradient-based methods was conducted on 4 NVIDIA RTX2070
GPUs whereas for ES and ESAC, a total of 64 AMD Ryzen 2990WX
CPUs were used.

Table 1 presents total average returns of agents on all 15 tasks
considered for our experiments. ESAC demonstrates improved re-
turns on 10 out of 15 tasks. ESAC makes use of evolution-based

Main Track

weight-space exploration to converge to robust policies in tasks
where SAC often learns a sub-optimal policy. Moreover, utiliza-
tion of evolutionary operations demonstrates consistency across
different seeds for high-dimensional Humanoid tasks indicating
large-scale suitability of the method to complex control.

7.2 Behaviors

Combination of RL and evolutionary methods provides suitable
performance on control benchmarks. It is essential to assess the
behaviors learned by agents as a result of weight-space exploration.
We turn our attention to observe meaningful patterns in agent’s
behavior during its execution in the environment. More specfically,
we aim to evaluate the robustness of ESAC scheme which promises
efficacious policy as a result of effective exploration. We initialize
a learned ESAC policy on the WalkerWalk task and place it in a
challenging starting position. The Walker agent stands at an angle
and must prevent a fall in order to complete the task of walking
suitably as per the learned policy.

Figure 4 demonstrates the behavior of the Walker agent during
its first 100 steps of initialization. The agent, on its brink of experi-
encing a fall, is able to gain back its balance and retain the correct
posture for completing the walking task. More importantly, the
agent carries out this manoeuvre within 50 timesteps and quickly
gets back on its feet to start walking. Figure 4 is an apt demonstra-
tion of robust policies learned by the ESAC agent. Dominant skill
transfer arising from hindsight crossovers between winners and
offsprings provisions effective exploration in weight space.

7.3 Scalability

We assess scalability of our method with ES on the basis of hardware
resources and algorithm overhead. We vary the number of CPUs
by keeping other training parameters constant. Parallelization on
multiple CPU-based resources is readily available and cost-efficient
in comparison to a single efficient GPU resource. We also vary num-
ber of offsprings in the population by fixing CPU resources. Out
of mutation rate o and population size n, n governs the computa-
tional complexity of ES with o being a scalar value. Thus, assessing
variation w.r.t n provides a better understanding of resource utility
and duration. For both experiments, we train the population for
10 steps and average the wall-clock time per episode.

Note that another effective way to demonstrate scalability is
by monitoring overall time taken to complete the training tasks
[32]. However, this often tends to vary as initial learning periods
have smaller episode lengths which does not compensate for fixed
horizons of 1000 steps in MuJoCo.

Figure 5 presents the scalable nature of ESAC equivalent to ES
on the MuJoCo and LunarLanderContinuous tasks. Average wall-
clock time per episode is reduced utilizing CPU resources which is
found to be favourable for evolution-based methods. Moreover, the
variation depicts consistency with the increasing number of mem-
bers in the population indicating large-scale utility of the proposed
method. A notable finding here is that although ESAC incorporates
gradient-based backpropagation updates, it is able to preserve its

1243

AAMAS 2022, May 9-13, 2022, Online

scalable nature by making use of evolutions as dominant operations
during the learning process. This is in direct contradiction to prior
methods [13]which demonstrate reduced sample-efficiency and
the need for significant tuning when combining RL with scalable
evolutionary methods. Reduction in the number of SAC updates
by exponentially annealing the gradient interval allows ESAC to
reduce computation times and simultaneously explore using AMT.

8 ABLATION STUDY
8.1

ES presents sensitivity to o which is addressed by making use of
AMT in ESAC. The AMT update gradually increases mutation rate
o using clip parameter { as learning progresses. To assess the ro-
bustness of policies to mutations, we vary the clip parameter { and
study its impact on task returns.

Mutation Sensitivity

Figure 6 (left) presents the variation of average normalized re-
wards with different values of { for HalfCheetah-v2 and Ant-v2
tasks. Each experiment was run for 1 million steps. The population
presents robustness and performance improvement for small val-
ues with the optimal range being 107 to 1072, On the other hand,
sensitivity is observed in the 107! to 1 region which accounts for
larger updates with high variance. Hyperparameter variation is
limited to a smaller region, in contrast to a wider spread of ¢ in the
ES update. Offsprings remain robust to significantly large values
of { due to early convergence of the population at the cost of poor
performance among weak learners of the population. However, this
is addressed by making use of hindsight crossovers which allow
simultaneous transfer of dominant traits.

mm SAC

1e6

HalfCheetah-v2 AntvZ

mm ESAC

=

=

Normalized Average returns

HalfCheetah-v2
Antv2

FUSIS VS U 1 10 W b0
Clip parameter

Figure 6: Left: Mutation sensitivity of ESAC, Right: Number
of backprop updates in ESAC compared to SAC

8.2 Number of Updates

The main computation bottleneck in SAC arises from the number of
backprop updates. This is tackled by exponentially annealing these
updates and increasing winner-based evolutions and crossovers for
transferring skills between SAC agent and ES offspings.

