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ABSTRACT
We propose an agent-based network formation model under un-

certainty with the objective of relaxing the common assumption

of complete information, calling attention to the role beliefs may

play in segregation. We demonstrate that our model is capable of

generating a set of networks that encompasses those of a complete

information model. Further, we show that by allowing agents to

hold biased beliefs toward each other based on social group mem-

bership, individual utility-maximising decisions may lead to group

segregation at the cost of social welfare. We accompany our theoret-

ical results with a simulation-based investigation of the relationship

between beliefs and segregation and show that biased beliefs are

an important driver of segregation under incomplete information.
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1 INTRODUCTION
Members of the same group frequently exhibit similar outward

appearances – a phenomenon referred to as homophily – which in

its extreme form encompasses segregation. We provide an approach

to studying this feature of social networks under uncertainty, build-

ing on an agent-based network formation model first proposed by

Jackson and Wolinsky [14].

A number of extensions have been made to study segregation

from a network formation perspective. These extensions have in

common that agents belong to different types, where a type denotes

shared attributes. Further, agents may exhibit heterogeneity in ei-

ther benefits or costs when connecting to other agents. Specifically,

connecting with someone of the same type is usually assumed to

either offer greater benefits or come at a lower cost than connecting

when types differ. These models show that segregation equilibria

exist when agents exhibit even small preferences for homophily.

1.1 Our Contribution
The key shortcoming in most of the existing literature (Section 2) is

the strong assumption that agents have complete information about
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each other’s types or, equivalently, utilities depend only on public

attributes. This paper departs from this assumption by introducing

a distinction between social groups, which subsume all public at-

tributes, and private types, encompassing private attributes. Agents

are assumed to prefer connecting to other agents of the same type

which, however, is unobservable in advance. Agents are thus indif-

ferent over public attributes. Instead, agents heuristically use social

group memberships to gauge someone’s private type. This, in turn,

allows for “errors” in people’s judgement of each other’s types.

We formally present this model in Section 3. Section 4 provides

an analysis of the networks that can form under this model and

demonstrates that segregation between social groups can simply

occur when people are sufficiently biased, i.e., exhibit beliefs that

are detached from the true distribution of private types. Finally we

implement simulations (Section 5) to provide experimental compar-

isons with complete information networks and incomplete informa-

tion networks with rational beliefs, i.e., beliefs that coincide with

the true type distribution. The results in Section 6 illustrate that

even mildly biased beliefs are an important driver of segregation

under incomplete information. Section 7 concludes.

2 RELATED LITERATURE
Since the landmark Schelling segregationmodels [20, 21], numerous

studies have analysed the impact group membership can have in

homophilous social networks. This has been examined, amongst

others, in the context of migration and assimilation decisions [2, 4,

19, 25], occupation [9, 18, 26], and even marriage [22].

Jackson and Wolinsky [14] contributed a seminal model of the

process by which such networks can form based on individuals

maximising utility. The network is represented as the tuple (𝑁,𝑔)
consisting of agents 𝑁 and an undirected graph 𝑔 in which nodes

are agents and edges are connections. The graph 𝑔 can then be

simplified as the set of pairs 𝑖 𝑗, 𝑖, 𝑗 ∈ 𝑁 , between which there is an

edge. Given a network, agent 𝑖 has a utility function 𝑢𝑖 (𝑔) given by:

𝑢𝑖 (𝑔) =
∑
𝑗 ≠ 𝑖

𝛿𝑑𝑖 𝑗 (𝑔) −
∑

𝑗 : 𝑖 𝑗 ∈ 𝑔

𝑐 (1)

where the benefit for 𝑖 to be connected to 𝑗 in graph 𝑔 depends on

a factor 𝛿 ∈ (0, 1) which decays with the number of edges on the

shortest connecting path, 𝑑𝑖 𝑗 (𝑔). Agent 𝑖 , further, pays a cost 𝑐 > 0

for every edge they maintain.

In this network, agents form and sever edges until the network

reaches a pairwise stable equilibrium (PSE), defined as:

(i) ∀𝑖 𝑗 ∈ 𝑔,𝑢𝑖 (𝑔) ≥ 𝑢𝑖 (𝑔 \ 𝑖 𝑗) and 𝑢 𝑗 (𝑔) ≥ 𝑢 𝑗 (𝑔 \ 𝑖 𝑗), and
(ii) ∀𝑖 𝑗 ∉ 𝑔, if 𝑢𝑖 (𝑔 ∪ 𝑖 𝑗) > 𝑢𝑖 (𝑔) then 𝑢 𝑗 (𝑔 ∪ 𝑖 𝑗) < 𝑢 𝑗 (𝑔)

(2)
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which specifies that (i) no agent should be better off severing an

existing edge and (ii) no pair of agents could improve utility individ-

ually by forming a new edge. This framework offers the ability to as-

sociate different network patterns with social welfare, which can be

defined as the sum of individual utilities, i.e.,𝑈 (𝑁,𝑔) = ∑
𝑖∈𝑁 𝑢𝑖 (𝑔).

Note that this is a homogeneous agent model. Benefits and costs

merely depend on agent locations within the network and not on

identities or types. A result of this assumption is that networks must

either be empty or fully connected (i.e., an edge exists between any

two agents) in equilibrium [14]. Networks with separate groups

of individuals (or “components”) that coexist cannot be generated,

making them unsuitable for the study of group segregation.

Jackson and Rogers [11] address this limitation and introduce

heterogeneity by assuming that agents belong to 𝐾 different islands

with inter-island edges being more expensive than intra-island

edges. The utility function becomes:
1

𝑢𝑖 (𝑔) =
∑
𝑗≠𝑖

𝛿𝑑𝑖 𝑗 (𝑔) −
∑

𝑗 : 𝑖 𝑗 ∈ 𝑔

𝑐𝑖 𝑗 (3)

where 𝑐𝑖 𝑗 = 𝑐𝐿 > 0 if 𝑖 and 𝑗 belong to the same island and 𝑐𝑖 𝑗 =

𝑐𝐻 > 𝑐𝐿 if not.

