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ABSTRACT
Mechanism design over social networks, whose goal is to incen-

tivize agents to diffuse the information of a mechanism to their

followers, as well as to report their true preferences, is one of the

new trends in market design. In this paper, we reconsider the tra-

ditional house allocation problem with existing tenants from the

perspective of mechanism design over social networks. Since our

model is a generalization of the networked housing market investi-

gated by Kawasaki et al. [9], no mechanism simultaneously satisfies

strategy-proofness, individual rationality and Pareto efficiency for

general social network structures. We therefore examine the cases

where the social network has a tree structure. We first show that

even for the restricted structure, a weaker welfare requirement

called non-wastefulness is not achievable by any strategy-proof and

individually rational mechanism. We then show that a non-trivial

modification of You Request My House - I Get Your Turn mechanism
(YRMH-IGYT) is individually rational, strategy-proof, and weakly

non-wasteful. Furthermore, it chooses an allocation in the strict

core for neighbors and satisfies weak group strategy-proofness.
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1 INTRODUCTION
Mechanism design, as a sub-field of game theory, is one of the theo-

retical foundations of multi-agent decision making where multiple

agents have conflicting interests. It has been widely studied in the

intersection among economics, computer science and mathemat-

ics. More specifically, designing strategy-proof (SP) mechanisms, in

which reporting true preferences to the mechanism is a dominant

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
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strategy for each agent, is a main objective of the traditional mecha-

nism design theory. The theory of mechanism design can be applied

to various domains, e.g., spectrum allocation, hospital-residency

matching, live organ exchange, and political decision makings.

Allocating scarce resources to agents without monetary com-

pensation is a typical mechanism design problem. In particular, a

specific problem called housing market has been extensively inves-

tigated, where each agent initially owns an indivisible object, a

house, and the objective is to find a socially efficient, e.g., Pareto ef-

ficient, reallocation of the objects. Gale’s Top-Trading-Cycles (TTC)

algorithm always returns a Pareto efficient (PE) and individually

rational (IR) allocation and satisfies SP [15]. One of the most well-

studied extensions of the housing market is the model where some

agents have no initial endowment house and some initially-vacant

houses are also available in the market, which is usually called house
allocation with existing tenants. For house allocation with existing

tenants, a mechanism called You Request My House - I Get Your Turn
(YRMH-IGYT) satisfies all of the three properties above [1].

Besides the above development of the theory of mechanism

design, a new direction of mechanism design, called mechanism
design over social networks, has been initiated by Li et al. [11]. In

mechanism design over social networks, the set of agents, as well as

the mechanism designer, are assumed to be distributed over a social

network, and the mechanism designer wants to widely propagate

the information of the mechanism through the social network to

attract more participants. In this model, SP additionally requires

that, for each agent, inviting as many followers as possible to the

mechanism is an optimal strategy, even if she has the option not

to invite any of them. There is an existing work that investigates

the housing market problem from the perspective of mechanism

design over social networks [9]. They proposed a modified TTC

to achieve SP reallocation of houses over social networks [9]. We

call this mechanism Kawasaki mechanism. However, no work has

studied house allocation with existing tenants over social networks.

This paper is the first to consider house allocation with existing

tenants over social networks. Since our model is a generalization

of Kawasaki et al. [9], it is impossible to find a mechanism that

simultaneously satisfies SP, IR, and PE, or SP and a property called

weak core for neighbors (WC4N), for general network structures. We

therefore focus on a special (but still common) structure, i.e., a tree.
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We first show that even for a tree-structured network, a weaker

welfare property called non-wastefulness (NW) is incompatible with

the combination of SP and IR.We then show that a relaxation of NW

called weak non-wastefulness (weak NW), as well as SP and IR, are

achieved by a non-trivial modification of YRMH-IGYT [1], called

YRMH-IGYT for tree structured social networks (YRMH-IGYT for
TSSNs). We further show that YRMH-IGYT for TSSNs also satisfies

a condition called strict core for neighbors (SC4N) (which is stronger

than WC4N), and weak group strategy-proofness (weak GSP).

The rest of this paper is organized as follows. Section 2 gives a

literature review. Section 3 describes our model. Section 4) shows

that the straightforward application of YRMH-IGYT works only

in a very restrictive setting. Motivated by this, Section 5 proposes

YRMH-IGYT for TSSNs, which satisfies SP, IR, weak NW, and SC4N.

Section 6 examines several alternative mechanisms and shows that

they fail to satisfy our desiderata. Section 7 shows that YRMH-IGYT

for TSSNs satisfies weak GSP. Finally, Section 8 concludes the paper.

2 LITERATURE REVIEW
Shapley and Scarf [15] proposed TTC and showed that it always

chooses a unique strict core for traditional housing markets. Ma

[13] showed the uniqueness of TTC as the mechanism that simulta-

neously satisfies PE, IR, and SP. In recent years, various extensions

of the housing market have been proposed, including taking into

account indifference in preferences [2, 3, 20], preferences with exter-

nalities [10, 14], multiple houses per agent [5, 16, 23], and asymme-

try over houses [21]. Sönmez [17] showed that choosing the strict

core is SP if and only if the strict core is essentially single-valued.

Abdulkadiroğlu and Sönmez [1] initiated the research on house

allocation with existing tenants as an extension of the housing

market. They proposed YRMH-IGYT and showed its equivalence to

a variation of TTC. Sönmez and Ünver [18] showed an equivalence

of the following two mechanisms: TTC applied to a housing market

when each newcomer is randomly assigned a vacant house and

YRMH-IGYT where all the newcomers are placed at the top of

the priority order. Sönmez and Ünver [19] characterized YRMH-

IGYT by five properties, namely SP, IR, PE, weak neutrality, and

consistency, where weak neutrality requires that renaming vacant

houses does not affect the final outcome. Karakaya et al. [7] then

investigated which mechanisms arise by dropping weak neutrality.

Ekici [4] considered the cases where some subset of existing tenants

is discriminately treated so that they are to be placed at the bottom

of the priority order used in YRMH-IGYT.

Li et al. [11] proposed a new framework of mechanism design

over social networks. They focused on single-item auctions and

proposed an SPmechanism. Both Zhao et al. [24] and Kawasaki et al.

[8] studied a multi-unit unit-demand auction via social networks,

where each unit is identical and each buyer requires a unit. Liu

et al. [12] studied a reverse auction where the buyer has a budget

constraint from the perspective of mechanism design over social

networks. Takanashi et al. [22] focused on the efficiency of such

auctions. Kawasaki et al. [9] has investigated resource allocation

without money from the perspective of mechanism design over

social networks. However, they restricted themselves to a classic

housing market and did not consider any vacant houses owned by

the moderator.

3 MODEL
We extend the networked housing market model of Kawasaki et al.

[9] by introducing initially vacant houses and newcomers. In a net-

worked housing market, there exists a group𝐴 of 𝑛 agents, which is

divided into two disjoint groups 𝐴𝐸 and 𝐴𝑁 ; 𝐴𝐸 := {1, 2, . . . , |𝐴𝐸 |}
is a set of existing tenants, while 𝐴𝑁 := {|𝐴𝐸 | + 1, |𝐴𝐸 | + 2, . . . , 𝑛}
is a set of newcomers. There also exists a set of 𝑛′ indivisible ob-
jects 𝐻 , usually referred to as houses. 𝐻 is also divided into two

disjoint groups 𝐻𝑂 and 𝐻𝑉 , where 𝐻𝑂 := {ℎ1, ℎ2, . . . , ℎ |𝐴𝐸 |} de-
notes a finite set of houses occupied by the existing tenants, while

𝐻𝑉 := {ℎ |𝐴𝐸 |+1, ℎ |𝐴𝐸 |+2, . . . , ℎ𝑛′} is a finite set of initially vacant

houses. We assume enough houses exist to accommodate all agents,

i.e., 𝑛′ ≥ 𝑛 holds. Besides the above 𝑛 agents, there exists a special

agent 𝑠 called the source or moderator in the market, who initially

owns all the vacant houses. Note that 𝑠 is not a strategic agent; she

is willing to give away vacant houses (e.g., 𝑠 is a social planner).

