
Agent-Temporal Attention for Reward Redistribution in
Episodic Multi-Agent Reinforcement Learning

Baicen Xiao

University of Washington

Seattle, WA, USA

bcxiao@uw.edu

Bhaskar Ramasubramanian

Western Washington University

Bellingham, WA, USA

ramasub@wwu.edu

Radha Poovendran

University of Washington

Seattle, WA, USA

rp3@uw.edu

ABSTRACT
This paper considers multi-agent reinforcement learning (MARL)

tasks where agents receive a shared global reward at the end of

an episode. The delayed nature of this reward affects the ability

of the agents to assess the quality of their actions at intermediate

time-steps. This paper focuses on developing methods to learn a

temporal redistribution of the episodic reward to obtain a dense

reward signal. Solving such MARL problems requires addressing

two challenges: identifying (1) relative importance of states along

the length of an episode (along time), and (2) relative importance

of individual agents’ states at any single time-step (among agents).

In this paper, we introduce Agent-Temporal Attention for Re-
ward Redistribution in Episodic Multi-Agent Reinforcement
Learning (AREL) to address these two challenges. AREL uses at-

tention mechanisms to characterize the influence of actions on state

transitions along trajectories (temporal attention), and how each

agent is affected by other agents at each time-step (agent attention).
The redistributed rewards predicted by AREL are dense, and can

be integrated with any given MARL algorithm. We evaluate AREL
on challenging tasks from the Particle World environment and the

StarCraft Multi-Agent Challenge. AREL results in higher rewards

in Particle World, and improved win rates in StarCraft compared

to three state-of-the-art reward redistribution methods. Our code

is available at https://github.com/baicenxiao/AREL.

KEYWORDS
Multi-agent reinforcement learning; Credit assignment; Episodic

rewards; Attention mechanism

ACM Reference Format:
Baicen Xiao, Bhaskar Ramasubramanian, and Radha Poovendran. 2022.

Agent-Temporal Attention for Reward Redistribution in Episodic Multi-

Agent Reinforcement Learning. In Proc. of the 21st International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2022), Online, May
9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
Cooperative multi-agent reinforcement learning (MARL) involves

multiple autonomous agents that learn to collaborate to complete

tasks in a shared environment by maximizing a global reward

[5]. Examples of systems where MARL has been used include au-

tonomous vehicle coordination [31], and video games [32, 37].

One approach to enable better collaboration is to use a single

centralized controller that can access observations of all agents [16].

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

In this setting, algorithms designed for single-agent RL can be used

for the multi-agent case. However, this may not be feasible when

trained agents are deployed independently or when communication

costs between agents and the controller are prohibitive. In such a

situation, agents will need to be able to learn decentralized policies.

The centralized training with decentralized execution (CTDE)

paradigm, introduced in [21, 28], enables agents to learn decen-

tralized policies efficiently. Agents using CTDE can communicate

with each other during training, but are required to make decisions

independently at test-time. The absence of a centralized controller

will require each agent to assess how its own actions can contribute

to a shared global reward. This is called the multi-agent credit as-
signment problem, and has been the focus of recent work in MARL,

such as COMA [10], QMIX [28] and QTRAN [34]. Solving the multi-

agent credit assignment problem alone, however, is not adequate

to efficiently learn agent policies when the (global) reward signal is

delayed until the end of an episode.

In reinforcement learning, agents seek to solve a sequential deci-

sion problem guided by reward signals at intermediate time-steps.

This is called the temporal credit assignment problem [36]. In many

applications, rewards may be delayed. For example, in molecular

design [27], Go [33], and computer games such as Skiing [3], a

summarized score is revealed only at the end of an episode. The

episodic reward implies absence of feedback on quality of actions

at intermediate time steps, making it difficult to learn good poli-

cies. The long-term temporal credit assignment problem has been

studied in single-agent RL by performing return decomposition via

contribution analysis [2] and using sequence modeling [19]. These

methods do not directly scale well to MARL since size of the joint

observation space grows exponentially with number of agents [21].

Besides scalability, addressing temporal credit assignment in

MARL with episodic rewards presents two challenges: identifying

the relative importance of: i) each agent’s state at any single time-

step (agent dimension); ii) states along the length of an episode

(temporal dimension). We introduce Agent-Temporal Attention
for Reward Redistribution in Episodic Multi-Agent Rein-
forcement Learning (AREL) to address these challenges.

AREL uses attention mechanisms [38] to carry out multi-agent
temporal credit assignment by concatenating: i) a temporal attention
module to characterize the influence of actions on state transitions

along trajectories, and; ii) an agent attention module to determine

how any single agent is affected by other agents at each time-

step. The attention modules enable learning a redistribution of the

episodic reward along the length of the episode, resulting in a dense
reward signal. To overcome the challenge of scalability, instead

of working with the concatenation of (joint) agents’ observations,

Main Track AAMAS 2022, May 9–13, 2022, Online

1391

https://github.com/baicenxiao/AREL

AREL analyzes observations of each agent using a temporal at-

tention module that is shared among agents. The outcome of the

temporal attention module is passed to an agent attention module

that characterizes the relative contribution of each agent to the

shared global reward. The output of the agent attention module is

then used to learn the redistributed rewards.

When rewards are delayed or episodic, it is important to identify

‘critical’ states that contribute to the reward. The authors of [11]

recently demonstrated that rewards delayed by a long time-interval

make it difficult for temporal-difference (TD) learning methods to

carry out temporal credit assignment effectively. AREL overcomes

this shortcoming by using attention mechanisms to effectively learn

a redistribution of an episodic reward. This is accomplished by

capturing long-term dependencies between states and the episodic

reward to identify critical states.

Agents that have identical action and observation spaces are said

to be homogeneous. Consider a task where two homogeneous agents

need to collaborate to open a door by locating two buttons and

pressing them simultaneously. In this example, while locations of

the two buttons (states) are important, the identities of the agent at

each button are not. This property is termed permutation invariance,
and can be utilized to make the credit assignment process sample ef-

ficient [11, 19]. Thus, a redistributed reward must identify whether

an agent is in a ‘good’ state, and should also be invariant to the

identity of the agent in that state.AREL enforces this property by de-
signing the credit assignment network with permutation-invariant

operations among homogeneous agents, and can be integrated with

MARL algorithms to learn agent policies.

We evaluateAREL on three tasks from the ParticleWorld environ-

ment [21], and three combat scenarios in the StarCraft Multi-Agent

Challenge [32]. In each case, agents receive a summarized reward

only at the end of an episode. We compare AREL with three state-

of-the-art reward redistribution techniques, and observe that AREL
results in accelerated learning of policies and higher rewards in

Particle World, and improved win rates in StarCraft.

Additional analysis and experiments are presented in an Appen-
dix available at https://arxiv.org/abs/2201.04612.

2 RELATEDWORK
Several techniques have been proposed to address temporal credit

assignment when prior knowledge of the problem domain is avail-

able. Potential-based reward shaping is one such method that pro-

vided theoretical guarantees in single [25] and multi-agent [7, 22]

RL, and was shown to accelerate learning of policies in [8]. Credit

assignment was also studied by incorporating human feedback

through imitation learning [17, 29] and demonstrations [4, 13].