Figure 6 (right) presents a comparison between the number of
backprop updates carried out using SAC and ESAC during the
training phase of HalfCheetah-v2 and Ant-v2 tasks. Results for the
updates are averaged over 3 random seeds. ESAC executes lesser
number of updates highlighting its computationally efficient nature
and low dependency on a gradient-based scheme for monotonic
improvement. Complete results can be found in subsection A.2.

Main Track AAMAS 2022, May 9-13, 2022, Online
HalfCheetah-v2 Humanoid-v2 - Ant-v2
160 —— ES-5 offsprings 6 1
ES-10 offsprings 40
_ 140 —— E5-20 offsprings 5 10
g 120 —— ES-50 offsprings é é
- +— ESAC-5 offsprings o4 o 100
© 100 —— ESAC-10 offsprings]]
2 ESAC-20 offsprings 2 2 @
g & w3 I}
' \\‘_-_Hh‘__ -+ ESAC-50 offsprings o =
& 6 == & 5@
¢ g2 g
E = R
Pl 1 K w0 ——
o | e . e ——— . o=
0 bl 0 n 20 50 &0 0 10 0 n 20 0 60 0 10 0 £l 20 0 &0
Number of CPUs Number of CPUs Number of CPUs
Walker2d-v2 Swimmer-v2 Hopper-v2
u
5 150 E\ b+
Sn B s \ FRU
n a a
] 4 100 8 g
815 a a
& & &g
& 10 & &
w w w
E E =0 g 4
Eo [=
b3 2
0 0 == 0
0 10 0 n 20 50 & 0 0 Eil n 20 0 &0] 0 Fil il 20 0 &
Number of CPUs Number of CPUs Number of CPUs
LunarLanderContinuous-v2 Reacher-v2 InvertedDoublePendulum-v2
175
175 " ¢ \ T\
7 150
B0 _ \ _ \
m S g m
ips | 2 | g1
1 ‘ &5 1
& 100 & 7 100
& —= a4 5 —_—
w A'_N"\\ w wr —
E 15 E 3 k L E 075 ———————— —
u u N u
=] 050
HERANN £ £
25 \/A_7H 1 025
L e —
0.0 T 0.00
0 bl 0 n 20 50] 0 b0 Fil n 20 50 &0 0 b0 kil Eil 40 50]

Number of CPUs

Number of CPUs

Number of CPUs

Figure 5: Variation of average time per episode (in seconds) with the number of operational CPUs and population size (in
legend) for locomotion tasks from the MuJoCo benchmark. ESAC demonstrates equivalent scalability as ES by providing
reductions in episode execution times. Reduction in computational time is found to be approximately quadratic which is
computationally efficient for RL in comparison to linear variations for high-end GPU machines.

9 DISCUSSION

9.1 Conclusion

In this paper, we introduced ESAC which combines the scalable
nature of ES with low approximation bias and improved perfor-
mance of SAC. The scheme abstracts exploration from exploitation
by searching for policies in the parameter space and learning be-
haviors using gradient signals. ESAC addresses the problem of
mutation-sensitive evolutions by introducing AMT which maxi-
mizes the mutation rate of evolutions in a small clipped region as
the SAC updates are exponentially decayed. The scheme further
incorporates soft winner selection and genetic hindsight crossovers
between current and previous generations. This leads to preserva-
tion of dominant traits within the offsprings. ESAC demonstrates
improved performance on 10 out of 15 locomotion tasks including
different versions of Humanoid. Additionally, the method yields
robust policies and highlights scalability comparable to ES by re-
ducing the average wall-clock time.

1244

9.2 Limitations

While a combination of evolutionary and gradient operations is
suitable from the computational perspective, its effect on gener-
alization needs to be well understood. High variance of the SAC
agent under sparse rewards requires consistent optimal behavior.
This often hinders learning of optimal policies with evolutions.
The above can be addressed by combining the framework with a
meta-controller or using a more sophisticated architecture such as
a master-slave framework [38]. We leave this for future work.

ACKNOWLEDGMENTS

We thank Xiao Qi Shi, Konstantinos Plataniotis and Yuri Lawryshyn
for helpful discussions during early stages of the project. The au-
thors are also thankful to Seyed Kamyar Seyed Ghasemipour and
anonymous reviewers for providing valuable feedback on the paper.
KS was supported by the Edward S. Rogers Graduate Scholarship
and Borelis Al, RBC’s research institute.