Each existing tenant 𝑖 ∈ 𝐴𝐸 owns one houseℎ𝑖 in𝐻𝑂 . An allocation

𝑚 is a mapping from𝐴∪{∅} to𝐻 ∪{∅}. Let𝑚(𝑖) denote the house
assigned to agent 𝑖 under 𝑚, and 𝑚(ℎ) denote the agent who is

assigned to ℎ. If no house is allocated to 𝑖 (or ℎ is not assigned to

any agent), we assume𝑚(𝑖) = ∅ (or𝑚(ℎ) = ∅) holds. Also, let𝑚(𝑠)
denote the set of houses that are not assigned to any agent in 𝐴 by

𝑚. Let𝑀 be the set of all possible allocations. Furthermore, let𝑚

denote the initial allocation, where it holds that𝑚(𝑖) = ℎ𝑖 for all

𝑖 ∈ 𝐴𝐸 and𝑚(𝑖) = ∅ for all 𝑖 ∈ 𝐴𝑁 , as well as𝑚(𝑠) = 𝐻𝑉 .

For each agent 𝑖 ∈ 𝐴 ∪ {𝑠}, let 𝑟𝑖 ⊆ 𝐴 \ {𝑖} denote her neighbors.
Agent 𝑖 is directly connected to each agent in 𝑟𝑖 , meaning that

agent 𝑖 knows the agents in 𝑟𝑖 and can invite them (and only them)

to the mechanism. Note that the neighborhood relation can be

asymmetric. Each agent 𝑖 has a strict preference ≻𝑖 over 𝐻 . We

write ℎ ≻𝑖 ℎ′ if agent 𝑖 prefers house ℎ over ℎ′, and ℎ ⪰𝑖 ℎ′ if either
ℎ = ℎ′ or ℎ ≻𝑖 ℎ′ holds. Each agent prefers any house over nothing,

i.e., ∀𝑖 ∈ 𝐴, ∀ℎ ∈ 𝐻 , ℎ ≻𝑖 ∅. In sum, for each agent 𝑖 ∈ 𝐴, her type
(also known as her private information) 𝜃𝑖 is given as (≻𝑖 , 𝑟𝑖 ).

Now we are ready to describe the mechanism design model con-

sidered in this paper. We restrict our attention to direct revelation

mechanisms, to which each agent declares her type 𝜃 ′
𝑖
= (≻′

𝑖
, 𝑟 ′
𝑖
).

Note that we assume partial verification is possible, i.e., agent 𝑖

can only declare 𝜃 ′
𝑖
= (≻′

𝑖
, 𝑟 ′
𝑖
) s.t., 𝑟 ′

𝑖
⊆ 𝑟𝑖 . This partial verification

scheme obviously satisfies the well-known Nested Range Condi-
tion [6], which guarantees that the revelation principle holds. We

believe this assumption is realistic and widely used in existing

works on mechanism design in social networks. Thus, we can re-

strict our attention to direct revelation mechanisms without loss

of generality.
1
Let 𝑅(𝜃𝑖 ) denote the set of all possible types that

agent 𝑖 with true type 𝜃𝑖 can declare. That is, for any 𝑖 ∈ 𝐴 and any

𝜃𝑖 = (≻𝑖 , 𝑟𝑖 ), 𝑅(𝜃𝑖 ) := {(≻′𝑖 , 𝑟
′
𝑖
) | 𝑟 ′

𝑖
⊆ 𝑟𝑖 }.

Let 𝜃 = (𝜃1, . . . , 𝜃𝑛) denote the profile consisting of the agents’
true types, while 𝜃 ′ = (𝜃 ′

1
, . . . , 𝜃 ′𝑛) denotes a declared profile of

types. We also use the following standard notations: 𝜃 ′−𝑖 is a profile
of the agents’ declared types except for agent 𝑖 , (𝜃 ′

𝑖
, 𝜃 ′−𝑖 ) is a profile

of the agents’ declared types where agent 𝑖 declares 𝜃 ′
𝑖
and others

declare 𝜃 ′−𝑖 , and 𝑅(𝜃−𝑖 ) is a set of profiles that agents (except 𝑖) can

1
When describing the behavior of a mechanism, we use expressions like "agent 𝑖

chooses a house", etc. for simplicity. Strictly speaking, in a direct revelation mechanism,

the mechanism acts on behalf of each agent according to her declared type.
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jointly declare when their true type profile is 𝜃−𝑖 . We also use a

similar notation for a group of agents 𝑆 ⊂ 𝐴, i.e., 𝜃 ′−𝑆 is a profile of

the agents’ declared types except for the agents in 𝑆 , (𝜃 ′
𝑆
, 𝜃 ′−𝑆 ) is a

profile of the agents’ declared types where each agent 𝑖 in 𝑆 declares

𝜃 ′
𝑖
(where 𝜃 ′

𝑆
= (𝜃 ′

𝑖
)𝑖∈𝑆 ), and other agents declare 𝜃 ′−𝑆 . Also, 𝑅(𝜃𝑆 )

is a set of profiles that agents in 𝑆 can jointly declare when their

true type profile is 𝜃𝑆 , and 𝑅(𝜃−𝑆 ) is a set of profiles that agents
not in 𝑆 can jointly declare when their true type profile is 𝜃−𝑆 .

For notation simplicity, let 𝑟 ′ = (𝑟 ′
𝑖
)𝑖∈𝐴 denote the neighborhood

relations for the declared profile. We also refer to 𝑟 ′ as a (declared)
social network. Social network 𝑟 ′ can be represented as a directed

graph,𝐺 = (𝑉 , 𝐸), where𝑉 := 𝐴∪{𝑠}, and for any pair 𝑖, 𝑗 ∈ 𝐴∪{𝑠},
an edge (𝑖, 𝑗) ∈ 𝐸 if and only if 𝑗 ∈ 𝑟 ′

𝑖
. Also, let 𝑟 denote the social

network when all agents report their neighbors truthfully. Agent

𝑖 is connected if there is a path 𝑠 → · · · → 𝑖 in 𝐺 defined by

𝑟 ′. Let 𝑑 (𝑖) denote the distance from 𝑠 to 𝑖 in 𝑟 ′, i.e., the length

of the shortest path from 𝑠 to 𝑖 . The moderator does not a-priori

know the edges/vertices of the social network (beyond its direct

neighbors). Thus, the moderator must construct the network based

on the declared agents’ types. Disconnected agents and their initial

endowment houses do not participate in the mechanism.