The inclusion of different agent types (by way of island occupa-

tion) and heterogeneous costs is the key assumption that enables

equilibria in which agents are segregated by type. Significantly,

their model implies that segregation is, in fact, optimal for social

welfare – a conclusion also reached in other works [1, 7].

These works, however, share the strong assumption of complete

information, which for instance means that agents already know

each other perfectly when deciding to form a new connection. This

paper belongs to a body of literature that relaxes this assumption.

Within this literature, the focus, however, often lies on the impact

of incomplete information on games played in an existing network

[6, 15] which therefore differs from the focus here on network

formation under incomplete information.

The approach of Song and van der Schaar [23] and Zhang and

van der Schaar [27] is closest to ours. Both consider a network for-

mation model in which agents possess heterogeneous types which

are unknown in advance. The former, however, assumes agents

with homogeneous beliefs while this work permits belief hetero-

geneity. Their work also mainly focuses on topological implications

for the network. The latter work extends the former but assumes ra-

tional beliefs tied to the true distribution of types. We instead draw

inspiration from works showing that humans frequently exercise

heuristic thinking in deviation of rational expectations [5, 10, 17, 24]

and allow beliefs to be biased.

3 THE INCOMPLETE INFORMATION MODEL
This section introduces the network formation model with hetero-

geneous agents who possess incomplete information about each

other’s private types. The key addition in our model is the concept

of beliefs over these types based on public social group membership

which impact the expected cost of forming an edge.

1
Jackson and Rogers [11] introduce a free parameter 𝐷 to truncate benefits. We do

not consider truncation and implicitly set 𝐷 = ∞ here for presentation.

3.1 Design
Here we introduce the idea that agents belong to distinct social
groups which share public characteristics but also have a private

type which can be revealed by forming an edge.

By way of illustration, consider a school in which students pub-

licly belong to distinct social groups – their school classes – and

wish to make like-minded friends, i.e., friends of the same type.

Due to inter-class rivalries, students use class membership to gauge

how easy it will be to become friends with each other and strike

up friendships based on these expectations. The actual ease with

which a friendship is then maintained, however, depends on the two

students’ private types which are revealed once they are friends.

Agents. Let every agent 𝑖 ∈ 𝑁 = {1, ..., 𝑛} have a public social
group 𝑠𝑖 ∈ S = {𝜎1, ..., 𝜎𝑆 } and a private type 𝑡𝑖 ∈ T = {𝜃1, ..., 𝜃𝑇 },
so that then we can define 𝑁𝜎𝜃 = {𝑖 ∈ 𝑁 : 𝑠𝑖 = 𝜎, 𝑡𝑖 = 𝜃 },
𝑁𝜎+ = {𝑖 ∈ 𝑁 : 𝑠𝑖 = 𝜎}, and 𝑁 +𝜃 = {𝑖 ∈ 𝑁 : 𝑡𝑖 = 𝜃 }. Agents know
their own type and the distribution of types in a given social group.

They learn and memorise the private types of other agents with

whom they form an edge. Let the |𝑁 | × |𝑁 | matrix𝑀 represent the

memory of all agents, which we define as:

𝑀𝑖 𝑗 =

{
1 if agent 𝑖 knows the type of agent 𝑗

0 otherwise

(4)

so that𝑀 = 𝐼 |𝑁 | (where 𝐼 |𝑁 | is the identity matrix) corresponds to

agents who only know their own type and𝑀 = 𝐽 |𝑁 | (where 𝐽 |𝑁 | is
a matrix of ones) implies complete information.

Networks. We define networks as the tuple (𝑁,𝑀,𝑔), consisting
of agents 𝑁 with memory𝑀 represented as nodes in an undirected

graph 𝑔 where, as before, 𝑖 𝑗 ∈ 𝑔, 𝑖, 𝑗 ∈ 𝑁, denotes the presence of
an edge from 𝑖 to 𝑗 . Agents can bilaterally agree to form an edge or

unilaterally decide to sever an existing edge.

Actual Utility. Agents aim tomaximise their actual utility derived
from their location in graph 𝑔, defined for 𝑖 ∈ 𝑁 as follows:

𝑢𝑖 (𝑔) =
∑
𝑗≠𝑖

𝛿𝑑𝑖 𝑗 (𝑔) −
∑

𝑗 : 𝑖 𝑗 ∈ 𝑔

𝑐𝑖 𝑗 (5)

where the benefit for 𝑖 to be connected to 𝑗 , 𝛿 ∈ (0, 1), decays
with the number of edges on the shortest connecting path, 𝑑𝑖 𝑗 (𝑔),
where 𝑑𝑖 𝑗 (𝑔) = ∞ if 𝑖 𝑗 ∉ 𝑔. Further, we assume the cost of a direct

connection, 𝑐𝑖 𝑗 , depends on the agents’ types, giving:

𝑐𝑖 𝑗 = 𝑐 (𝑡𝑖 , 𝑡 𝑗 ) (6)

Beliefs. Given incomplete information over types, we define

agent 𝑖’s belief that agent 𝑗 is of type 𝜃 given 𝑗 ’s group membership

𝑠 𝑗 as follows:

if𝑀𝑖 𝑗 = 0 : 𝜋𝑖 (𝜃 |𝑠 𝑗 , 𝑀) ∈ [0, 1]
if𝑀𝑖 𝑗 = 1 : 𝜋𝑖 (𝜃 |𝑠 𝑗 , 𝑀) = 1(𝑡𝑖 = 𝑡 𝑗 )

(7)

where 1(·) is an indicator function. Intuitively, beliefs are uncertain
if 𝑖 and 𝑗 are unacquainted (𝑀𝑖 𝑗 = 0) but reflect certainty if they

have discovered each other’s types (𝑀𝑖 𝑗 = 1). For ease of notation,

we subsequently suppress𝑀 in the belief function.
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Expected Utility. Since agents at least know the types of all they

currently have an edge with, only edge addition occurs under un-

certainty. The expected utility for 𝑖 from a new edge to 𝑗 added to

graph 𝑔 given memory𝑀 can be expressed as:

𝐸𝑖 [𝑢𝑖 (𝑔 ∪ 𝑖 𝑗) |𝑀]

= 𝛿 −
∑
𝜃 ∈T

𝜋𝑖 (𝜃 |𝑠 𝑗 ) 𝑐 (𝑡𝑖 , 𝜃 ) +
∑

𝑘∉{𝑖, 𝑗 }
𝛿𝑑𝑖𝑘 (𝑔∪𝑖 𝑗) −

∑
𝑘 :𝑖𝑘∈𝑔∪𝑖 𝑗

𝑘≠𝑗

𝑐𝑖𝑘 (8)

where the first two terms are the benefit of an edge with 𝑗 less

its expected cost. This expected cost is an average of the costs to

connect with each type 𝜃 ∈ T weighted by agent 𝑖’s belief that 𝑗 is

of type 𝜃 given social group 𝑠 𝑗 . The last two terms are the utility

from the remainder of the network if the edge were added (𝑔 ∪ 𝑖 𝑗 )
less the cost of the other edges 𝑖 maintains.

We can use the above to define the expected incremental change
in utility from adding an edge to agent 𝑗 by subtracting the utility 𝑖

has prior to the change, 𝑢𝑖 (𝑔), from the expected utility following

the change, 𝐸𝑖 [𝑢𝑖 (𝑔 ∪ 𝑖 𝑗) |𝑀], giving:

𝐸𝑖 [Δ𝑢𝑖 (𝑔 ∪ 𝑖 𝑗) |𝑀] = 𝐸𝑖 [𝑢𝑖 (𝑔 ∪ 𝑖 𝑗) |𝑀] − 𝑢𝑖 (𝑔) (9)

where 𝐸𝑖 [Δ𝑢𝑖 (𝑔 ∪ 𝑖 𝑗) |𝑀] ≥ 0 would imply agent 𝑖’s consent to an

edge with 𝑗 . For ease of notation, we subsequently suppress 𝑀 in

the expectation operator.

Stability. The PSE definition can be refined now to reflect that

agents do not know each other’s types in advance:

(i) ∀𝑖 𝑗 ∈ 𝑔, 𝑢𝑖 (𝑔) ≥ 𝑢𝑖 (𝑔 \ 𝑖 𝑗) and 𝑢 𝑗 (𝑔) ≥ 𝑢 𝑗 (𝑔 \ 𝑖 𝑗), and
(ii) ∀𝑖 𝑗 ∉ 𝑔, if 𝐸𝑖 [Δ𝑢𝑖 (𝑔 ∪ 𝑖 𝑗)] ≥ 0 then 𝐸 𝑗 [Δ𝑢 𝑗 (𝑔 ∪ 𝑖 𝑗)] < 0

(10)

which implies that (i) no agent should be better off severing an ex-

isting edge and (ii) no pair of agents could weakly improve expected
utility individually by forming a new edge. We assume condition

(ii) only requires non-negative utilities to cover cases where both

agents are indifferent.

Network Formation. Following Jackson and Watts [13], the net-

work is formed by repeatedly checking for a PSE (Equation 10). In a

given period, if a PSE condition is violated, then there exist agents

𝑖, 𝑗 ∈ 𝑁 who can either bilaterally form an edge or unilaterally

sever an edge to improve utility, moving the process into the next

period. We can thus define a sequence of 𝜏 PSE-violating agent pairs

𝑃 (𝜏) = {{𝑖, 𝑗}, {𝑘, 𝑙}...} which form the network over 𝜏 periods.

Further Assumptions. Having set up the general model, it is useful

to follow the insider-outsider cost assumption of Galeotti et al. [8]

or Jackson and Rogers [11] who simplify costs for tractability:

𝑐 (𝑡𝑖 , 𝑡 𝑗 ) =
{
𝑐𝐿 if 𝑡𝑖 = 𝑡 𝑗

𝑐𝐻 otherwise

(11)

where 𝑐𝐿 is the cost of an intra-type edge and 𝑐𝐻 the cost of an

inter-type edge and 0 < 𝑐𝐿 < 𝑐𝐻 . Expected costs then reduce as

follows:∑
𝜃 ∈T

𝜋𝑖 (𝜃 |𝑠 𝑗 ) 𝑐 (𝑡𝑖 , 𝜃 ) = 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) 𝑐𝐿 + (1 − 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 )) 𝑐𝐻 (12)

Complete Information. Themodel nests the complete information

case by letting 𝑀 = 𝐽 |𝑁 | . Beliefs are then updated to 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) ∈
{0, 1} for all 𝑖, 𝑗 ∈ 𝑁 prior to the start of the formation process.

Expected and actual utilities then coincide as do the PSE conditions

(Equations 2 and 10).

4 THEORETICAL ANALYSIS
In this section, we provide theoretical intuition for the operation of

the model. We characterise the impact of beliefs on network forma-

tion (Section 4.1), show that our model can generate all complete

information network graphs under incomplete information (Sec-

tion 4.2), and demonstrate that our model encompasses individually

utility-maximising decisions that result in socially sub-optimal seg-

regation in equilibrium (Section 4.3).

4.1 The Role of Beliefs
The relationship between beliefs and networks is, in general, com-

plex when costs are entirely unrestricted. Given our aim of studying

social networks, we assume that agents of the same type principally

want to connect and thus focus on the low intra-type cost case.

Section 4.1.1 helps characterise the general willingness of agents

to risk forming edges and discover each other’s types. Section 4.1.2

provides additional such characterisation for the empty network

(𝑔 = ∅) as the initial starting point. Section 4.1.3 demonstrates

that segregation is possible in our model. Specifically, beliefs can

support insular groups of agents which in previous works were

either absent [14] or relied on complete information [11]. These

sections collectively demonstrate that in many cases beliefs are

sufficient for edges to initially form or not form, irrespective of

potential gains in actual utility.