Main Track

REFERENCES

(1]

=
&

[13]

[14

[15]

(18]

[19]

[20]

[21]

[22]

Prasanna Balaprakash, Romain Egele, Misha Salim, Stefan Wild, Venkatram
Vishwanath, Fangfang Xia, Tom Brettin, and Rick Stevens. 2019. Scalable
reinforcement-learning-based neural architecture search for cancer deep learning
research. Proceedings of the SC (Nov 2019).

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schul-
man, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym. cite arxiv:1606.01540.
Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. 2019. Exploration
by random network distillation. In ICLR.

Lasse Espeholt, Raphaél Marinier, Piotr Stanczyk, Ke Wang, and Marcin Michalski.
2020. SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference.
In ICLR.

Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing Function
Approximation Error in Actor-Critic Methods. CoRR abs/1802.09477 (2018).
arXiv:1802.09477

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a
Stochastic Actor. CoRR abs/1801.01290 (2018). arXiv:1801.01290

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi.
2019. Dream to Control: Learning Behaviors by Latent Imagination.
arXiv:1912.01603 [cs.LG]

Hado V. Hasselt. 2010. Double Q-learning. In NIPS 23.

Rein Houthooft, Yuhua Chen, Phillip Isola, Bradly Stadie, Filip Wolski, Jonathan
Ho, and Pieter Abbeel. 2018. Evolved Policy Gradients. In NIPS. 5400-5409.
Peter J. Huber. 1964. Robust estimation of a location parameter. Annals of
Mathematical Statistics 35, 1 (March 1964), 73-101.

Perttu Himélainen, Amin Babadi, Xiaoxiao Ma, and Jaakko Lehtinen. 2018. PPO-
CMA: Proximal Policy Optimization with Covariance Matrix Adaptation. CoRR
abs/1810.02541 (2018). arXiv:1810.02541

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog,
Eric Jang, Deirdre Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke,
and Sergey Levine. 2018. Scalable Deep Reinforcement Learning for Vision-Based
Robotic Manipulation. In CoRL (PMLR, Vol. 87). PMLR, 651-673.

Shauharda Khadka and Kagan Tumer. 2018. Evolution-Guided Policy Gradient
in Reinforcement Learning. In NIPS (NIPS’18). Curran Associates Inc., Red Hook,
NY, USA, 1196-1208.

Shauharda Khadka, Connor Yates, and Kagan Tumer. 2018. A Memory-Based
Multiagent Framework for Adaptive Decision Making. In 17th ICAAMS.
Diederik P. Kingma and Jimmy Ba. [n.d.]. Adam: A Method for Stochastic
Optimization. 3rd International Conference for Learning Representations, San
Diego, 2015.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. ImageNet Classifi-
cation with Deep Convolutional Neural Networks. In NIPS. Curran Associates,
Inc., 1097-1105.

Tejas D. Kulkarni, Karthik R. Narasimhan, Ardavan Saeedi, and Joshua B. Tenen-
baum. 2016. Hierarchical Deep Reinforcement Learning: Integrating Temporal
Abstraction and Intrinsic Motivation. In NIPS. 3682-3690.

Qingfeng Lan, Yangchen Pan, Alona Fyshe, and Martha White. 2020. Maxmin
Q-learning: Controlling the Estimation Bias of Q-learning. In International Con-
ference on Learning Representations.

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Manfred Otto
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous
control with deep reinforcement learning. CoRR abs/1509.02971 (2015).

A. Rupam Mahmood, Dmytro Korenkevych, Gautham Vasan, William Ma, and
James Bergstra. 2018. Benchmarking Reinforcement Learning Algorithms on
Real-World Robots. CoRR abs/1809.07731 (2018). arXiv:1809.07731

Parvin Malekzadeh, Mohammad Salimibeni, Arash Mohammadi, Akbar Assa, and
Konstantinos N. Plataniotis. 2020. MM-KTD: Multiple Model Kalman Temporal
Differences for Reinforcement Learning. arXiv:2006.00195 [cs.LG]

Thomas Miconi, Aditya Rawal, Jeff Clune, and Kenneth O. Stanley. 2020. Back-
propamine: training self-modifying neural networks with differentiable neuro-
modulated plasticity. arXiv:2002.10585

1245

[23

&
=)

S
=

[41

[42

[43

=
&

AAMAS 2022, May 9-13, 2022, Online

Volodymyr Mnih, Adria Puigdoménech Badia, Mehdi Mirza, Alex Graves, Timo-
thy P. Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous Methods for Deep Reinforcement Learning. CoRR abs/1602.01783 (2016).
arXiv:1602.01783

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin A. Riedmiller. 2013. Playing Atari
with Deep Reinforcement Learning. CoRR abs/1312.5602 (2013). arXiv:1312.5602
David E Moriarty and Risto Mikkulainen. 1996. Efficient reinforcement learning
through symbiotic evolution. Machine Learning 22, 1-3 (1996), 11-32.