A (direct revelation) mechanism 𝑓 is defined as a function that

takes 𝜃 ′ as input and returns 𝑓 (𝜃 ′) ∈ 𝑀 . Let 𝑓𝑖 (𝜃 ′) denote the house
assigned to agent 𝑖 . In this paper, we further restrict our attention to

feasiblemechanisms, in which only connected agents can exchange

or obtain a vacant house. Formally, allocation𝑚 ∈ 𝑀 is feasible

under reported 𝑟 ′ if for any agent 𝑖 who is disconnected under 𝑟 ′,
𝑚(𝑖) = ℎ𝑖 holds when 𝑖 ∈ 𝐴𝐸 , and𝑚(𝑖) = ∅ holds when 𝑖 ∈ 𝐴𝑁 . A

mechanism is feasible if, for any reported 𝜃 ′, 𝑓 (𝜃 ′) is feasible.
We introduce four desirable properties for allocation mecha-

nisms: strategy-proofness (SP), individual rationality (IR), Pareto
efficiency (PE), and the strict core (SC). Intuitively, SP requires that

for each agent 𝑖 ∈ 𝐴, reporting her true type 𝜃𝑖 is a dominant

strategy. IR requires that for each agent 𝑖 ∈ 𝐴𝐸 , reporting her true

type 𝜃𝑖 guarantees a house that she weakly prefers over her initial

endowment ℎ𝑖 . Then, allocation 𝑚 ∈ 𝑀 is PE, if there exists no

allocation𝑚′ that is weakly better for all agents 𝑖 ∈ 𝐴 and strictly

better for at least one agent 𝑗 ∈ 𝐴. Finally, any allocation in SC

ensures that no group of agents has an incentive to leave the market

and exchange their initial endowments among themselves.

Definition 1 (Strategy-Proofness (SP)). For a networked hous-
ing market, mechanism 𝑓 is said to satisfy strategy-proofness (SP)
if, for any 𝑖 ∈ 𝐴, any 𝜃𝑖 , any 𝜃 ′𝑖 ∈ 𝑅(𝜃𝑖 ), and any 𝜃−𝑖 , it holds that
𝑓𝑖 (𝜃𝑖 , 𝜃−𝑖 ) ⪰𝑖 𝑓𝑖 (𝜃 ′𝑖 , 𝜃−𝑖 ).

Definition 2 (Individual Rationality (IR)). For a networked
housing market, feasible allocation𝑚 ∈ 𝑀 is said to be individually
rational for given 𝜃 if𝑚(𝑖) ⪰𝑖 ℎ(𝑖) for any 𝑖 ∈ 𝐴𝐸 . Let IR(𝜃 ) be a set
of such allocations under 𝜃 . Mechanism 𝑓 is said to satisfy individual
rationality (IR) if 𝑓 (𝜃 ) ∈ IR(𝜃 ) for any 𝜃 .

Definition 3 (Pareto Efficiency (PE)). For a networked housing
market, feasible allocation𝑚 Pareto dominates another feasible allo-
cation𝑚′ under 𝜃 if𝑚(𝑖) ⪰𝑖 𝑚′(𝑖) for all 𝑖 ∈ 𝐴 and𝑚( 𝑗) ≻𝑗 𝑚′( 𝑗)
for some 𝑗 ∈ 𝐴. Let PE(𝜃 ) be a set of feasible allocations that are not
Pareto dominated by any other feasible allocation. Mechanism 𝑓 is
said to satisfy Pareto efficiency (PE) if 𝑓 (𝜃 ) ∈ PE(𝜃 ) for any 𝜃 .

Definition 4 (Strict Core (SC)). For a networked housing mar-
ket with 𝜃 and feasible allocation𝑚, we say 𝑆 ⊆ 𝐴 is a blocking coali-
tion if there exists another allocation𝑚′ ≠𝑚 that satisfies the follow-
ing conditions:

⋃
𝑖∈𝑆 𝑚

′(𝑖) = ⋃
𝑖∈𝑆 𝑚(𝑖), (a) ∀𝑖 ∈ 𝑆 ,𝑚′(𝑖) ⪰𝑖 𝑚(𝑖)

and (b) ∃ 𝑗 ∈ 𝑆 ,𝑚′( 𝑗) ≻𝑗 𝑚( 𝑗) holds.
We say𝑚 is in a strict core (SC) under 𝜃 , if there exists no blocking
coalition. Let SC(𝜃 ) be the set of such allocations for given 𝜃 . For a
networked housing market, mechanism 𝑓 is said to satisfy SC if for
any 𝜃 , 𝑓 (𝜃 ) ∈ SC(𝜃 ) holds.

Agents in a blocking coalition have an incentive to deviate from

themechanism and exchange their initial endowments among them-

selves. Note that if 𝑆 is a blocking coalition, for each 𝑖 ∈ 𝑆 , 𝑖 ∈ 𝐴𝐸

holds; a newcomer cannot be included in a blocking coalition. This

is because a newcomer has no initial endowment. Deviating from

the mechanism with a newcomer will lead to the result that one

agent in the group will be assigned no house.

We can analogously define the weak core (WC) by replacing

conditions (a) and (b) with (c)𝑚′(𝑖) ≻𝑖 𝑚(𝑖) for any 𝑖 ∈ 𝑆 . In this

case, we say𝑚′ strongly dominates𝑚 for coalition 𝑆 . Let WC(𝜃 ) be
the set of weak cores for the given 𝜃 , and mechanism 𝑓 is said to

satisfy WC if 𝑓 (𝜃 ) ∈ WC(𝜃 ) for any 𝜃 . The following is a weaker
version of the core that takes the network structure into account.

Definition 5 (Strict Core for Neighbors (SC4N)). For a net-
worked housing market, an outcome is said to be in the strict core for

neighbors (SC4N) under profile 𝜃 , if there exists no blocking coalition
𝑆 ⊆ 𝐴, such that either (i) |𝑆 | = 1, or (ii) |𝑆 | = {𝑖, 𝑗}, and there is
a path 𝑠 → · · · → 𝑖 → 𝑗 under 𝜃 . Let SC4N(𝜃 ) be the set of such
allocations for a given 𝜃 . A mechanism is said to satisfy SC4N if
𝑓 (𝜃 ) ∈ SC4N(𝜃 ) for any 𝜃 .

We can analogously define the weak core for neighbors (WC4N).

For given 𝜃 , let WC4N(𝜃 ) be the set of allocations in the weak core

for neighbors. Note that WC4N implies IR. If a mechanism satisfies

WC4N and an existing tenant is assigned a house that is worse

than her initial endowment, she would form a blocking coalition

of size 1 in which she keeps her initial endowment house. Note

that WC4N implies IR. WC4N can be considered as the weakest

variant of the core for social networks (except IR) since it only cares

about coalitions by two agents in a parent-child relation (which we

call a blocking pair), as well as the deviations by each single agent.

However, it turns out that even this weakest variant is incompatible

with SP. More specifically, since our model is a strict generalization

of Kawasaki et al. [9], it inherits their impossibility results, i.e., the

following theorem holds.

Corollary 1. (from Theorem 4.3 and 4.7 of Kawasaki et al. [9])
For a general network structure, where |𝐴| ≥ 3, no mechanism simul-
taneously satisfies either of the following sets of properties: (i) SP, IR,
and PE, or (ii) SP and WC4N.

4 APPLYING EXISTING MECHANISM
For network housing markets, we first investigate the applicability
of an existing mechanism, the You Request My House - I Get Your
Turn (YRMH-IGYT) mechanism [1], in the network model.

YRMH-IGYT requires a linear priority order among agents. Let

▷ denote such a priority defined among agents who are invited to

the housing market.
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Definition 6 (YRMH-IGYT for SNs).

(1) Each agent declares her preference and a list of her neighbors.
Agents are sorted by a given priority order ▷.

(2) A remaining top agent, say 𝑖 , is selected. Based on her prefer-
ence, we select her most preferred house that still remains in
the market, say ℎ.

(3) Ifℎ is currently vacant, agent 𝑖 obtains it and leaves the market.
If she has an initial endowment house, it becomes vacant. Go
to 2.