4.1.1 Beliefs and Type Discovery. Proposition 4.1 shows that agents
will always form an edge (which may be severed later) regardless of

their beliefs if inter-type costs are low. In contrast, agents need to

be sufficiently optimistic about a potential connection if inter-type

costs are high. Using this proposition, we state Corollary 4.2 which

implies that there exist beliefs that are able to persuade agents

to form an edge (which may be severed later) for arbitrarily high

inter-type costs.

Proposition 4.1. Assume 𝑐𝐿 ≤ 𝛿 − 𝛿2 and suppose ∃𝑖, 𝑗 ∈ 𝑁

with:

(i) 𝑐𝐻 > 𝛿 − 𝛿2 and𝑚𝑖𝑛{𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ), 𝜋 𝑗 (𝑡 𝑗 |𝑠𝑖 )} ≥ 𝑐𝐻−(𝛿−𝛿2)
𝑐𝐻−𝑐𝐿 , or

(ii) 𝑐𝐻 ≤ 𝛿 − 𝛿2 and 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ), 𝜋 𝑗 (𝑡 𝑗 |𝑠𝑖 ) ∈ [0, 1],
then in a PSE we must have𝑀𝑖 𝑗 = 1.

Proof. To prove this by contradiction, suppose there is a PSE

with graph 𝑔 and 𝑀𝑖 𝑗 = 0. Without loss of generality, the least

amount of utility agent 𝑖 expects to gain from forming an edge with

𝑗 corresponds to the case when 𝑖 and 𝑗 are as closely connected as

possible without a direct connection, i.e., 𝑑𝑖 𝑗 (𝑔) = 2. The expected

gain is therefore non-negative if:

𝛿 − [𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) 𝑐𝐿 + (1 − 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 )) 𝑐𝐻 ] − 𝛿2 ≥ 0

where the first two terms are the benefit of forming an edge less

the expected cost of doing so, and where the last term is the lost
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benefit of being closely but indirectly connected. This expression

can be rewritten as:

𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) ≥
𝑐𝐻 − (𝛿 − 𝛿2)
𝑐𝐻 − 𝑐𝐿

which means agents 𝑖 and 𝑗 would be compelled to form an edge,

so that 𝑀𝑖 𝑗 = 1, resulting in a contradiction. Statements 1 and 2

then follow directly. □

Corollary 4.2. Let 𝑐𝐿 ≤ 𝛿 − 𝛿2 < 𝑐𝐻 , then ∀𝑖, 𝑗 ∈ 𝑁 there exist
𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ), 𝜋 𝑗 (𝑡 𝑗 |𝑠𝑖 ) ∈ [0, 1], so that𝑀𝑖 𝑗 = 1 in a PSE.

Proof. Take any 𝑖, 𝑗 ∈ 𝑁 . If𝑀𝑖 𝑗 = 1 initially, then the statement

holds trivially. Next assume𝑀𝑖 𝑗 = 0 initially, then Proposition 4.1

implies𝑀𝑖 𝑗 = 1 in a PSE for 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) ∈ [ 𝑐𝐻−(𝛿−𝛿2)
𝑐𝐻−𝑐𝐿 , 1] ⊂ [0, 1]. □

4.1.2 Beliefs and the Empty Network. Proposition 4.3 and Corol-

lary 4.4 provide more specific characterisation for networks that

emerge when agents start off in an empty network. This is particu-

larly useful for simulations, as the proposition provides parameteri-

sation that ensures agents will start forming edges to discover types,

while the corollary provides some additional predictions about the

extent to which discovery occurs. Note that they do not imply that

the empty network is not a PSE, as agents may decide to sever their

edges once they know each other’s types.

Proposition 4.3. Consider the empty network 𝑔 = ∅ with 𝑀 =

𝐼 |𝑁 | and let:

(i) 𝑐𝐻 >𝛿 and ∃𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗 ,𝑚𝑖𝑛{𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ), 𝜋 𝑗 (𝑡 𝑗 |𝑠𝑖 )} ≥ 𝑐𝐻−𝛿
𝑐𝐻−𝑐𝐿 ,

or
(ii) 𝑐𝐻 ≤ 𝛿 ,
then this network is not a PSE.

Proof. To prove this by contradiction, suppose 𝑔 = ∅ with

𝑀 = 𝐼 |𝑁 | was a PSE. Take any two agents 𝑖 and 𝑗 , then the expected

utility of forming an edge for agent 𝑖 is always non-negative if

𝛿 − 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) 𝑐𝐿 − (1 − 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 )) 𝑐𝐻 ≥ 0, or equivalently:

𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) ≥
𝑐𝐻 − 𝛿
𝑐𝐻 − 𝑐𝐿

An edge will be formed if agent 𝑗 ’s expected utility is also non-

negative, so that𝑀𝑖 𝑗 = 1 or𝑀 ≠ 𝐼 |𝑁 | , resulting in a contradiction.

The proposition thus follows by symmetry. □

Corollary 4.4. Consider the empty network 𝑔 = ∅ with𝑀 = 𝐼 |𝑁 |
and let 𝑐𝐿 ≤ 𝛿 − 𝛿2 < 𝑐𝐻 . Then after converging to a PSE, it must be
that:
(i) ∀𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗, 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) < 𝑐𝐻−𝛿

𝑐𝐻−𝑐𝐿 → 𝑀 = 𝐼 |𝑁 | ,

(ii) ∃𝑖, 𝑗 ∈ 𝑁, 𝑖 ≠ 𝑗,𝑚𝑖𝑛{𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ), 𝜋 𝑗 (𝑡 𝑗 |𝑠𝑖 )} ≥ 𝑐𝐻−𝛿
𝑐𝐻−𝑐𝐿 → 𝑀𝑖 𝑗 = 1,

and

(iii) ∀𝑖, 𝑗 ∈ 𝑁,𝑚𝑖𝑛{𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ), 𝜋 𝑗 (𝑡 𝑗 |𝑠𝑖 )} ≥ 𝑐𝐻−(𝛿−𝛿2)
𝑐𝐻−𝑐𝐿 → 𝑀 = 𝐽 |𝑁 | .