When prior knowledge of the problem domain is not available,

recent work has studied temporal credit assignment in single-agent

RL with delayed rewards. An approach named RUDDER [2] used

contribution analysis to decompose episodic rewards by computing

the difference between predicted returns at successive time-steps.

In parallel, the authors of [19] proposed using natural language

processing models for carrying out temporal credit assignment for

episodic rewards. The scalability of the above methods to MARL,

though, can be a challenge due to the exponential growth in the

size of the joint observation space [21].

In the multi-agent setting, recent work has studied performing

multi-agent credit assignment at each time-step. Difference rewards

were used to assess the contribution of an agent to a global reward

in [1, 9, 10] by computing a counterfactual term that marginalized

out actions of that agent while keeping actions of other agents

fixed. Value decomposition networks, proposed in [35], decom-

posed a centralized value into a sum of agent values to assess the

contributions of each agent. A monotonicity assumption on value

functions was imposed in QMIX [28] to assign credit to individ-

ual agents. A generalized approach to decompose a joint value

into individual agent values was presented in QTRAN [34]. The

Shapley Q-value was used in [39] to distribute a global reward to

identify each agent’s contribution. The authors of [40] decomposed

global Q-values along trajectory paths, while [42] used an entropy-

regularized method to encourage exploration to aid multi-agent

credit assignment. The above techniques did not address long-term

temporal credit assignment and hence will not be adequate for

learning policies efficiently when rewards are delayed.

Attention mechanisms have been used for multi-agent credit

assignment in recent work. The authors of [24] used an attention

mechanism with a CTDE-based algorithm to enable each agent

to effectively model policies of other agents (from its own per-

spective). Hierarchical graph attention networks proposed in [30]

modeled hierarchical relationships among agents and used two

attention networks to effectively represent individual and group

level interactions. The authors of [15, 20] combined attention net-

works with graph-based representations to indicate the presence

and importance of interactions between any two agents. The above

approaches used attention mechanisms primarily to identify re-

lationships between agents at a specific time-step. They did not

consider long-term temporal dependencies, and therefore may not

be sufficient to learn policies effectively when rewards are delayed.

A method for temporal redistribution of episodic rewards in sin-

gle and multi-agent RL was recently presented in [11]. A ‘surrogate

objective’ was used to uniformly redistribute an episodic reward

along a trajectory. However, this work did not use information

from sample trajectories to characterize the relative contributions

of agents at intermediate time-steps along an episode.

Our approach differs from the above-mentioned related work in

that it uses attention mechanisms for multi-agent temporal credit

assignment. AREL overcomes the challenge of scalability by analyz-

ing observations of each agent using temporal and agent attention

modules, which respectively characterize the effect of actions on

state transitions along a trajectory and how each agent is influ-

enced by other agents at each time-step. Together, these modules

will enable an effective redistribution of an episodic reward. AREL
does not require human intervention to guide agent behaviors, and

can be integrated with MARL algorithms to learn decentralized

agent policies in environments with episodic rewards.

3 BACKGROUND
A fully cooperative multi-agent task can be specified as a decentral-

ized partially observable Markov decision process (Dec-POMDP)

[26]. A Dec-POMDP is a tuple𝐺 = (𝑆,𝐴, 𝑃, 𝑟, 𝑍,𝑂, 𝑛,𝛾), where 𝑠 ∈ 𝑆
describes the environment state. Each agent 𝑖 ∈ {1, 2, . . . , 𝑛} re-
ceives an observation 𝑜𝑖 ∈ 𝑂𝑖

according to an observation function

Main Track AAMAS 2022, May 9–13, 2022, Online

1392

https://arxiv.org/abs/2201.04612

Figure 1: Schematic of AREL. The agent-temporal attention block concatenates temporal and agent attention modules, and
summarizes input feature (e.g. observation) vectors. This is accomplished by establishing relationships between (attending to)
information along time and among agents. The attention flow indicates that an output feature vector of the agent-temporal
attention block for an agent at a time 𝑡 (green square) can attend to input features from all other agents before and including
time 𝑡 . Multiple agent-temporal attention blocks can be concatenated to each other to improve expressivity. The output of the
last such block is fed to the credit assignment block, which applies shared multi-layer perceptrons to each attention feature.
The output is the redistributed reward, which is integrated with MARL algorithms (e.g. MADDPG, QMIX) to learn agent policies.

𝑍 (𝑠, 𝑖) : 𝑆×N→ 𝑂 . At each time step, agent 𝑖 chooses action𝑎𝑖 ∈ 𝐴𝑖
according to its policy 𝜋𝑖 : 𝑂𝑖 × 𝐴𝑖 → [0, 1]. 𝐴1 × · · · × 𝐴𝑛 := 𝐴

forms the joint action space, and the environment transitions to the

next state according to the function 𝑃 : 𝑆 ×𝐴1 × · · · ×𝐴𝑛 → 𝑆 . All

agents share a global reward 𝑟 : 𝑆 ×𝐴→ R. The goal of the agents
is to determine their individual policies to maximize the return,
𝐽 := E𝑠∼𝑃,𝑎1∼𝜋1,...,𝑎𝑛∼𝜋𝑛 [

∑𝑇
𝑡=0

𝛾𝑡𝑟𝑡 (𝑠, 𝑎1, . . . , 𝑎𝑛)], where 𝛾 is a dis-

count factor, and𝑇 is the length of the horizon. Let𝑎𝑡 := (𝑎1

𝑡 , . . . , 𝑎
𝑛
𝑡)

and 𝑅𝑡 :=
∑𝑇−𝑡
𝑙=0

𝛾𝑙𝑟𝑡+1. A trajectory of length 𝑇 is an alternating

sequence of observations and actions, 𝜏 := (𝑜0, 𝑎0, 𝑜1, 𝑎1, . . . , 𝑜𝑇).
In a typicalMARL task, agents receive reward 𝑟 (𝑠, 𝑎) immediately

following execution of action 𝑎 at state 𝑠 . The expected return can

then be determined by accumulating rewards at each time step. In

episodic RL, a reward is revealed only at the end of an episode at

time 𝑇 , and agents do not receive a reward at intermediate time-

steps. As a consequence, the expected return for all 𝑡 < 𝑇 will

be the same (when 𝛾 = 1). Therefore, the quality of information

available for learning policies will be poor at all intermediate time

steps. Moreover, delayed rewards have been shown to introduce a

large bias [2] or variance [25] in the performance of RL algorithms.

The CTDE paradigm [10, 21] can be adopted to learn decen-

tralized policies effectively when dimensions of state and action

spaces are large. During training, an agent can make use of informa-

tion about other agents’ states and actions to aid its own learning.

At test-time, decentralized policies are executed. This paradigm

has been used to successfully complete tasks in complex MARL

environments [12, 14, 28].

4 APPROACH
This paper considers MARL tasks where agents share the same

global reward, which is received only at the end of an episode.