(4) If ℎ is currently occupied, we let agent 𝑖 point to the owner of ℎ.
Then, we check whether a loop is formed. A loop is an ordered
list of agents (𝑖1, 𝑖2, . . . , 𝑖ℓ ) such that 𝑖1 points to 𝑖2, 𝑖2 points
to 𝑖3, . . ., and 𝑖ℓ points to 𝑖1 (if an agent prefers her own initial
endowment house, we assume she forms a self-loop).

(a) If no loop exists, let the owner of this house, say 𝑗 , become
the first agent (and 𝑖 becomes the second). Go to 2.

(b) If a loop is formed, assign each agent in the loop the house
she is requesting. These agents leave the market. Go to 2.

YRMH-IGYT is known to be equivalent to the following variation

of TTC [1]. Each agent points to her favorite house, each house

with an existing tenant points to its tenant, and each vacant house

points to the remaining top agent according to ▷. There exists at
least one cycle. Each agent included in a cycle obtains the house

she points and leaves the market, and so on.

YRMH-IGYT is SP for any priority order in the traditional hous-

ing market. However, in a networked housing market, the priority

order must be carefully designed such that each agent has an incen-

tive to invite her neighbors. In this paper, we assume the priority

order is distance-based.

Definition 7 (Distance-Based Priority). Given social network
𝐺 , a priority order of agents, ▷, is said to be distance-based if, for
any 𝑖, 𝑗 ∈ 𝐴, [𝑑 (𝑖) < 𝑑 ( 𝑗)] ⇒ 𝑖 ▷ 𝑗 holds.

Now, we are ready to present our results on the properties of

YRMH-IGYT for SNs with a distance-based priority. When YRMH-

IGYT for SNs satisfies SP, it is easy to show that it also satisfies PE

and IR. Thus, we focus on showing when it satisfies SP.

Theorem 2. Assume that YRMH-IGYT for SNs is defined with
a distance-based priority order ▷. Also assume that the preference
domain is general, i.e., each agent can have/report any preference.
Then, the mechanism is SP if and only if all the existing tenants are
directly connected to the moderator, i.e., 𝐴𝐸 ⊆ 𝑟𝑠 .

Proof. The only if direction can be shown as a corollary of

Theorem 6.1 of Kawasaki et al. [9]. This is because, by assuming

𝐴𝑁 = ∅, and for each agent 𝑖 and any vacant house ℎ ∈ 𝐻𝑉 ,

𝑚(𝑖) ≻𝑖 ℎ holds, i.e., there exists no newcomer and each existing

tenant prefers her own initial endowment house over any vacant

house, our model becomes equivalent to their model. As a result, we

can easily find an example input where the outcome by YRMH-IGYT

for SNs becomes equivalent to Kawasaki mechanism.

To complete the proof, we show that YRMH-IGYT for SNs satis-

fies SP under the condition above. Furthermore, since it is known

that no agent can benefit from misreporting her preference under

YRMH-IGYT, it suffices to show that no agent can benefit by not

inviting some of her followers, i.e., by reporting 𝜃 ′
𝑖
= (≻𝑖 , 𝑟 ′𝑖 ) s.t.,

𝑟 ′
𝑖
⊂ 𝑟𝑖 . Assuming this misreport can affect the mechanism, two

consequences are possible: (i) agent 𝑗 ∈ 𝑟𝑖 \ 𝑟 ′𝑖 is moved to a lower

priority (i.e., if the distance becomes larger), or (ii) agent 𝑗 ∈ 𝑟𝑖 \ 𝑟 ′𝑖
is removed from the market. In either case, 𝑗 must be a newcomer,

since we assume all existing tenants are directly connected to the

moderator. Furthermore, since ▷ is distance-based and 𝑖’s report

influences 𝑗 ’s priority, it has to hold 𝑖 ▷ 𝑗 (without misreporting).

Since each newcomer initially has no house, 𝑗 cannot take any

other agent’s turn and is thus first activated after 𝑖 left the market.

Therefore, no assignment until 𝑖 gets a house is affected by the

manipulation. Thus, this manipulation is useless for agent 𝑖 . □

Note that the above definition of YRMH-IGYT for SNs is just an

implementation of the original YRMH-IGYT for our model, where

the priority over agents is defined based on the distance from 𝑠 .

However, the following example shows that this implementation is

almost necessary to guarantee SP. That is, when the priority is not

distance-based, we can find an instance where YRMH-IGYT fails to

satisfy SP, even if all existing tenants are directly connected to 𝑠 .

Example 1. Two agents exist in the market, existing tenant 1,
and newcomer 2, where 𝑟𝑠 = {1}, 𝑟1 = {2}, 𝑟2 = ∅, ℎ2 ≻1 ℎ1, and
ℎ2 ≻2 ℎ1. The house, initially owned by 1, is ℎ1; ℎ2 is vacant. Note
that there exists only one existing tenant 1 who is directly connected to
the moderator. In this case, if ▷ := (2, 1), which is not distance-based,
the allocation decided by YRMH-IGYT should be 𝑚(1) = ℎ1, and
𝑚(2) = ℎ2. However, if agent 1 does not invite agent 2, the allocation
decided by YRMH-IGYT will be𝑚(1) = ℎ2, and ℎ2 ≻1 ℎ1 holds. Thus,
YRMH-IGYT for SNs fails to satisfy SP.

5 NEWWEAKLY NON-WASTEFUL
MECHANISM FOR TREES

As shown in the previous section, YRMH-IGYT for SNs satisfies

SP only under a very strict assumption, i.e., all existing tenants

are directly connected to the moderator. Hence, in this section,

we focus on one common social network structure, i.e., a tree, in

which each agent 𝑖 can be invited by at most one agent 𝑗 (we say 𝑗

is 𝑖’s parent) and existing tenants are not necessarily to be direct

neighbors of the moderator. We examine whether SC4N and SP

can be compatible with a general preference together with any

welfare requirement weaker than PE. One natural candidate for a

welfare requirement is non-wastefulness (NW), but we show it is

incompatible with IR and SP for a tree. Therefore, we consider a

further relaxation called weak non-wastefulness (weak NW). We

propose a non-trivial modification of YRMH-IGYT called YRMH-
IGYT for tree-structured social networks (YRMH-IGYT for TSSNs) that
takes into account the tree structure and obtain a positive result;

YRMH-IGYT for TSSNs satisfies SP, SC4N, and weak NW.

Definition 8 (Non-Wastefulness (NW)). Allocation𝑚 is non-
wasteful (NW) if, for each agent 𝑖 ∈ 𝐴 and any house ℎ ∈ 𝑚(𝑠),
𝑚(𝑖) ≻𝑖 ℎ holds.

NW requires that no agent wants to exchange her assigned house

to any vacant house in allocation𝑚. Clearly, if𝑚 is Pareto efficient,

it is also non-wasteful, but not vice versa. The following theorem

shows that NW is incompatible with the combination of IR and SP.
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Figure 1: Network structures used in examples/proofs.
Theorem 3. No mechanism simultaneously satisfies SP, IR, and

NW, even if the graph is restricted to a tree.

Proof. By way of contradiction, we assume there exists a mech-

anism that satisfies these three properties.

Assume there exist four existing tenants 1, 2, 3, 4 and a newcomer

5, with 𝑟𝑠 = {1, 2, 5}, 𝑟1 = {3}, 𝑟2 = {4}, and 𝑟3 = 𝑟4 = 𝑟5 = ∅ (see
Fig. 1a). Each existing tenant 𝑖 (where 1 ≤ 𝑖 ≤ 4) owns ℎ𝑖 . Also,

there exist two initially vacant houses, ℎ5 and ℎ6. Consider the

following preferences:

≻1 : ℎ4 ≻ ℎ1 ≻ · · ·
≻2 : ℎ3 ≻ ℎ2 ≻ · · ·
≻3 : ℎ5 ≻ ℎ3 ≻ · · ·
≻4 : ℎ5 ≻ ℎ4 ≻ · · ·
≻5 : ℎ6 ≻ · · · ≻ ℎ5

That is, every agent except 5 prefers exactly one house over her

initial endowment. Consider a case where all agents are truthful.