Proof. To show part (i) by contradiction, assume there are 𝑖, 𝑗 ∈
𝑁 with𝑀𝑖 𝑗 = 1, then the expected utility for 𝑖 prior to forming the

edgewith 𝑗 must have been 𝛿−𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) 𝑐𝐿−(1−𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 )) 𝑐𝐻 ≥ 0, or

equivalently, 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) ≥ 𝑐𝐻−𝛿
𝑐𝐻−𝑐𝐿 , resulting in a contradiction. Part (ii)

follows from Proposition 4.3 and part (iii) from Proposition 4.1. □

4.1.3 Beliefs and Coexisting Components. Proposition 4.5 shows

that the model supports PSEs in which insular groups of agents

coexist. Such groups can be represented as components of the graph,
𝐶 (𝑔) ⊂ 𝑁 , where all agents of the same component are (indirectly)

connected, i.e., ∀𝑖, 𝑗 ∈ 𝐶 (𝑔), 𝑑𝑖 𝑗 (𝑔) < ∞. The proposition nests

the special case of a singleton agent refusing to connect to any

component. Its interpretation is intuitive. An agent 𝑖 will refuse to

branch out of their group, even to the best connected individual of

another group, if they are sufficiently pessimistic.

Proposition 4.5. Consider 𝑖, 𝑗 ∈ 𝑁 from separate components
𝐶𝑖 (𝑔)∩𝐶 𝑗 (𝑔) = ∅ and𝑀𝑖 𝑗 = 0 initially. Let 𝑐𝐻 > 𝛿+ (|𝐶 𝑗 (𝑔) |−1) 𝛿2.
In a PSE,𝑀𝑖 𝑗 = 0, if:

𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) <
𝑐𝐻 − (𝛿 + (|𝐶 𝑗 (𝑔) | − 1) 𝛿2)

𝑐𝐻 − 𝑐𝐿

Proof. The highest net utility agent 𝑖 can receive from forming

an edge with 𝑗 occurs when 𝑗 has edges to all individuals in his

component 𝐶 𝑗 (𝑔), so that 𝑖 could become indirectly connected to

everyone in 𝐶 𝑗 (𝑔). The expected incremental gain (Equation 9) is

negative if 𝛿 + (|𝐶 𝑗 (𝑔) | −1) 𝛿2−𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) 𝑐𝐿 − (1−𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 )) 𝑐𝐻 < 0

which rearranged gives the proposition.

□

4.2 Generating Complete Information Network
Graphs

In Section 3.1, we noted that our model directly nests the complete

information case by assuming 𝑀 = 𝐽 |𝑁 | (effectively resulting in

the model of Jackson and Rogers [11]). In this section, we draw a

connection to a proposition due to Song and van der Schaar [23]

which can be used to show that the network graphs generated

by our model with incomplete information (𝑀 ≠ 𝐽 |𝑁 | suffices)

represents a superset of those generated with complete information.

This suggests that the introduction of uncertainty does not come at

the cost of reduced variety in the set of possible networks graphs.

First, denote𝐺𝐶 (𝑁 ) as the set of network graphs that form from

the empty network with agents under complete information while

𝐺𝐶
𝑆
(𝑁 ) denotes the set of such graphs that are also PSE. Let𝐺𝐼𝐶 (𝑁 )

and 𝐺𝐼𝐶
𝑆

(𝑁 ) be the incomplete information equivalents. We can

then state:
2

Proposition 4.6 (Song and van der Schaar [23]). If for all
𝑖, 𝑗 ∈ 𝑁 with 𝑀𝑖 𝑗 = 0, 𝐸𝑖 [Δ𝑢𝑖 (𝑔 ∪ 𝑖 𝑗) |𝑀] ≥ 0, then 𝐺𝐶 (𝑁 ) ⊂
𝐺𝐼𝐶 (𝑁 ) and 𝐺𝐶

𝑆
(𝑁 ) ⊂ 𝐺𝐼𝐶

𝑆
(𝑁 ).

which implies that if agents are sufficiently optimistic – such that

the expected incremental utility is always non-negative – then

the set of all complete information network graphs and the set of

complete information PSE network graphs are, respectively, subsets

of those under incomplete information.

4.3 Application to Segregation in Social
Networks

Proposition 4.7 shows that a socially sub-optimal equilibrium with

segregated social groups is possible in our model. This stands in

2
For further details and a sketch of their proof, see supplemental materials.
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contrast to previous works on heterogeneous agent models [7, 11]

which concluded that such equilibria were optimal for social welfare.

Section 4.2 showed that these equilibria continue to be possible

in our model, so that the introduction of incomplete information

provides a more flexible way of modelling segregation.

Proposition 4.7. Assume the network is initialised as 𝑔 = ∅, 𝑀 =

𝐼 |𝑁 | and let all agents be of the same private type but belong to S
separate social groups, 𝑁 1, 𝑁 2, ..., 𝑁𝑆 ⊂ 𝑁 and let 𝑐𝐿 ≤ 𝛿 − 𝛿2.
Assume that beliefs are such that:

(i) for 𝑖, 𝑗 ∈ 𝑁 with 𝑠𝑖 = 𝑠 𝑗 , 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) ≥ 𝑐𝐻−(𝛿−𝛿2)
𝑐𝐻−𝑐𝐿 , and

(ii) for 𝑖 ∈ 𝑁 𝑠𝑖 , 𝑗 ∈ 𝑁 𝑠 𝑗 , 𝑠𝑖 ≠ 𝑠 𝑗 , 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) < 𝑐𝐻−(𝛿+( |𝑁 𝑠𝑗 |−1) 𝛿2)
𝑐𝐻−𝑐𝐿 ,

then social groups will become perfectly segregated in a PSE that is
not socially optimal.