The objective is to redistribute this episodic reward for effective

multi-agent temporal credit assignment. To accomplish this goal,

it is critical to identify the relative importance of: i) individual

agents’ observations at each time-step, and; ii) observations along

the length of a trajectory. We introduce AREL to address the above

challenges. AREL uses an agent-temporal attention block to infer

relationships among states at different times, and among agents. A

schematic is shown in Fig. 1, and we describe its key components

and overall workflow in the remainder of this section.

4.1 Agent-Temporal Attention
In order to redistribute an episodic reward in a meaningful way,

we need to be able to extract useful information from trajectories.

Each trajectory contains a sequence of observations involving all

agents. At each time-step of an episode of length 𝑇 , a feature of

dimension 𝐷 corresponds to the embedding of a single observation.

When there are 𝑁 agents, a trajectory is denoted by E ∈ R𝑇×𝑁×𝐷 .
The objective is to learn a mapping 𝑓𝑎𝑟𝑒𝑙 (E) : R𝑇×𝑁×𝐷 → R𝑇 to

assign credit to the agents at each time-step. The information in a

trajectory E comprises two parts: (1) temporal information between

(embeddings of) observations at different time steps: this provides

insight into the influence of actions on transitions between states;

(2) structural information: this provides insight into how any single

agent is affected by other agents.

These two parts are coupled, and hence studied together. The pro-

cess of learning these relationships is termed attention. We propose

an agent-temporal attention structure, inspired by the Transformer

[38]. This structure selectively pays attention to different types of

information- either from individual agents, or at different time-steps

along a trajectory. This is accomplished by associating a weight to

an observation based on its relative importance to other observa-

tions along the trajectory. The agent-temporal attention structure

is formed by concatenating one agent attention module with one

temporal attention module. The temporal attention modules deter-

mine how entries of E at different time-steps are related (along the

‘first’ dimension of E). The agent attention module determines how

agents influence one another (along the ‘second’ dimension of E).

4.1.1 Temporal-Attention Module. The input is a trajectory

E ∈ R𝑇×𝑁×𝐷 . To calculate the temporal attention feature, we

Main Track AAMAS 2022, May 9–13, 2022, Online

1393

obtain the transpose of E as Ē ∈ R𝑁×𝑇×𝐷 . Adopting notation

from [38], each row e𝑖 ∈ R𝑇×𝐷 of Ē is transformed to a query
𝑄𝑡𝑒𝑚
𝑖

:= e𝑖𝑊 𝑡𝑒𝑚
𝑞 , key 𝐾𝑡𝑒𝑚

𝑖
:= e𝑖𝑊 𝑡𝑒𝑚

𝑘
, and value𝑉 𝑡𝑒𝑚

𝑖
:= e𝑖𝑊 𝑡𝑒𝑚

𝑣 .

𝑊 𝑡𝑒𝑚
𝑞 ,𝑊 𝑡𝑒𝑚

𝑘
,𝑊 𝑡𝑒𝑚

𝑣 ∈ R𝐷×𝐷 are learnable parameters, and 𝑖 ∈
{0, . . . , 𝑁 − 1}. The 𝑡𝑡ℎ row 𝑥𝑖,𝑡 of the temporal attention feature

x𝑖 ∈ R𝑇×𝐷 is a weighted sum 𝑥𝑖,𝑡 := 𝛼𝑇
𝑖,𝑡
𝑉 𝑡𝑒𝑚
𝑖

. The temporal at-

tention weight vector 𝛼𝑖,𝑡 ∈ R𝑇×1
is a normalization of the inner-

product between the 𝑡𝑡ℎ row of 𝑄𝑡𝑒𝑚
𝑖

, 𝑞𝑡𝑒𝑚
𝑖,𝑡

, and the key 𝐾𝑡𝑒𝑚
𝑖

:

𝛼𝑇𝑖,𝑡 = softmax(
𝑞𝑡𝑒𝑚
𝑖,𝑡

𝐾𝑡𝑒𝑚
𝑖

𝑇

√
𝐷

⊙𝑚𝑇
𝑡), (1)

where ⊙ is an element-wise product, and𝑚𝑡 is a mask with its first

𝑡 entries equal to 1, and remaining entries 0. The mask preserves

causality by ensuring that at any time 𝑡 , information beyond 𝑡

will not be used to assign credit. A temporal positional embedding

[6] maintains information about relative positions of states in an

episode. Position embeddings are learnable vectors associated to

each temporal position of a trajectory. The sum of position and

trajectory embeddings forms the input to the temporal attention

module. The output of this module is X ∈ R𝑁×𝑇×𝐷 , obtained by

stacking x𝑖 , 𝑖 ∈ 0, . . . , 𝑁 − 1. The temporal attention process can be

described by a function 𝑓𝑡𝑒𝑚 (E) → X.
The output of the temporal attention module results in an assess-

ment of each agent’s observation at any single time-step relative to

observations at other time-steps of an episode. To obtain further

insight into how an agent’s observation is related to other agents’

observations, an agent-attention module is concatenated to the

temporal-attention module.

4.1.2 Agent-Attention Module. The agent-attention module

uses the transpose of X, denoted X̄ ∈ R𝑇×𝑁×𝐷 . Each row of X̄,
x𝑡 ∈ R𝑁×𝐷 is transformed to a query 𝑄𝑎𝑔𝑡

𝑡 = x𝑡𝑊
𝑎𝑔𝑡
𝑞 , key 𝐾𝑎𝑔𝑡

𝑡 =

x𝑡𝑊
𝑎𝑔𝑡

𝑘
, and value𝑉𝑎𝑔𝑡

𝑡 = x𝑡𝑊
𝑎𝑔𝑡
𝑣 . Here,𝑊

𝑎𝑔𝑡
𝑞 ,𝑊

𝑎𝑔𝑡

𝑘
,𝑊

𝑎𝑔𝑡
𝑣 ∈ R𝐷×𝐷

are learnable parameters. The 𝑖𝑡ℎ row 𝑧𝑡,𝑖 of the agent attention

feature z𝑡 ∈ R𝑁×𝐷 is a weighted sum, 𝑧𝑡,𝑖 = 𝛽𝑇
𝑡,𝑖
𝑉
𝑎𝑔𝑡
𝑡 . The agent

attention weight vector 𝛽𝑡,𝑖 ∈ R𝑁×1
is determined similarly to the

temporal attention weight vector in Eqn. (1) but without the mask-

ing operation since causality need not be maintained. Therefore,

𝛽𝑇𝑡,𝑖 = softmax(
𝑞
𝑎𝑔𝑡

𝑡,𝑖
𝐾
𝑎𝑔𝑡
𝑡

𝑇

√
𝐷

). (2)

The agent attention procedure can be described by a function

𝑓𝑎𝑔𝑡 (X) → Z, where Z ∈ R𝑇×𝑁×𝐷 .

4.1.3 Concatenating Attention Modules. The output of the

temporal attentionmodule is an entityX that attends to information

at time-steps along the length of an episode for each agent. Passing

X through the agent attention module results in an output Z that

is attended to by embeddings at all time-steps and from all agents.