Since the mechanism is NW, ℎ6 cannot be vacant; otherwise agent

5 prefers ℎ6 over her assignment. Also, since the mechanism is IR,

ℎ6 can be assigned only to agent 5. Similarly, ℎ5 must be assigned

to either agent 3 or 4.

If ℎ5 is given to agent 3, her initial endowment house ℎ3 becomes

vacant and has to be assigned to agent 2 to satisfy NW. In this case,

both agent 1 and 4 receive their initial endowments. Now, assume

1 does not invite her child 3. Then, ℎ5 has to be assigned to 4 and

ℎ4 must be assigned to 1 to satisfy NW. Since 1 prefers ℎ4 over ℎ1,

this manipulation is beneficial; this mechanism fails to satisfy SP.

If ℎ5 is given to 4 instead, her initial endowment house ℎ4 be-

comes vacant and has to be assigned to 1 to satisfy NW. Then, by

the analogous argument to above, it follows that 2 has an incentive

not to invite her child 4. Thus, ℎ5 can be assigned to neither 3 nor

4, a contradiction. □

Hence, in order to evaluate whether a mechanism performs well

in terms of efficiency, we introduce a weaker notion of allocative

efficiency, called weak non-wastefulness (weak NW).

Definition 9 (WeakNon-Wastefulness). Allocation𝑚 isweakly
non-wasteful (weakly NW) if ∀𝑖 ∈ 𝐴 and ∀ℎ ∈ 𝑚(𝑠) ∩ 𝑚(𝑠),
𝑚(𝑖) ≻𝑖 ℎ holds.

Weak NW ensures that no house that started out and remained

vacant is preferred by any agent 𝑖 over her allocated house𝑚(𝑖).
In the rest of this section, we introduce YRMH-IGYT for TSSNs

and show that it satisfies SP, IR, weak NW, and SC4N if the social

network is a tree. We say agent 𝑗 is an ancestor of agent 𝑖 if there

exists a path 𝑠 → · · · → 𝑗 → · · · → 𝑖 in the social network. Let 𝑎𝑖
denote the set of 𝑖’s ancestors.

Mechanism 1 YRMH-IGYT for tree-structured social networks

1: function YRMH-IGYT-TSSNs(▷, 𝜃 ′, 𝐴𝐸 , 𝐴𝑁 , 𝐻𝑉 , 𝐻𝑂 )

2: 𝐻 ′
𝑉
← 𝐻𝑉 ∪ {∅}

3: while |▷| > 0 do
4: 𝑖 ← ▷1, 𝐻𝐶 ← {𝑚( 𝑗) | 𝑗 ∈ 𝑟 ′𝑖 }
5: 𝐻𝐴 ← {𝑚( 𝑗) | 𝑗 ∈ 𝑎𝑖 and 𝑗 is included in ▷}
6: if 𝑖 ∈ 𝐴𝐸 then 𝐻 ′ ← 𝐻 ′

𝑉
∪ 𝐻𝐶 ∪ 𝐻𝐴 ∪ {𝑚(𝑖)}

7: else 𝐻 ′ ← 𝐻 ′
𝑉
∪ 𝐻𝐶

8: end if
9: Find ℎ ∈ 𝐻 ′ s.t. ∀ℎ′ ∈ 𝐻 ′ \ {ℎ}, ℎ ≻𝑖 ℎ′
10: if ℎ ∈ 𝐻 ′

𝑉
then

11: 𝑚(𝑖) ← ℎ,▷← ▷ \ {𝑖}
12: if 𝑖 ∈ 𝐴𝐸 then 𝐻 ′

𝑉
← (𝐻 ′

𝑉
\ {ℎ}) ∪ {𝑚(𝑖)}

13: else if ℎ ≠ ∅ then 𝐻 ′
𝑉
← 𝐻 ′

𝑉
\ {ℎ}

14: end if
15: else if ℎ =𝑚(𝑖) then𝑚(𝑖) ← ℎ, ▷← ▷ \ {𝑖}
16: else if ℎ ∈ 𝐻𝐴 then
17: L ← ( 𝑗1, . . . , 𝑗ℓ ) s.t.𝑚( 𝑗1) = ℎ, 𝑗ℓ = 𝑖 ,

18: and each 𝑗𝑘 points to 𝑗𝑘+1
19: 𝑚(𝑖) ← ℎ, ▷← ▷ \ {𝑖}
20: ∀𝑘 ∈ {1, 2, . . . , ℓ − 1},
21: 𝑚( 𝑗𝑘 ) ←𝑚( 𝑗𝑘+1), ▷← ▷ \ {𝑘}
22: else
23: Let 𝑖 points to𝑚(ℎ)
24: Find ▷ℓ s.t. ▷ℓ =𝑚(ℎ) holds
25: ∀𝑘 ∈ {1, 2, . . . , ℓ − 1},▷𝑘+1 ← ▷𝑘 , ▷1 ← ℓ

26: end if
27: end while
28: 𝑚(𝑠) ← 𝐻 ′

𝑉
\ {∅}

29: return𝑚

30: end function

Definition 10 (YRMH-IGYT for TSSNs).

(1) Each agent declares her preference and a list of her children.
Based on the declaration, a tree is constructed. Agents are sorted
according to a given distance-based priority order ▷.

(2) The remaining top agent is selected. Based on her preference,
the most preferred house is selected among the following four
cases: (i) any currently vacant house, (ii) a house owned by
an ancestor (assuming the ancestor is still in the market), (iii)
her initial endowment house, or (iv) any house owned by her
children.

(3) For case (i), she obtains the house and leaves the market. If she
has her initial endowment house, it becomes vacant. Go to 2.

(4) For case (ii), assuming agent 𝑖 points to her ancestor, there
exists a loop ( 𝑗1, 𝑗2, . . . , 𝑗ℓ ), where 𝑗ℓ = 𝑖 and each 𝑗𝑘 points to
𝑗𝑘+1, and 𝑗ℓ points to 𝑗1. Each agent obtains the house she is
requesting and leaves the market. Go to 2.

(5) For case (iii), she obtains her initial endowment house and
leaves the market. Go to 2.

(6) For case (iv), she remains in the market while pointing to
her child who owns the house that she requested. Her child
becomes the top among the remaining agents (and she becomes
the second). Go to 2.
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Note that in case (ii), agent 𝑖 is selected and her ancestor is still

in the market. This is possible only when 𝑖 is an existing tenant,

and there exists a sequence of 𝑖’s ancestors ( 𝑗1, 𝑗2, . . . , 𝑗ℓ ), where
𝑗ℓ = 𝑖 and each 𝑗𝑘 is requesting the house owned by 𝑗𝑘+1.

A more precise description of YRMH-IGYT for TSSNs is given as

Mechanism 1. Here, ▷𝑖 denotes the 𝑖
th

agent in ▷. Also, |▷| denotes
the number of agents in ▷, and ▷ \ {𝑖} denotes the order where
agent 𝑖 is removed from ▷. 𝐻 ′

𝑉
denotes the set of currently vacant

houses (including ∅). The mechanism returns feasible allocation𝑚.

Let us illustrate how YRMH-IGYT for TSSNs works.

Example 2. Assume there exist tenants 1, 2, 3, 4 and a newcomer
5. The social network is given as Fig 1a. Each existing tenant 𝑖 (where
1 ≤ 𝑖 ≤ 4) owns ℎ𝑖 . Also, there exist two initially vacant houses, ℎ5
and ℎ6. Consider the following preferences.