Proof. Start with the empty network and take any agent 𝑖 ∈ 𝑁 .

Given condition (i), Proposition 4.1 implies that 𝑀𝑖 𝑗 = 1 for any

𝑗 ∈ 𝑁 𝑠𝑖
. Since all agents have the same private type and 𝑐𝐿 ≤ 𝛿−𝛿2,

all edges that are formed are also kept. By symmetry, this applies

equally to 𝑘 ∈ 𝑁 𝑠𝑘 , 𝑠𝑘 ≠ 𝑠𝑖 . Given condition (ii), Proposition 4.5

implies 𝑖 refuses an edge with 𝑘 no matter how well-connected 𝑘 is

within 𝑁 𝑠𝑘
. 𝑁 𝑠𝑖

and 𝑁 𝑠𝑘
are therefore segregated.

Given 𝑐𝐿 ≤ 𝛿 −𝛿2, the efficient network must be fully connected

amongst agents of the same type, as the incremental utility of

forming an edge will be at least 𝛿 − 𝛿2 − 𝑐𝐿 ≥ 0. Yet we have

just shown that 𝑁 𝑠𝑖
and 𝑁 𝑠𝑘

are segregated, resulting in a socially

sub-optimal outcome, giving the proposition. □

5 SIMULATION SETUP
We numerically investigate the role of beliefs in generating seg-

regative PSE networks under incomplete information. Section 5.1

introduces setup specifics for the network and its components,

while Section 5.2 details the metrics that we are measuring.
3

5.1 Network Setup
Beliefs. We instantiate beliefs (Equation 7). As before, beliefs are

set to 𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) = 1(𝑡𝑖 = 𝑡 𝑗 ) when 𝑀𝑖 𝑗 = 1. For 𝑀𝑖 𝑗 = 0, we let

agents judge each other’s types based on social group membership.

Specifically, agents have base beliefs anchored by rational expec-

tations but are optimistically biased when judging people of their

own social group and pessimistically biased for any other social

group. Formally expressed for 𝑖, 𝑗 ∈ 𝑁 with𝑀𝑖 𝑗 = 0, we then have:

𝜋𝑖 (𝑡𝑖 |𝑠 𝑗 ) =


|𝑁 𝑠 𝑗 𝑡 𝑗 |
|𝑁 𝑠 𝑗+ | +

(
1 − |𝑁 𝑠 𝑗 𝑡 𝑗 |

|𝑁 𝑠 𝑗+ |

)
𝛾𝑖 if 𝑠𝑖 = 𝑠 𝑗

|𝑁 𝑠 𝑗 𝑡 𝑗 |
|𝑁 𝑠 𝑗+ | −

|𝑁 𝑠 𝑗 𝑡 𝑗 |
|𝑁 𝑠 𝑗+ | 𝛾𝑖 otherwise

(13)

with 𝑁 𝑠 𝑗 𝑡 𝑗 = {𝑖 ∈ 𝑁 : 𝑠𝑖 = 𝑠 𝑗 , 𝑡𝑖 = 𝑡 𝑗 } and 𝑁 𝑠 𝑗+ = {𝑖 ∈ 𝑁 : 𝑠𝑖 =

𝑠 𝑗 }. The ratio of their cardinalities is the true probability that an

agent belongs to type 𝑡 𝑗 in group 𝑠 𝑗 and therefore equals rational

expectations. The bias enters via 𝛾𝑖 ∈ [0, 1] which moves beliefs

upward for agents of the same group (optimism) and downward

otherwise (pessimism). The adjustment is scaled to ensure beliefs

remain in the unit interval. We let 𝛾𝑖 be drawn from a positively

3
For implementation details, see https://github.com/dkaizhang/network-segregation.

skewed beta distribution 𝛾𝑖 ∼ 𝐵𝑒𝑡𝑎(𝛼, 𝛽), with 𝛼 = 1, 𝛽 > 1, where

the shape parameter 𝛽 controls the degree of bias. In the base case

parameterisation we choose 𝛽 = 7 (Figure 1 for illustration) which

implies that c.52% of agents do not deviate more than 10% and c.79%

do not deviate more than 20% from rational beliefs.
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Figure 1: Optimistic beliefs are drawn from the right-hand
side of the distribution peak, pessimistic beliefs from its left-
hand side. Belief distribution shifts right if the rational ex-
pectations (RE) anchor increases.

Initial Conditions. We initialise with the empty network (𝑔 = ∅)
and consider formation: (i) under incomplete information with

biased beliefs (𝑀 = 𝐼 |𝑁 |, 𝛾𝑖 ∼ 𝐵𝑒𝑡𝑎(1, 𝛽)), (ii) under incomplete

information with rational expectations (𝑀 = 𝐼 |𝑁 |, 𝛾𝑖 = 0), and (iii)

under complete information (𝑀 = 𝐽 |𝑁 |).

Network Formation Algorithm. We implement Algorithm 1 based

on the network formation process described in Section 3.1. In a

given period, we randomly select agent pairs until one violates a

PSE condition (process moves into next period) or until no pairs

remain (PSE reached). The same random seed is used between

the three cases to ensure consistency in the random selection of

agent pairs. If the process exceeds 5000 periods, we terminate for

non-convergence.

Algorithm 1 Network formation algorithm.