The data-flow of this process can be written as a composition of

functions: 𝑓𝑎𝑡𝑡 := 𝑓𝑎𝑔𝑡 ◦ 𝑓𝑡𝑒𝑚 . The temporal and agent attention

modules can be repeatedly composed to improve expressivity. The

position embedding is required only at the first temporal attention

module when more than one is used.

4.2 Credit Assignment
The output of the attention modules is used to assign credit at

each time-step along the length of the episode. Let 𝑓𝑎𝑟𝑒𝑙 := 𝑓𝑐 ◦
(𝑓𝑎𝑡𝑡 ◦ · · · ◦ 𝑓𝑎𝑡𝑡), where 𝑓𝑐 : R𝑇×𝑁×𝐷 → R𝑇 . In order to carry out

temporal credit assignment effectively, we leverage a property of

permutation invariance.

4.2.1 Permutation Invariance. Agents sharing the same action

and observation spaces are termed homogeneous. When homoge-

neous agents 𝑎𝑔1 and 𝑎𝑔2 cooperate to achieve a goal, the reward

when 𝑎𝑔1 observes 𝑜𝑏1 and 𝑎𝑔2 observes 𝑜𝑏2 should be the same as

the case when 𝑎𝑔1 observes 𝑜𝑏2 and 𝑎𝑔2 observes 𝑜𝑏1. This property

is called permutation invariance, and has been shown to improve

the sample-efficiency of multi-agent credit assignment as the num-

ber of agents increase [11, 18]. When this property is satisfied, the

output of the function 𝑓𝑎𝑟𝑒𝑙 should be invariant to the order of the

agents’ observations. Formally, if the set of all permutations along

the agent dimension (second dimension of E) is denotedH , then

𝑓𝑎𝑟𝑒𝑙 (ℎ1 (E)) = 𝑓𝑎𝑟𝑒𝑙 (ℎ2 (E)) must be true for all ℎ1, ℎ2 ∈ H .

The function 𝑓𝑎𝑡𝑡 is permutation invariant along the agent dimen-

sion by design. A sufficient condition for 𝑓𝑎𝑟𝑒𝑙 to be permutation

invariant is that the function 𝑓𝑐 be permutation invariant. To en-

sure this, we apply a multi-layer perceptron (MLP), add the MLP

outputs element-wise, and pass it through another MLP. When

functions 𝑔1 and 𝑔2 associated to the MLPs are continuous and

shared among agents, the evaluation at time 𝑡 is the predicted reward
𝑟𝑡 := 𝑔2

(∑𝑁−1

𝑖=0
𝑔1 (𝑧𝑡,𝑖)

)
. It was shown in [41] that any permutation

invariant function can be represented by the above equation.

Remark 4.1. AREL can be adapted to the heterogeneous case
when cooperative agents are divided into homogeneous groups. Similar
to a position embedding, we can apply an agent-group embedding

such that agents within a group share an agent-group embedding.
This will maintain permutation invariance of observations within a
group, while enabling identification of agents from different groups.
AREL will also work in the case when the multi-agent system is fully
heterogeneous. This is equivalent to a scenario when there is only one
agent in each homogeneous group. Therefore, AREL can handle agent
types ranging from fully homogeneous to fully heterogeneous.

4.2.2 Credit Assignment Learning. Given a reward 𝑅𝑇 at the

end of an episode of length𝑇 , the goal is to learn a temporal decom-

position of 𝑅𝑇 to assess contributions of agents at each time-step

along the trajectory. Specifically, we want to learn {𝑟𝑡 }𝑇𝑡=0
satisfy-

ing

∑𝑇
𝑡=0

𝑟𝑡 = 𝑅𝑇 . Since 𝑓
𝜃
𝑎𝑟𝑒𝑙
(E) is a vector in R𝑇 , its 𝑡𝑡ℎ entry is

denoted 𝑓 𝜃
𝑎𝑟𝑒𝑙
(E𝑡) (= 𝑟𝑡). The sequence {𝑟𝑡 }𝑇𝑡=0

is learned by mini-

mizing a regression loss, 𝑙𝑟 (𝜃) := EE,RT

[
1

𝑇

(∑
𝑡 (𝑓 𝜃𝑎𝑟𝑒𝑙 (E𝑡)) − 𝑅𝑇

)
2
]
,

where 𝜃 are neural network parameters.

The redistributed rewards will be provided as an input to aMARL

algorithm. We want to discourage {𝑟𝑡 }𝑇𝑡=0
from being sparse, since

sparse rewards may impede learning policies [7]. We observe that

more than one combination of {𝑟𝑡 }𝑇𝑡=0
can minimize 𝑙𝑟 (𝜃). We add a

regularization loss 𝑙𝑟𝑒𝑔 (𝜃) to select among solutions that minimize

𝑙𝑟 (𝜃). Specifically, we aim to choose a solution that also minimizes

the variance 𝑙𝑣 (𝜃) of the redistributed rewards, and set 𝑙𝑟𝑒𝑔 (𝜃) =
𝑙𝑣 (𝜃) (we examine other choices of 𝑙𝑟𝑒𝑔 (𝜃) in the Appendix). Using
𝑙𝑣 (𝜃) as a regularization term in the loss function leads to learning

Main Track AAMAS 2022, May 9–13, 2022, Online

1394

less sparsely redistributed rewards. With 𝜔 ∈ R≥0 denoting a

hyperparameter, the combined loss function used to learn 𝑓 𝜃
𝑎𝑟𝑒𝑙

is:

𝑙𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 (𝜃) = 𝑙𝑟 (𝜃) + 𝜔𝑙𝑣 (𝜃), (3)

where 𝑙𝑣 (𝜃) := EE
[

1

𝑇

∑
𝑡 (𝑓 𝜃𝑎𝑟𝑒𝑙 (E𝑡) −

¯𝑓 𝜃 (E))2
]
, and

¯𝑓 𝜃 (E) :=(∑
𝑡 𝑓

𝜃
𝑎𝑟𝑒𝑙
(E𝑡)

)
/𝑇 . The form of 𝑙𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 (𝜃) in Eqn. (3) incorporates

the possibility that not all intermediate states will contribute equally

to 𝑅𝑇 , and additionally results in learning less sparsely redistributed

rewards. Note that arg min𝜃 [𝑙𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 (𝜃)] will not typically yield

𝑙𝑟 (𝜃) = 𝑙𝑣 (𝜃) = 0 (which corresponds to a uniform redistribution of

rewards). Since some states may be common to different episodes,

the redistributed reward 𝑟𝑡 at each time-step cannot be arbitrar-

ily chosen. For e.g., consider 𝑁 different episodes {𝐸𝑖 }𝑁𝑖=1
, each of

length 𝐿, with distinct cumulative episodic rewards 𝑅𝑖 . If an inter-

mediate state 𝑠 is common to episodes 𝐸 𝑗 and 𝐸𝑘 , under a uniform

redistribution, distinct rewards 𝑅 𝑗/𝐿 and 𝑅𝑘/𝐿 will be assigned to

𝑠 , which is not possible. Thus, 𝑙𝑟 (𝜃) = 0 and 𝑙𝑣 (𝜃) = 0 will not both

be true, implying that a uniform redistribution may not be viable.