≻1 : ℎ3 ≻ ℎ1 ≻ · · ·
≻2 : ℎ4 ≻ ℎ2 ≻ · · ·
≻3 : ℎ1 ≻ ℎ3 ≻ · · ·
≻4 : ℎ5 ≻ ℎ4 ≻ · · ·
≻5 : ℎ6 ≻ ℎ5 ≻ . . .

Assume ▷ := (5, 1, 2, 3, 4), which is distance-based. The set of vacant
houses is {ℎ5, ℎ6}. First, agent 5 is selected. 5 is a newcomer, and she
has no child. Therefore, she can choose only from the currently vacant
houses {ℎ5, ℎ6}. Since her favorite house isℎ6, she obtains it and leaves
the market. Now the set of vacant houses becomes {ℎ5}. Next, agent
1 is selected. Since she is an existing tenant, she can choose ℎ1 (her
initial endowment house), ℎ3 (her child’s house), or ℎ5. Her favorite
house among them is ℎ3. Since it is her child’s house, she remains in
the market and agent 3 becomes the top. Then, agent 3 is selected. She
can choose ℎ1 (a house owned by her parent 1 who still remains in
the market), ℎ3, or ℎ5. Her favorite house is ℎ1. Thus, agent 1 and 3
exchange their initial endowment houses and leave the market. Next,
agent 2 is selected. She can choose ℎ2, ℎ5, or ℎ4 (a house owned by
her child). Her favorite house among them is ℎ4. Since it is her child’s
house, she remains in the market and agent 4 becomes the top. Then,
agent 4 is selected. She can choose ℎ2 (a house owned by her parent
2 who still remains in the market), ℎ4, or ℎ5. Her favorite house is
ℎ5. Since it is vacant, she obtains it and leaves the market. The set of
currently vacant houses becomes {ℎ4}. Next, agent 2 is selected again.
She can choose ℎ4 or ℎ2. Her favorite house is ℎ4, which is currently
vacant. Thus, she obtains it and leaves the market.

In contrast to the original YRMH-IGYT, YRMH-IGYT for TSSNs

restricts set of houses an agent can choose. A tricky part is that this

set changes dynamically; if a tenant obtains a vacant house, her

initial endowment house is added to this set. As a result, proving

SP of YRMH-IGYT for TSSNs becomes non-trivial.

Theorem 4. YRMH-IGYT for TSSNs is SP for any tree.

Proof. The proof is straightforward from the following three

lemmas. □

Lemma 1. Assume when agent 𝑖 is selected, 𝑖 request the house
owned by her child 𝑗 (i.e., 𝑖 points to 𝑗 ) and the set of currently vacant
houses is𝐻 ′

𝑉
. When she is selected again, either (a) the set of currently

vacant houses has not changed (i.e., it is still 𝐻 ′
𝑉
) or (b) ℎ is the

sole additional house that has become vacant and exactly one house
ℎ′ ∈ 𝐻 ′

𝑉
is no longer vacant.

Proof. Assume the set of vacant houses changes before 𝑖 is se-

lected again. Clearly, no newcomer can be activated before 𝑖 is

activated again (since she does not own a house that her parent

can desire). This means that the first time the set of vacant houses

changes, agent 𝑘 (who is a descendent of 𝑖) exchanges her endow-

ment house ℎ𝑘 for vacant house ℎ′ ∈ 𝐻 ′
𝑉
and leaves the market.

Next, 𝑘’s parent ℓ is activated again. Since ℓ prefers ℎ𝑘 over any

house in𝐻 ′
𝑉
(or 𝑘 would not have been activated), ℓ then exchanges

her initial endowment house for ℎ𝑘 . This starts a chain of parents

obtaining their child’s house directly after it becomes vacant. At

the end of this chain, 𝑖 is activated again directly after ℎ becomes

vacant (as 𝑗 obtained her child’s vacated house), while ℎ′ remains

the only originally vacant house that is no longer vacant. □

Lemma 2. For agent 𝑖 and any given set of her neighbors 𝑟 ′
𝑖
, sub-

mitting her true preference ≻𝑖 is a dominant strategy.

Proof. First, observe that an agent cannot affect the timing

when she is selected first because it is determined by the priority

order and the preferences of her ancestors.

By Lemma 1, if the set of currently vacant houses is 𝐻 ′
𝑉
when

agent 𝑖 is first selected, then, a house that she has a chance to obtain

in the current selection or any future selections, is (i) any element

of 𝐻 ′
𝑉
, (ii) a house owned by her ancestor (assuming her ancestor

is still in the market), (iii) her initial endowment house, or (iv) a

house owned by her child. If her most preferred house is among (i),

(ii), or (iii), she can obtain it right now, so modifying her preference

is useless. If her most preferred house is in (iv), by Lemma 1, either

she can obtain it or she will be re-selected with the same set of

choices. Thus, modifying her preference is useless. □

Lemma 3. For agent 𝑖 and any given preference ≻′
𝑖
, submitting all

her children 𝑟𝑖 is a dominant strategy.

Proof. Let us compare two cases: (a) agent 𝑖 invites 𝑟 ′
𝑖
⊊ 𝑟𝑖 , (b)

agent 𝑖 invites 𝑟 ′
𝑖
∪ { 𝑗}, where 𝑗 ∈ 𝑟𝑖 \𝑟 ′𝑖 . Assume 𝑖 obtains ℎ in case

(a). Then, she can also clearly obtainℎ in case (b) if it is (i) a currently

vacant house, (ii) a house owned by her ancestor (if her ancestor

is still in the market) or (iii) her own initial endowment house.

Finally, if ℎ is (iv) a house owned by another child 𝑘 ∈ 𝑟 ′
𝑖
, then 𝑘

will be activated and leave the market before 𝑗 is first activated.

Whether 𝑗 is invited therefore cannot influence whether 𝑘’s house

is attainable for 𝑖 . Thus, inviting one more child is never harmful;

she is guaranteed to obtain ℎ. Furthermore, if she prefers the initial

endowment house of 𝑗 over ℎ, she might be able to obtain it. As a

result, inviting 𝑟𝑖 , i.e., all of her children, is a dominant strategy. □

We also show that YRMH-IGYT for TSSNs satisfies weak NW,

IR, and SC4N for any tree, and runs in polynomial-time 𝑂 (𝑛 · 𝑛′).

Theorem 5. YRMH-IGYT for TSSNs is weakly NW, IR, and SC4N
for any tree.

Proof. For weak NW, by way of contradiction, assume ∃𝑖 ∈ 𝐴,
∃ℎ ∈𝑚(𝑠) ∩𝑚(𝑠), ℎ ≻𝑖 𝑚(𝑖) holds. When agent 𝑖 is selected, 𝑖 must

have requested ℎ, since ℎ is initially vacant and remains vacant,

and ℎ ≻𝑖 𝑚(𝑖) holds. Also, ℎ must be assigned to 𝑖 since ℎ is vacant.

This contradicts our assumption that𝑚(𝑖) (≠ ℎ) is allocated to 𝑖 .