Vinod Nair and Geoffrey E. Hinton. 2010. Rectified Linear Units Improve
Restricted Boltzmann Machines. In ICML, Johannes Firnkranz and Thorsten
Joachims (Eds.). 807-814.

Paolo Pagliuca, Nicola Milano, and Stefano Nolfi. 2019. Efficacy of Modern Neuro-

Evolutionarl}jl Strategies for Continuous Control Optimization. arXiv:1912.05239
Alois Pourchot and Olivier Sigaud. 2018. CEM-RL: Combining evolutionary and

gradient-based methods for policy search. arXiv:1810.01222

Golden Rockefeller, Shauharda Khadka, and Kagan Tumer. 2020. Multi-Level
Fitness Critics for Cooperative Coevolution. In ICAAMS.

David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning
Representations by Back-propagating Errors. Nature 323, 6088 (1986), 533-536.
Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
Xi Chen, and Xi Chen. 2016. Improved Techniques for Training GANs. In 29th
NIPS.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya Sutskever. 2017.
Evolution Strategies as a Scalable Alternative to Reinforcement Learning.
arXiv:1703.03864

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust Region Policy Optimization. In ICML (PMLR, Vol. 37), Francis Bach
and David Blei (Eds.). PMLR, Lille, France, 1889-1897.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).
David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, and et. al. 2016. Mas-
tering the Game of Go with Deep Neural Networks and Tree Search. Nature 529,
7587 (Jan. 2016), 484-489.

Aravind Srinivas, Michael Laskin, and Pieter Abbeel. 2020. Curl: Contrastive
unsupervised representations for reinforcement learning. arXiv preprint
arXiv:2004.04136 (2020).

Kenneth O. Stanley and Risto Miikkulainen. 2002. Evolving Neural Networks
through Augmenting Topologies. Evolutionary Computing 10, 2 (June 2002),
99-127.

Karush Suri and Rinki Gupta. 2018. Transfer Learning for sEMG-based Hand
Gesture Classification using Deep Learning in a Master- Slave Architecture. IC3I
(Oct 2018).

Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction.

Yuval Tassa, Yotam Doron, Alistair Muldal, Tom Erez, Yazhe Li, Diego de
Las Casas, David Budden, Abbas Abdolmaleki, Josh Merel, Andrew Lefrancq,
Timothy P. Lillicrap, and Martin A. Riedmiller. 2018. DeepMind Control Suite.
CoRR abs/1801.00690 (2018).

Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine
for model-based control. In IROS, 2012 IEEE/RSY International Conference on. IEEE,
5026-5033.

Hado van Hasselt, Arthur Guez, and David Silver. 2015. Deep Reinforcement
Learning with Double Q-learning. (2015). cite arxiv:1509.06461Comment: AAAI
2016.

Yuhuai Wu, EIman Mansimov, Shun Liao, Roger Grosse, and Jimmy Ba. 2017.
Scalable trust-region method for deep reinforcement learning using Kronecker-
factored approximation. arXiv:1708.05144 [cs.LG]

Brian D. Ziebart. 2010. Modeling Purposeful Adaptive Behavior with the Principle
of Maximum Causal Entropy. Ph.D. Dissertation. USA. Advisor(s) Bagnell, J.
Andrew.

https://arxiv.org/abs/1802.09477
https://arxiv.org/abs/1801.01290
https://arxiv.org/abs/1912.01603
https://arxiv.org/abs/1810.02541
https://arxiv.org/abs/1809.07731
https://arxiv.org/abs/2006.00195
https://arxiv.org/abs/2002.10585
https://arxiv.org/abs/1602.01783
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1912.05239
https://arxiv.org/abs/1810.01222
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1708.05144

	Abstract
	1 Introduction
	2 Related Work
	2.1 Scalable Reinforcement Learning
	2.2 Evolutionary Reinforcement Learning

	3 Background
	3.1 Reinforcement Learning and Soft Actor-Critic
	3.2 Evolution Strategies

	4 A Motivating Example: The Discrete Cyclic MDP
	5 Evolution-based Continuous Control
	5.1 Overview
	5.2 Algorithm

	6 Automatic Mutation Tuning (AMT)
	6.1 Maximization in Weight Space
	6.2 Relation to Initial Mutations
	6.3 Policy Improvement

	7 Experiments
	7.1 Performance
	7.2 Behaviors
	7.3 Scalability

	8 Ablation Study
	8.1 Mutation Sensitivity
	8.2 Number of Updates

	9 Discussion
	9.1 Conclusion
	9.2 Limitations

	Acknowledgments
	References