4.3 Algorithm

Algorithm 1 AREL

Input: Number of agents 𝑁 . Reward weight 𝛼 ∈ [0, 1].
Initialize parameters 𝜃, 𝜙 for credit assignment and RL (policy/

critic) modules respectively.

Experience buffer for storing trajectories 𝐵𝑒 ← ∅. Prediction
function update frequency𝑀 .

1: for Episode 𝑘 = 0, . . . do
2: Reset episode return 𝑅𝑇 ← 0; Reset trajectory for current

episode 𝜏 ← ∅
3: for step 𝑡 = 0, . . . ,𝑇 − 1 do
4: Sample action 𝑎𝑖𝑡 ∼ 𝜋𝑖𝜙 (𝑜

𝑖
𝑡), for 𝑖 = 0, . . . , 𝑁 − 1

5: Take action 𝑎𝑡 ; Observe 𝑜𝑡+1 = (𝑜0

𝑡+1, . . . , 𝑜
𝑁−1

𝑡+1)
6: Store transition 𝜏 ← 𝜏 ∪ {(𝑜𝑡 , 𝑎𝑡 , 𝑜𝑡+1)}
7: end for
8: Update episode reward 𝑅𝑇 ; Store trajectory 𝐵𝑒 ← 𝐵𝑒 ∪

(𝜏, 𝑅𝑇)
9: Sample a batch of trajectories 𝐵𝜏 ∼ 𝐵𝑒
10: Predict reward 𝑟𝑡 using 𝑓

𝜃
𝑎𝑟𝑒𝑙
(𝜏) for each 𝜏 ∈ 𝐵𝜏

11: Update 𝜙 using {(𝑜𝑡 , 𝑎𝑡 , 𝑜𝑜𝑡+1)} ∈ 𝜏 and weighted reward

𝛼𝑟𝑡 + (1 − 𝛼)1𝑡=𝑇𝑅𝑇
12: if 𝑘 mod𝑀 is 0 then
13: for each gradient update do
14: Sample a batch from 𝐵𝑒 , and compute estimate of total

loss,
ˆ𝑙𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 (𝜃)

15: 𝜃 ← 𝜃 − ∇𝜃 ˆ𝑙𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 (𝜃)
16: end for
17: end if
18: end for

AREL is summarized in Algorithm 1. Parameters𝜙 of RL modules

and 𝜃 of the credit assignment function are randomly initialized.

Observations and actions of agents are collected in each episode

(Lines 2-6). Trajectories and episodic rewards are stored in an expe-

rience buffer 𝐵𝑒 (Line 8). The reward 𝑟𝑡 at each time step for every

trajectory in a batch 𝐵𝜏 (sampled from 𝐵𝑒) is predicted (Lines 9-10).

The predicted 𝑟𝑡 changes as 𝜃 is updated, but the episode reward 𝑅𝑇
remains the same. A weighted sum 𝛼𝑟𝑡 + (1−𝛼)1𝑡=𝑇𝑅𝑇 (1𝑡=𝑇 is an

indicator function) is used to update 𝜙 in a stable manner by using

a MARL algorithm (Line 11). The credit assignment function 𝑓 𝜃
𝑎𝑟𝑒𝑙

is updated when𝑀 new trajectories are available (Lines 12-17).

4.4 Analysis
In order to establish a connection between redistributed rewards

from Line 10 of Algorithm 1 and the episodic reward, we define

return equivalence of decentralized partially observable sequence-
Markov decision processes (Dec-POSDP). This generalizes the notion
of return equivalence introduced in [2] in the fully observable

setting for the single agent case. A Dec-POSDP is a decision process

with Markov transition probabilities but has a reward distribution

that need not be Markov. We present a result that establishes that

return equivalent Dec-POSDPs will have identical optimal policies.

Definition 4.2. Dec-POSDPs ˜P and P are return equivalent
if they differ only in their reward functions but have the same return
for any trajectory 𝜏 .

Theorem 4.3. Given an initial state 𝑠0, return-equivalent Dec-
POSDPs will have identical optimal policies.

According to Definition 4.2, any two return equivalent Dec-

POSDPs will have the same expected return for any trajectory 𝜏 .

That is, 𝑅̃0 (𝜏) = 𝑅0 (𝜏),∀𝜏 . This is used to prove Theorem 4.3.

Proof. Since return equivalent Dec-POSDPs
˜P and P have the

same transition probability and observation functions, the prob-

abilities that a trajectory 𝜏 is realized will be the same if both

Dec-POSDPs are given the same policy. For any joint agent policy

𝜋 := (𝜋1, . . . , 𝜋𝑛) and sequence of states 𝑠 := (𝑠0, . . . , 𝑠𝑇),

E
𝜏∼(𝜋,𝑍̃ ,𝑃)

[
𝑅̃0 (𝜏)

]
=
∑︁
𝜏

𝑅̃0 (𝜏)
∑︁
𝑠

𝑝 (𝑠0)
𝑇−1∏
𝑡=0

𝜋 (𝑎𝑡 |𝑜𝑡)𝑍 (𝑜𝑡 |𝑠𝑡)𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)︸ ︷︷ ︸
𝑝̃𝜋 (𝜏)

=
∑︁
𝜏

𝑅̃0 (𝜏)
∑︁
𝑠

𝑝 (𝑠0)
𝑇−1∏
𝑡=0

𝜋 (𝑎𝑡 |𝑜𝑡)𝑍 (𝑜𝑡 |𝑠𝑡)𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)︸ ︷︷ ︸
𝑝𝜋 (𝜏)

=
∑︁
𝜏

𝑅0 (𝜏)
∑︁
𝑠

𝑝 (𝑠0)
𝑇−1∏
𝑡=0

𝜋 (𝑎𝑡 |𝑜𝑡)𝑍 (𝑜𝑡 |𝑠𝑡)𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡)︸ ︷︷ ︸
𝑝𝜋 (𝜏)

= E𝜏∼(𝜋,𝑍,𝑃)
[
𝑅0 (𝜏)

]
.

These equations follow from Definition 4.2. Let 𝜋∗ denote an opti-

mal policy for
˜P. Then, we have:

E
𝜏∼(𝜋∗,𝑍̃ ,𝑃)

[
𝑅̃0 (𝜏)

]
= E𝜏∼(𝜋∗,𝑍,𝑃)

[
𝑅0 (𝜏)

]
≥ E

𝜏∼(𝜋,𝑍̃ ,𝑃)
[
𝑅̃0 (𝜏)

]
= E𝜏∼(𝜋,𝑍,𝑃)

[
𝑅0 (𝜏)

]
.

Therefore, 𝜋∗ will also be an optimal policy for P. □

Main Track AAMAS 2022, May 9–13, 2022, Online

1395

(a) Cooperative Push (b) Predator and Prey (c) Cooperative Navigation

Figure 2: Average agent rewards and standard deviation for tasks in Particle World with episodic rewards and 𝑁 = 15. AREL
(dark blue) results in the highest average rewards in all tasks.