1: procedure NetworkFormation(N,M)

2: Initialise 𝑔 = ∅ and agent beliefs given their memory M

3: for each period 𝜏 = 1, ..., 5000 do
4: 𝑎𝑙𝑙𝑃𝑎𝑖𝑟𝑠 = (randomised list of all agent pairs)

5: for each pair {𝑖, 𝑗} ∈ 𝑎𝑙𝑙𝑃𝑎𝑖𝑟𝑠 do
6: if the pair has an edge 𝑖 𝑗 ∈ 𝑔 then
7: Calculate 𝑢𝑖 (𝑔), 𝑢𝑖 (𝑔 \ 𝑖 𝑗), 𝑢 𝑗 (𝑔), 𝑢 𝑗 (𝑔 \ 𝑖 𝑗)
8: if ∃𝑘 ∈ {𝑖, 𝑗}, 𝑢𝑘 (𝑔) < 𝑢𝑘 (𝑔 \ 𝑖 𝑗) then
9: Set 𝑔 = 𝑔 \ 𝑖 𝑗 and go to line 3

10: else
11: Calculate 𝐸𝑖 [Δ𝑢𝑖 (𝑔 ∪ 𝑖 𝑗)], 𝐸 𝑗 [Δ𝑢 𝑗 (𝑔 ∪ 𝑖 𝑗)]
12: if 𝐸𝑖 [Δ𝑢𝑖 (𝑔 ∪ 𝑖 𝑗)], 𝐸 𝑗 [Δ𝑢 𝑗 (𝑔 ∪ 𝑖 𝑗)] ≥ 0 then
13: Set 𝑔 = 𝑔 ∪ 𝑖 𝑗, 𝑀𝑖 𝑗 = 1 and go to line 3

14: return g (converged)

15: return g (not converged)
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Parameterisation. We choose a network size for which conver-

gence can be reasonably expected in a real-life setting, considering

that agents need to have interacted a potentially large number of

times. We, further, focus on the network dynamics by varying one

cost at a time to probe their independent effects. In addition, we

hold the decay factor, 𝛿 , constant in all cases, as results mainly

depend on the relative magnitude of benefits and costs. Table 1

provides an overview of the shared parameters of all simulations

that follow. Specimen networks are illustrated in Figure 2.

Table 1: Simulation parameters.

Parameter Value

Number of agents |𝑁 | 48

Decay factor 𝛿 0.7

Intra-type cost 𝑐𝐿 (base case) 0.2

Inter-type cost 𝑐𝐻 (base case) 1.0

(a) (b)

Figure 2: Specimen networks with (a) biased beliefs and (b)
complete information. Colours (green vs red) indicate social
groups, tones (light vs dark) denote private types.

5.2 Metrics
Segregation Indices. We make use of the generalised Freeman’s

segregation index [3] which is given by:

𝑆𝐹 = 1 − 𝑝 |𝑁 | ( |𝑁 | − 1)
(Σ𝜃 |𝑁 +𝜃 |)2 − Σ𝜃 |𝑁 +𝜃 |2

(14)

where 𝑁 +𝜃 = {𝑖 ∈ 𝑁 : 𝑡𝑖 = 𝜃 }. Further, 𝑝 denotes the proportion of

inter-group edges, defined as:

𝑝 =
Σ𝑔,ℎ;𝑔≠ℎ𝑚𝑔ℎ1

𝑚++1
(15)

where𝑚𝑔ℎ1 = |{𝑖 𝑗 ∈ 𝑔|𝑠𝑖 = 𝜎𝑔; 𝑠 𝑗 = 𝜎ℎ}| and𝑚++1 = Σ𝑔Σℎ𝑚𝑔ℎ1

are, respectively, the number of edges between the social groups,

𝜎𝑔 and 𝜎ℎ , and the number of all edges. A segregation index closer

to 1 indicates more segregation, a value closer to 0 indicates less.

Given the random graph benchmark used in Freeman’s segre-

gation index, it can be interpreted as a measure of the segregation

introduced by agent preferences. Letting the network form under

incomplete information, however, introduces an additional uncer-

tainty effect, which would be confounded in Freeman’s segregation

index. To disentangle the effect of biased beliefs from pure un-

certainty effects or agent preferences we propose an additional

incremental segregation index defined as follows:

𝑆𝐼𝑆 = 1 − 𝑝𝑏𝑖𝑎𝑠𝑒𝑑

𝑝𝑏𝑎𝑠𝑒
(16)

where 𝑝𝑏𝑖𝑎𝑠𝑒𝑑 denotes the proportion of inter-group edges (Equa-

tion 15) under our network with biased beliefs and where 𝑝𝑏𝑎𝑠𝑒
represents the proportion of such edges in a baseline network. We

use one baseline network under complete information to see if

segregation is introduced in excess of what agent preferences imply.

A second baseline network under incomplete information but with

rational expectations allows us to gauge if segregation is introduced

in excess of what agent preferences and pure uncertainty imply.

Degree Centrality. In order to measure how well-connected the

graph is, we make use of degree centrality, which is the number of

edges for a given agent. To focus on the macro-characteristics of

the network as a whole, we report average degree centrality across

all agents.

Discovery. A distinguishing feature of our model lies in the mem-

orymatrix𝑀 (Equation 4) capturing varying degrees of information

present in the system. As agents become less likely to form edges

when the expected costs of doing so increase, the amount of infor-

mation discovered will suffer as a result. We therefore report on

the proportion of discovery, defined as:

𝑑𝑖𝑠𝑐𝑜𝑣𝑒𝑟𝑦 (𝑁,𝑀) =
Σ𝑖Σ 𝑗𝑀𝑖 𝑗

|𝑁 |2
(17)

which corresponds to the sum of the number of agents each person

knows, normalised by the maximum possible such sum given a

population of |𝑁 | agents.

6 SIMULATION RESULTS
This section presents the results of our experiments. Averaged

results over 30 converged networks are reported throughout. Sec-

tion 6.1 investigates the effect of biased beliefs, pointing to their

key role in generating segregation under incomplete information.

Section 6.2 provides additional intuition around the effect of the

type distribution on segregation dynamics while Section 6.3, in

contrast, shows that social group distributions do not significantly

determine segregation dynamics.
4

6.1 Segregation under Uncertainty
We first focus on networks with two equally sized social groups

which are each equally divided between two private types (Table 2).

In Figure 3 we compare the network dynamics under biased beliefs

with those under rational expectations and complete information.