IR is obvious since agent 𝑖 can request her initial endowment

house𝑚(𝑖) anytime. The fact that she obtains𝑚(𝑖) (≠𝑚(𝑖)) implies
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that she requested 𝑚(𝑖) instead of 𝑚(𝑖) and further implies that

𝑚(𝑖) ≻𝑖 𝑚(𝑖) holds.
For SC4N, byway of contradiction, assume there exists a blocking

pair (𝑖, 𝑗), where 𝑖 is the parent of 𝑗 . There are two cases: (i)𝑚( 𝑗) ≻𝑖
𝑚(𝑖) and𝑚(𝑖) ⪰𝑗 𝑚( 𝑗) hold, or (ii)𝑚( 𝑗) ⪰𝑖 𝑚(𝑖) and𝑚(𝑖) ≻𝑗 𝑚( 𝑗)
hold. Since 𝑖 is the parent of 𝑗 , 𝑖 must be selected before 𝑗 . Then,

for either case, 𝑖 must eventually point to 𝑗 , since𝑚( 𝑗) is at least
weakly better than𝑚(𝑖). Then, 𝑗 is selected, and shemust eventually

point to 𝑖 , since𝑚(𝑖) is at least weakly better than𝑚( 𝑗). Then, they
must exchange their initial endowment houses;𝑚(𝑖) =𝑚( 𝑗) and
𝑚( 𝑗) = 𝑚(𝑖) hold. This contradicts our assumption that either

𝑚( 𝑗) ≻𝑖 𝑚(𝑖) or𝑚(𝑖) ≻𝑗 𝑚( 𝑗) holds. □

Theorem 6. For given 𝐴, 𝐻 , ▷, 𝜃 ′, the time complexity of YRMH-
IGYT for TSSNs is 𝑂 (𝑛 · 𝑛′), where 𝑛 is the number of agents and 𝑛′

is the number of houses.

Proof. First, the procedure within the while loop (from line (3)

to line (27)), where we create the list of houses that she can request

(𝐻 ′), and find the most preferred house within it can be done𝑂 (𝑛′)
time. Further, the while loop is executed at most 2𝑛 − 1 times. This

is because, agent 𝑖 with |𝑟𝑖 | children can be selected at most 1 + |𝑟𝑖 |
times (the worst case is that she requests all her children’s houses

and fails, and finally obtains something else). Summing this over all

agents, we obtain

∑
𝑖∈𝐴 (1+ |𝑟𝑖 |) = 𝑛+∑𝑖∈𝐴 |𝑟𝑖 | ≤ 2𝑛−1, where the

last inequality follows because any agent has exactly one parent

(which can be another agent or the moderator). Hence, the overall

time complexity is 𝑂 (𝑛 · 𝑛′). □

As described in Section 4, the original YRMH-IGYT is equivalent

to the variant of TTC where each agent points to her favorite house,

each occupied house points to its owner, and each vacant house

points to the remaining top agent according to ▷. This equivalence
is not preserved when restricting whom agents can point to. If we

modify TTC such that each agent can point to only (i) any currently

vacant house, (ii) the houses of her ancestors, (iii) her initial endow-

ment house, or (iv) a house owned by her child, then the resulting

mechanism might look similar to YRMH-IGYT for TSSN, but in fact

fails to satisfy SP. This is illustrated by the following example.

Example 3. There exist three agents in the market, tenants 1, 2,
and 3. The houses initially owned by 1, 2, 3 are ℎ1, ℎ2, ℎ3, while ℎ4 is
a vacant house. Agents’ preferences are given as follows:

≻1 : ℎ2 ≻ ℎ1 ≻ · · ·
≻2 : ℎ4 ≻ ℎ1 ≻ · · ·
≻3 : ℎ3 ≻ · · ·

The social network is given in Fig. 1b. A distance-based priority is
given as ▷ := (2, 1, 3). The allocation decided by YRMH-IGYT for
TSSNs should be 𝑚(1) = ℎ2, 𝑚(2) = ℎ4 and 𝑚(3) = ℎ3. On the
other hand, in the TTC-based mechanism, agents 2 and 3 can point
to their favorite house, i.e., ℎ4 and ℎ3. However, for agent 1, since her
favorite house ℎ2 is not vacant, she cannot point to it. As a result,
agent 1 points to ℎ1. Vacant house ℎ4 points to agent 2, and each
occupied house ℎ𝑖 points to agent 𝑖 . There are three cycles and each
agent obtains the house to which she points. As a result, the allocation
should be𝑚(1) = ℎ1,𝑚(2) = ℎ4, and𝑚(3) = ℎ3, which is different
from the allocation obtained by YRMH-IGYT for TSSNs. Assume agent

1 misreports her preference as ℎ3 ≻1 ℎ2 ≻1 ℎ1 ≻1 · · · . Then, in the
TTC-based mechanism, agent 1 first points toℎ3. As a result, agent 1 is
not included in any cycle. Agent 2 and 3 obtainsℎ4 andℎ3 respectively
and leave the market. ℎ2 becomes vacant and points to agent 1 (i.e.,
the only agent remaining in the market). Then, agent 1 points to ℎ2.
A cycle is formed and agent 1 obtains ℎ2 and leaves the market. Thus,
this misreport is profitable for agent 1. In short, an agent may have
an incentive to delay the timing that she is included in a cycle until
her favorite house becomes available. Such an incentive does not exist
in YRMH-IGYT for TSSNs since an agent cannot control the timing
when she is first selected. Also, as shown in Lemma 1, pointing to her
child such that she will be selected later is useless.

6 COMPARISONWITH BASELINES
Assuming there are no newcomers or vacant houses, Kawasaki

mechanism [9] is also SP and IR for trees. It is defined based on the

original TTC algorithm, where each agent points to the agent who

owns her preferred house. The only difference is that each agent is

only allowed to point to herself, her parent, and her descendants. In

this section, we present two extensions of the Kawasaki mechanism

to work in our model, as well as another simple mechanism called

Take-it-or-leave-it with distance-based priority. Although these

mechanisms are SP, they fail to satisfy some of our desiderata.

Kawasaki mechanism with market split: Apply Kawasaki

mechanism among existing tenants (who can exchange their initial

endowment houses), while initially vacant houses are allocated

only to newcomers. We apply a serial dictatorship mechanism with

distance-based priority for all the newcomers.

Kawasakimechanismwith randomendowments: First ran-
domly assign vacant houses to newcomers, and then apply Kawasaki

mechanism to all the agents.

Take-it-or-leave-itwith the distance-based priority: Choose
agents sequentially based on the distance-based priority. For agent

𝑖 , if 𝑖 ∈ 𝐴𝑁 , assign 𝑖 her most preferred house within the currently

vacant houses. If 𝑖 ∈ 𝐴𝐸 , assign her most preferred house within the

currently vacant houses and ℎ𝑖 (i.e., her initial endowment house).

If a currently vacant house is allocated to 𝑖 , then ℎ𝑖 becomes vacant.

The following examples show that these mechanisms fail to

satisfy some of our desiderata.

Example 4. Assume there are two existing tenants, 1 and 2, that
initially own ℎ1 and ℎ2 respectively. There is also a newcomer 3. The
moderator owns two vacant houses, ℎ3 and ℎ4. The social network is
given in Fig. 1b, and the agents’ preferences are given as follows:

≻1 : ℎ3 ≻ ℎ4 ≻ ℎ1
≻2 : ℎ4 ≻ ℎ3 ≻ ℎ1 ≻ ℎ2
≻3 : ℎ4 ≻ ℎ3 ≻ ℎ1 ≻ ℎ2

In both TTC-based mechanisms, either ℎ3 or ℎ4 is assigned to new-
comer 3, while one of them remains vacant. In both extensions, agent
1 (as well as 2) obtains her initial endowment house. Therefore, she
prefers the vacant house (which is eitherℎ3 orℎ4) over her assignment.
Thus, these mechanisms fail to satisfy weak NW.