When 𝑙𝑟 (𝜃) = 0 in Eqn. (3), a Dec-POSDP with the redistributed

reward will be return-equivalent to a Dec-POSDP with the original

episodic reward. Theorem 4.3 indicates that in this scenario, the

two Dec-POSDPs will have the same optimal policies. An addi-

tional result in Appendix A gives a bound on 𝑙𝑜𝑠𝑠𝑡𝑜𝑡𝑎𝑙 (𝜃) when the

estimators 𝑓 𝜃
𝑎𝑟𝑒𝑙
(𝐸𝑡) are unbiased at each time-step.

5 EXPERIMENTS
In this section, we describe the tasks that we evaluate AREL on, and
present results of our experiments. Additional results and our code

is available at https://github.com/baicenxiao/AREL.

5.1 Environments and Tasks
We study tasks from Particle World [21] and the StarCraft Multi-
Agent Challenge [32]. These have been identified as challenging

multi-agent environments in [21, 32]. In each task, a reward is

received by agents only at the end of an episode. No reward is

provided at other time steps. We briefly summarize the tasks below

and defer detailed task descriptions to Appendix B.
(1) Cooperative Push: 𝑁 agents work together to move a large

ball to a landmark.

(2) Predator-Prey: 𝑁 predators seek to capture 𝑀 preys. 𝐿 land-

marks impede movement of agents.

(3) Cooperative Navigation: 𝑁 agents seek to reach 𝑁 landmarks.

The maximum reward is obtained when there is exactly one agent

at each landmark.

(4) StarCraft: Units from one group (controlled by RL agents) col-

laborate to attack units from another (controlled by heuristics). We

report results for three maps: 2 Stalkers, 3 Zealots (2s3z); 1 Colossus,

3 Stalkers, 5 Zealots (1c3s5z); 3 Stalkers vs. 5 Zealots (3s_vs_5z).

5.2 Architecture and Training
In order to make the agent-temporal attention module more expres-

sive, we use a transformer architecture with multi-head attention

[38] for both agent and temporal attention. The permutation invari-

ant critic (PIC) based on the multi-agent deep deterministic policy

gradient (MADDPG) from [18] is used as the base RL algorithm

in Particle World. In StarCraft, we use QMIX [28] as the base RL

algorithm. The value of 𝛼 is set to 1 in Particle World and 0.8 in

StarCraft. Additional details are presented in Appendix C.

5.3 Evaluation
We compare AREL with three state-of-the-art methods:

(1) RUDDER [2]: A long short-term memory (LSTM) network is

used for reward decomposition along the length of an episode.

(2) Sequence Modeling [19]: An attention mechanism is used for

temporal decomposition of rewards along an episode.

(3) Iterative Relative Credit Refinement (IRCR) [11]: ‘Guidance
rewards’ for temporal credit assignment are learned using a surro-

gate objective.

RUDDER and Sequence Modeling were originally developed

for the single agent case. We adapted these methods to MARL by

concatenating observations from all agents. We added the variance-

based regularization loss in our experiments for SequenceModeling,

and observed that incorporating the regularization term resulted

in an improved performance compared to without regularization.

5.4 Results
5.4.1 AREL enables improved performance. Figure 2 shows
results of our experiments for tasks in Particle World for 𝑁 = 15. In

each case, AREL is able to guide agents to learn policies that result

in higher average rewards compared to other methods. This is a

consequence of using an attention mechanism to redistribute an

episodic reward along the length of an episode and characterizing

the contributions of individual agents.

The PIC baseline [18] fails to learn policies to complete tasks

with episodic rewards. A similar result of failure to complete tasks

was observed when using RUDDER [2]. An explanation for this

could be that, while RUDDER carries out a temporal redistribution

of rewards, it does not consider the effect of agents contributing

differently to a reward.

Sequence Modeling [19] performs better than RUDDER and the

PIC baseline, possibly because it uses attention to redistribute

episodic rewards. This was shown to outperform LSTM-based mod-

els, including RUDDER, in [19] in single-agent episodic RL, due

to the relative ease of training the attention mechanism. We be-

lieve that absence of an explicit characterization of agent-attention

resulted in a lower reward for this method compared to AREL.
Using a surrogate objective in IRCR [11] results in obtaining

rewards comparable to AREL in some runs in the Cooperative Nav-

igation task. However, the reward when using IRCR has a much

Main Track AAMAS 2022, May 9–13, 2022, Online

1396

https://github.com/baicenxiao/AREL

(a) 2s3z (b) 3s vs 5z (c) 1c3s5z

Figure 3: Average test win rate and variance in StarCraft. AREL (dark blue) results in the highest win rates in 2s3z and 3s_vs_5z,
and obtains a comparable win rate to Sequence Modeling in 1c3s5z.

(a) Agent Attention (b) Regularization (c) Reward Weight

Figure 4: Ablations: Effects of the agent attention module (Fig. 4a) and regularization parameter 𝜔 in Eqn (3) (Fig. 4b) in
Cooperative Push, and reward weight 𝛼 (Fig. 4c) in the 2s3z StarCraft map.

higher variance compared to that obtained when usingAREL. A pos-

sible reason for this is that IRCR does not characterize the relative

contributions of agents at intermediate time-steps.

Figure 3 shows the results of our experiments for the three maps

in StarCraft. AREL achieves the highest average win rate in the 2s3z

and 3s_vs_5z maps, and obtains a comparable win rate to Sequence
Modeling in 1c3s5z. Sequence Modeling does not explicitly model

agent-attention, which could explain the lower average win rates in

2s3z and 3s_vs_5z. RUDDER achieves a nonzero, albeit much lower

win rate than AREL in two maps, possibly because the increased

episode length might affect the redistribution of the episode reward

for this method. IRCR and QTRAN [34] obtain the lowest win rates.

Additional experimental results are provided in Appendix D.

5.4.2 Ablations. We carry out several ablations to evaluate com-

ponents of AREL. Figure 4a demonstrates the impact of the agent-

attention module. In the absence of agent-attention (while retaining

permutation invariance among agents through the shared temporal

attention module), rewards are significantly lower. We study the

effect of the value of 𝜔 in Eqn. (3) on rewards in Figure 4b. This

term is critical in ensuring that agents learn good policies. This is

underscored by observations that rewards are significantly lower

for very small or very large 𝜔 (𝜔 = 0, 𝜔 = 1, 𝜔 = 10000). Third,

we evaluate the effect of mixing the original episodic reward and

redistributed reward by changing the reward weight 𝛼 in Figure 4c.

The reward mixture influences win rates; 𝛼 = 0.5 or 0.8 yields the

highest win rate. The win rate is ∼ 10% lower when using redis-

tributed reward alone (𝛼 = 1). Additional ablations and evaluating

the choice of regularization loss are shown in Appendices E and F.

Figure 5: Comparison of AREL with QMIX and a strategic
exploration technique, MAVEN in the 3𝑠_𝑣𝑠_5𝑧 StarCraft map
(avg. over 5 runs). AREL yields highest rewards and win rates.

5.4.3 Credit Assignment vs. exploration. This section demon-

strates the importance of effective redistribution of an episodic

reward vis-a-vis strategic exploration of the environment. The

episodic reward 𝑅𝑇 (=
∑
𝑡 𝑟𝑡) takes continuous values and provides

Main Track AAMAS 2022, May 9–13, 2022, Online

1397

Figure 6: An instantiation of the Cooperative Navigation task with 𝑁 = 3 where rewards are provided only at the end of an
episode. Blue and red dots respectively denote agents and landmarks. Arrows on agents represent their directions of movement.
The objective of this task is for each agent to cover a distinct landmark. The 𝑦−axis of the graph shows the 0 − 1 normalized
predicted rewards for a sample trajectory. The positions of agents relative to landmarks are shown at several points along this
trajectory. The figure shows a scenario where two agents are close to a single landmark. In this case, one of them must remain
close to this landmark, while the other moves towards a different landmark. The predicted redistributed reward encourages
such an action, since it has a higher magnitude when agents navigate towards distinct landmarks. The predicted redistributed
reward by AREL is not uniform along the length of the episode.

fine-grained information on performance (beyond only win/ loss).

AREL learns a redistribution of 𝑅𝑇 by identifying critical states

in an episode, and does not provide exploration abilities beyond

that of the base RL algorithm. The redistributed rewards of AREL

can be given as input to any RL algorithm to learn policies (in

our experiments, we demonstrate using QMIX for StarCraft; MAD-

DPG for Particle World). Figure 5 illustrates a comparison of AREL
with a state-of-the-art exploration strategy, MAVEN [23] and with

QMIX [28] in the 3𝑠_𝑣𝑠_5𝑧 StarCraft map. We observe that when

rewards are delayed to the end of an episode, effectively redistribut-

ing the reward can be more beneficial than strategically exploring

the environment to improve win-rates or total rewards.

5.4.4 Interpretability of Learned Rewards. Figure 6 presents
an interpretation of the decomposed predicted rewards vis-a-vis
the relative positions of agents to landmarks in the Cooperative

Navigation task with 𝑁 = 3. When the reward is provided only at

the end of an episode, AREL is used to learn a temporal redistribu-

tion of this episodic reward. The predicted rewards are normalized

to a 0 − 1 scale for ease of representation. The positions of the

agents relative to the landmarks are shown at several points along

a sample trajectory. Successfully trained agents must learn policies

that enable each agent to cover a distinct landmark. For example,

in a scenario where two agents are close to a single landmark, one

of them must remain close to this landmark, while the other moves

towards a different landmark. We observe that the magnitude of the

predicted rewards is consistent with this insight in that it is higher

when agents navigate away and towards different landmarks.

This visualization in Figure 6 reveals that the attention mech-

anism in AREL is able to learn to redistribute an episodic reward

effectively in order to successfully train agents to accomplish task

objectives in cooperative multi-agent reinforcement learning. More-

over, it reveals that the redistributed reward predicted by AREL is

not uniform along the length of the episode.

5.5 Discussion
This paper focused on developing techniques to effectively learn

policies in MARL environments when rewards were delayed or

episodic. Our experiments demonstrate that AREL can be used as a

module that enables more effective credit assignment by identifying

critical states through capturing long-term temporal dependencies

between states and an episodic reward. Redistributed rewards pre-

dicted byAREL are dense, which can then be provided as an input to
MARL algorithms that learn value functions for credit assignment

(we used MADDPG [21] and QMIX [28] in our experiments).

By including a variance-based regularization term, the total loss

in Eqn. (3) enabled incorporating the possibility that not all in-

termediate states would contribute equally to an episodic reward,

while also learning less sparse redistributed rewards. Moreover, any

exploration ability available to the agents was provided solely by

the MARL algorithm, and not by AREL. We further demonstrated

that effective credit assignment was more beneficial than strategic

exploration of the environment when rewards are episodic.

6 CONCLUSION
This paper studied the multi-agent temporal credit assignment

problem inMARL tasks with episodic rewards. Solving this problem

required addressing the twin challenges of identifying the relative

importance of states along the length of an episode and individual

agent’s state at any single time-step. We presented an attention-

based method called AREL to deal with the above challenges. The

temporally redistributed reward predicted by AREL was dense, and

could be integrated with MARL algorithms. AREL was evaluated

on tasks from Particle World and StarCraft, and was successful in

obtaining higher rewards and better win rates than three state-of-

the-art reward redistribution techniques.

ACKNOWLEDGMENTS
This work was supported by the Office of Naval Research via Grant

N00014-17-S-B001. We thank Dr. Sreeram Kannan and Dr. Sukarno

Mertoguno for insightful discussions.

Main Track AAMAS 2022, May 9–13, 2022, Online

1398

REFERENCES
[1] Adrian K Agogino and Kagan Tumer. 2006. QUICR-learning for multi-agent

coordination. In Proceedings of the National Conference on Artificial Intelligence,
Vol. 21. 1438.

[2] Jose A Arjona-Medina, Michael Gillhofer, Michael Widrich, Thomas Unterthiner,

Johannes Brandstetter, and Sepp Hochreiter. 2019. RUDDER: Return decomposi-

tion for delayed rewards. In Neural Information Processing Systems. 13566–13577.
[3] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. 2013. The

Arcade Learning Environment: An evaluation platform for general agents. Journal
of Artificial Intelligence Research 47 (2013), 253–279.

[4] Daniel Brown,Wonjoon Goo, Prabhat Nagarajan, and Scott Niekum. 2019. Extrap-

olating Beyond Suboptimal Demonstrations via Inverse Reinforcement Learning

from Observations. In International Conference on Machine Learning.
[5] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2008. A comprehensive

survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 38, 2 (2008), 156–172.

[6] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT:

Pre-training of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805 (2018).

[7] Sam Devlin and Daniel Kudenko. 2011. Theoretical considerations of potential-

based reward shaping for multi-agent systems. In International Conference on
Autonomous Agents and Multi-Agent Systems. 225–232.

[8] Sam Devlin, Daniel Kudenko, and Marek Grześ. 2011. An empirical study of

potential-based reward shaping and advice in complex, multi-agent systems.

Advances in Complex Systems 14, 02 (2011), 251–278.
[9] Sam Devlin, Logan Yliniemi, Daniel Kudenko, and Kagan Tumer. 2014. Potential-

based difference rewards for multiagent reinforcement learning. In International
Conference on Autonomous Agents and Multi-Agent Systems. 165–172.

[10] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In AAAI
Conference on Artificial Intelligence. 2974–2982.

[11] Tanmay Gangwani, Yuan Zhou, and Jian Peng. 2020. Learning Guidance Rewards

with Trajectory-space Smoothing. In Neural Information Processing Systems.
[12] Jayesh KGupta,Maxim Egorov, andMykel Kochenderfer. 2017. Cooperativemulti-

agent control using deep reinforcement learning. In International Conference on
Autonomous Agents and Multiagent Systems. 66–83.

[13] Sili Huang, Bo Yang, Hechang Chen, Haiyin Piao, Zhixiao Sun, and Yi Chang.

2020. MA-TREX: Multi-agent Trajectory-Ranked Reward Extrapolation via In-

verse Reinforcement Learning. In International Conference on Knowledge Science,
Engineering and Management. Springer, 3–14.