Example 5. Assume there are three existing tenants, 1, 2, and 3,
each of whom initially owns ℎ1, ℎ2, and ℎ3, respectively. The modera-
tor owns one vacant house, ℎ4. The social network is given in Fig. 1b,
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and the agents’ preferences are given as follows:

≻1 : ℎ3 ≻ ℎ1 ≻ · · ·
≻2 : ℎ4 ≻ ℎ2 ≻ · · ·
≻3 : ℎ1 ≻ ℎ3 ≻ · · ·

In Take-it-or-leave-it mechanism with distance-based priority ▷ :=

(1, 2, 3), first, agent 1 is chosen and assigned ℎ1, since the only cur-
rently vacant house is ℎ4 and ℎ1 ≻1 ℎ4 holds. Then, agent 2 is chosen
and assigned ℎ4, i.e., her most preferred house. Finally, agent 3 is
chosen and assigned ℎ3, since she prefers ℎ3 over the currently vacant
house ℎ2. This assignment satisfies weak NW and this mechanism
even satisfies weak NW in general. However, (1, 2) is a blocking pair
since they would be happier if they exchange their initial endowment
houses. Thus, Take-it-or-leave-it mechanism does not satisfy WC4N.

Weak NW fails in the two extensions of Kawasaki mechanism

since the number of vacant houses ultimately allocated to the agents

is exactly the same as the number of newcomers. In YRMH-IGYT

for TSSNs, as many new vacant houses as possible can be assigned

if agents prefer them; giving it more flexibility to achieve weakly

NW allocations. Also, Take-it-or-leave-it mechanism fails to satisfy

WC4N, since agents cannot exchange their initial endowments.

We can also consider the following simple extension of Kawasaki

mechanism to handle vacant houses, i.e., each agent is also allowed

to point to any currently vacant house. However, we can show that

this simple extension does not satisfy SP, since it becomes equiva-

lent to the modified TTC in the setting of Example 3. Furthermore,

if we modify YRMH-IGYT for TSSNs such that an agent can request

a house owned by her descendant, it is no longer SP. This is because

for agent 𝑖 , her child 𝑗 can be selected before her (and can take away

her favorite house) if her ancestor requests 𝑗 ’s house.

7 RESILIENCE TO GROUP MANIPULATIONS
In the literature of house allocations and housingmarket, discussing

the resilience to manipulations by groups of agents is another im-

portant direction.

Definition 11 (Strong Group Strategy-Proofness). Mecha-
nism 𝑓 is weakly manipulable by coalition 𝑆 ⊆ 𝐴 if ∃𝜃 ′

𝑆
∈ 𝑅(𝜃𝑆 ) s.t.

(a) ∀𝑖 ∈ 𝑆, 𝑓𝑖 (𝜃 ′𝑆 , 𝜃−𝑆 ) ⪰𝑖 𝑓𝑖 (𝜃𝑆 , 𝜃−𝑆 ), and (b) ∃ 𝑗 ∈ 𝑆, 𝑓𝑗 (𝜃
′
𝑆
, 𝜃−𝑆 ) ≻𝑗

𝑓𝑗 (𝜃𝑆 , 𝜃−𝑆 ). A mechanism satisfies strong group strategy-proofness

(strong GSP) if it is not weakly manipulable by any coalition.

We can analogously define weak group strategy-proofness (weak
GSP) by replacing conditions (a) and (b) with (c)∀𝑖 ∈ 𝑆, 𝑓𝑖 (𝜃 ′𝑆 , 𝜃

′
−𝑆 ) ≻𝑖

𝑓𝑖 (𝜃𝑆 , 𝜃 ′−𝑆 ). Here, we require that all members in the coalition must

be strictly better off by manipulation.

Example 6 below shows that YRMH-IGYT for TSSNs violates

strong GSP, while Theorem 7 shows that it satisfies weak GSP.

Example 6. There exist four agents in the market: existing tenants
1, 2, 3 and newcomer 4. The social network is given in Fig. 1c and their
preferences are given as follows:

≻1 : ℎ5 ≻ ℎ1 ≻ · · ·
≻2 : ℎ3 ≻ ℎ2 ≻ · · ·
≻3 : ℎ1 ≻ ℎ2 ≻ ℎ3 ≻ · · ·
≻4 : ℎ2 ≻ ℎ4 ≻ · · ·

There are three occupied houses ℎ1, ℎ2, ℎ3, and two vacant houses
ℎ4 and ℎ5. Assume ▷ := {4, 1, 2, 3}. Then, the allocation decided by

YRMH-IGYT for TSSNs should be𝑚(1) = ℎ5,𝑚(2) = ℎ3,𝑚(3) = ℎ2,
and𝑚(4) = ℎ4. Assume agents 3 and 4 collude; agent 4 modifies her
preference as ℎ4 ≻4 · · · , while agent 3 submits her true preference.
Then, the allocation becomes 𝑚(1) = ℎ5, 𝑚(2) = ℎ2, 𝑚(3) = ℎ1,
𝑚(4) = ℎ4. Here, the assignment of agent 4 is the same, while the
assignment of agent 3 becomes ℎ1 instead of ℎ2, while she prefers ℎ1
over ℎ2. Hence, YRMH-IGYT for TSSNs does not satisfy strong GSP.

Theorem 7. YRMH-IGYT for TSSNs satisfies weak GSP.

Proof. Assume a group misreport by a set of agents 𝑆 ⊆ 𝐴

exists, where each agent in 𝑆 obtains a strictly better house than

with truthful reporting. Consider agent 𝑖 ∈ 𝑆 that is selected first

within 𝑆 . Note that agent 𝑖 can be selected several times before she

leaves the market. If 𝑆 contains agents who are selected first after 𝑖

leaves the market, these agents cannot affect the outcome of the

rest of 𝑆 (who were selected before 𝑖 leaves). Thus, we can assume

w.l.o.g. that all agents in 𝑆 \ {𝑖} are selected and leave the market

before 𝑖 leaves the market. By Lemma 1, an agent that is selected

can only obtain one of the houses that are currently vacant at the

time of their first selection 𝐻 ′
𝑉
, her initial endowment house, the

house owned by her ancestor (assuming the ancestor is still in the

market), or the houses owned by her children. If agent 𝑖 is the first

selected agent that misreports, the misreports of the other agents

cannot change 𝐻 ′
𝑉
. Therefore, for 𝑖 to obtain a better outcome than

with truthful reporting, she has to obtain the house of one of her

children 𝑗 that she does not obtain if everyone reports truthfully.

Denote this house by ℎ′. The only misreports of 𝑖 that have any

effect on the mechanism (and do not make 𝑖 leave the market with a

house in 𝐻 ′
𝑉
) is the order she gives over the houses of her children.

However, by Lemma 1, any child that 𝑖 points to before 𝑖 points to

𝑗 either does not change 𝐻 ′
𝑉
or causes 𝑖 to leave the market (and

therefore, would not result in her obtaining ℎ′). Thus, no matter

what misreport 𝑖 makes, when she points to 𝑗 , the set of vacant

houses is 𝐻 ′
𝑉
. Then, for misreporting agents except 𝑖 , the situation

is identical to the case that 𝑖 acts truthfully. This fact implies 𝑆 \ {𝑖}
can also make a group-misreport that is profitable for each member.

By repeating the same argument, we obtain a situation where only

one agent remains in the group. However, this contradicts the fact

that YRMH-IGYH for TSSNs is SP. □

8 CONCLUDING REMARKS
To the best of our knowledge, our work is the first attempt to con-

sider house allocation with existing tenants over social networks.

Clarifying some other network structures where we can obtain a

mechanism that satisfies desirable properties is an important future

direction. Discussing other resource allocation problems (e.g., two-

sided matching, combinatorial auctions) from the perspective of

mechanism design over social networks would also be interesting.
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