[14] Shariq Iqbal and Fei Sha. 2019. Actor-attention-critic for multi-agent reinforce-

ment learning. In International Conference on Machine Learning. 2961–2970.
[15] Jiechuan Jiang, Chen Dun, Tiejun Huang, and Zongqing Lu. 2019. Graph Convo-

lutional Reinforcement Learning. In International Conference on Learning Repre-
sentations.

[16] Jiechuan Jiang and Zongqing Lu. 2018. Learning attentional communication for

multi-agent cooperation. In Neural Information Processing Systems.
[17] Michael Kelly, Chelsea Sidrane, Katherine Driggs-Campbell, and Mykel J Kochen-

derfer. 2019. HG-DAgger: Interactive Imitation Learning with Human Experts.

In International Conference on Robotics and Automation. IEEE, 8077–8083.
[18] Iou-Jen Liu, Raymond A Yeh, and Alexander G Schwing. 2020. PIC: Permutation

invariant critic for multi-agent deep reinforcement learning. In Conference on
Robot Learning. 590–602.

[19] Yang Liu, Yunan Luo, Yuanyi Zhong, Xi Chen, Qiang Liu, and Jian Peng. 2019.

Sequence Modeling of Temporal Credit Assignment for Episodic Reinforcement

Learning. arXiv preprint arXiv:1905.13420 (2019).
[20] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and Yang Gao.

2020. Multi-agent game abstraction via graph attention neural network. In

Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 34. 7211–7218.
[21] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, and Igor Mordatch.

2017. Multi-agent actor-critic for mixed cooperative-competitive environments.

In Neural Information Processing Systems. 6379–6390.
[22] Xiaosong Lu, Howard M Schwartz, and Sidney Nascimento Givigi. 2011. Policy

invariance under reward transformations for general-sum stochastic games.

Journal of Artificial Intelligence Research 41 (2011), 397–406.

[23] Anuj Mahajan, Tabish Rashid, Mikayel Samvelyan, and Shimon Whiteson. 2019.

MAVEN: Multi-agent variational exploration. arXiv preprint arXiv:1910.07483

(2019).

[24] Hangyu Mao, Zhengchao Zhang, Zhen Xiao, and Zhibo Gong. 2019. Modelling

the Dynamic Joint Policy of Teammates with Attention Multi-agent DDPG. In

Proceedings of the 18th International Conference on Autonomous Agents and Multi-
Agent Systems. 1108–1116.

[25] Andrew Y Ng, Daishi Harada, and Stuart Russell. 1999. Policy invariance under re-

ward transformations: Theory and application to reward shaping. In International
Conference on Machine Learning. 278–287.

[26] Frans A Oliehoek, Christopher Amato, et al. 2016. A concise introduction to
decentralized POMDPs. Vol. 1. Springer.

[27] Marcus Olivecrona, Thomas Blaschke, Ola Engkvist, and Hongming Chen. 2017.

Molecular de-novo design through deep reinforcement learning. Journal of
Cheminformatics 9, 1 (2017), 48.

[28] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob

Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function Factori-

sation for Deep Multi-Agent Reinforcement Learning. In International Conference
on Machine Learning. 4295–4304.

[29] Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. 2011. A reduction of imita-

tion learning and structured prediction to no-regret online learning. In Interna-
tional Conference on Artificial Intelligence and Statistics. 627–635.

[30] Heechang Ryu, Hayong Shin, and Jinkyoo Park. 2020. Multi-agent actor-critic

with hierarchical graph attention network. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 34. 7236–7243.

[31] Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. 2017.

Deep reinforcement learning framework for autonomous driving. Electronic
Imaging 2017, 19 (2017), 70–76.

[32] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder de Witt, Gregory Far-

quhar, Nantas Nardelli, Tim G. J. Rudner, Chia-Man Hung, Philiph H. S. Torr,

Jakob Foerster, and ShimonWhiteson. 2019. The StarCraft Multi-Agent Challenge.

CoRR abs/1902.04043 (2019).

[33] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George

Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-

vam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham, Nal Kalch-

brenner, Ilya Sutskever, Timothy Lillicrap, Madeleine Leach, Koray Kavukcuoglu,

Thore Graepel, and Demis Hassabis. 2016. Mastering the game of Go with deep

neural networks and tree search. Nature 529, 7587 (2016).
[34] Kyunghwan Son, Daewoo Kim, Wan Ju Kang, David Earl Hostallero, and Yung

Yi. 2019. QTRAN: Learning to Factorize with Transformation for Cooperative

Multi-Agent Reinforcement Learning. In International Conference on Machine
Learning. 5887–5896.

[35] Peter Sunehag, Guy Lever, Audrunas Gruslys, Wojciech Marian Czarnecki, Viní-

cius Flores Zambaldi, Max Jaderberg, Marc Lanctot, Nicolas Sonnerat, Joel Z

Leibo, Karl Tuyls, et al. 2018. Value-Decomposition Networks For Cooperative

Multi-Agent Learning Based On Team Reward.. In International Conference on
Autonomous Agents and Multiagent Systems. 2085–2087.

[36] Richard S Sutton and Andrew G Barto. 2018. Reinforcement Learning: An Intro-
duction. MIT press.

[37] Ardi Tampuu, Tambet Matiisen, Dorian Kodelja, Ilya Kuzovkin, Kristjan Kor-

jus, Juhan Aru, Jaan Aru, and Raul Vicente. 2017. Multiagent cooperation and

competition with deep reinforcement learning. PloS One 12, 4 (2017), e0172395.
[38] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. In Neural Information Processing Systems. 5998–6008.
[39] Jianhong Wang, Yuan Zhang, Tae-Kyun Kim, and Yunjie Gu. 2020. Shapley

Q-value: A local reward approach to solve global reward games. In Proceedings
of the AAAI Conference on Artificial Intelligence, Vol. 34. 7285–7292.

[40] Yaodong Yang, Jianye Hao, Guangyong Chen, Hongyao Tang, Yingfeng Chen,

Yujing Hu, Changjie Fan, and Zhongyu Wei. 2020. Q-value Path Decomposition

for Deep Multiagent Reinforcement Learning. In International Conference on
Machine Learning.

[41] Manzil Zaheer, Satwik Kottur, Siamak Ravanbhakhsh, Barnabás Póczos, Ruslan

Salakhutdinov, and Alexander J Smola. 2017. Deep Sets. In Neural Information
Processing Systems.

[42] Meng Zhou, Ziyu Liu, Pengwei Sui, Yixuan Li, and Yuk Ying Chung. 2020. Learn-

ing Implicit Credit Assignment for Cooperative Multi-Agent Reinforcement

Learning. In Neural Information Processing Systems.

Main Track AAMAS 2022, May 9–13, 2022, Online

1399

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	4 Approach
	4.1 Agent-Temporal Attention
	4.2 Credit Assignment
	4.3 Algorithm
	4.4 Analysis

	5 Experiments
	5.1 Environments and Tasks
	5.2 Architecture and Training
	5.3 Evaluation
	5.4 Results
	5.5 Discussion

	6 Conclusion
	Acknowledgments
	References