Segregation. The segregation indices (SIs) in the top panels (Fig-

ure 3) confirm that biased beliefs play an important role in segre-

gation under uncertainty: Freeman’s SI remains distinctly positive

as intra-type and inter-type costs change. Moreover, as both the

incremental SIs with respect to rational expectations and complete

information are positive and closely track the changes in Freeman’s

4
Full network dynamics for Figures 4 to 6 are provided in the supplementary materials.
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Table 2: Population composition. Array entries in the first
row indicate size of a particular social group. Array entries
in the second row indicate size of a particular private type
given a social group.

Parameter Value

Social group size [24, 24]

Private type distribution [12, 12] per group
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Figure 3: Biased beliefs sustain segregation. Incremental SI
(ISI) cannot be computed when baseline consists of single-
tons (as 𝑝𝑏𝑎𝑠𝑒 = 0). Freeman’s SI and ISI approach 1 when the
biased network collapses to singletons (as 𝑝𝑏𝑖𝑎𝑠𝑒𝑑 = 0).

SI, this suggests that the segregation is not a result of pure uncer-

tainty or agent preferences respectively.

Discovery. The middle panels (Figure 3) show how willingly

agents form edges and discover each other’s types under biased

beliefs and rational expectations (under complete information all

types are discovered from the outset). This does not imply that

edges that are initially formed survive once types are revealed.

Biased beliefs sustain edge-forming between agents for both higher

intra-type and inter-type costs compared to the case under rational

expectations.

Intuitively, biased beliefs enable agents to hold different beliefs,

such as those who are optimistically biased. These agents have

lower expected costs and are thus more willing to risk forming

edges. In comparison, agents with rational expectations all follow

the same beliefs. As such, biased beliefs induce edges in higher cost

ranges relative to rational expectations.

Connectedness. The lower panels (Figure 3) show how well con-

nected the network is, i.e., how many edges survive. Firstly, net-

works under biased beliefs and rational expectations have a similar

degree of connectedness for the lower part of the cost ranges. Given

the evolution of the SIs, this suggests that biased networks support

as many edges as networks with rational expectations, but with a

greater number of edges between agents of the same social group.

Secondly, the greater willingness to connect at higher costs under

biased beliefs compared to under rational expectations also results

in a correspondingly later collapse of the biased network.

Lastly, networks under complete information are better con-

nected in equilibrium. This is intuitive, as unconnected agents of

the same type will always form and maintain an edge as long as

the intra-type cost lies below the decay factor – a decision that

is independent of inter-type costs as indicated by the flat degree

centrality curve on the right-hand side of the panel.

Degree of Bias. In Figure 4 we vary the degree of bias by changing
the 𝛽 shape parameter, where a lower 𝛽-value corresponds to a

greater degree of bias. We observe that while increasing the bias

is clearly associated with an upward shift in Freeman’s SI (where

the network has not collapsed), a reduction in the bias still yields

distinctly segregative results, suggesting that even mildly biased

beliefs are strong drivers of segregation.

Figure 4: An increase in bias (a reduction in the 𝛽 shape
parameter) leads to greater segregation. Freeman’s SI ap-
proaches 1 when the network collapses to singletons.

6.2 Compositional Impact: Private Types
We compare segregation dynamics under different distributions

of private types with (i) a higher number of types (“4 Types”), (ii)

a type that dominates across groups (“Dominant”), and (iii) types

that each dominate a different group (“Correlated”). A population

breakdown is shown in Table 3.

Table 3: Population composition. Array entries in the first
row indicate size of a particular social group. Array entries
in the second row indicate size of a particular private type
given a social group.

Parameter Base 4 Types Dominant Correlated

Social group size [24, 24] [24, 24] [24, 24] [24, 24]

Private type

distribution

[12, 12]

per group

[6, 6, 6, 6]

per group

[18, 6]

per group

Group 1: [18, 6]

Group 2: [6, 18]

Figure 5 shows that segregation dynamics are sensitive to the

distribution of private types. This is expected given their direct

relationship to agent preferences.
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Figure 5: Correlating types with social groups raises segrega-
tion. Increasing the number of types reduces edge-forming
incentives. Freeman’s SI approaches 1when the network col-
lapses to singletons.

The results indicate that increasing the number of types (the “4

Types” case) appears to have a disincentivising effect on network

formation. Intuitively, a larger number of rival types dilutes incen-

tives to form edges, as all edges with agents of a different type are

penalised. This is reflected in a rapid rise in Freeman’s SI as costs

increase and an earlier collapse of the network to singletons.

Initialising the networkwith a type dominating each social group

(the “Dominant” case) does not impact dynamics significantly: net-

works tend to be slightly better connected and collapse to singletons

at slightly higher intra-type costs compared to the base case.

In contrast, in the “Correlated” case in which each social group

is dominated by a different private type, there is a marked increase

in Freeman’s SI. This is not surprising, as this case naturally en-

courages segregation given that social group memberships are

informative about types. Agents of the majority type in a given

group would sensibly stay in their social group.

6.3 Compositional Impact: Social Groups
We compare segregation dynamics under different social group

compositions with (i) multiple smaller social groups (“4 Groups”)

and (ii) a dominant group (“Dominant”). An overview of the popu-

lations is shown in Table 4.

Table 4: Population composition. Entries of arrays indicate
size of a particular social group.

Parameter Base 4 Groups Dominant

Social group size [24, 24] [12, 12, 12, 12] [12, 36]

Private type distribution Even split within each group

Figure 6 shows that changes to the social groups do not signifi-

cantly alter base case dynamics. Note that Freeman’s SI is calculated

with respect to the number of inter-group edges expected in a ran-

domly formed network. An increase in social groups or creating a

dominant group implicitly change the expected number of random

inter-group edges, so that the similarity in SIs suggests that agents

must have acted to adjust the number of inter-group edges they

form to keep proportions constant.

Figure 6: Social group compositions do not strongly influ-
ence segregative dynamics. Freeman’s SI approaches 1 when
the network collapses to singletons.

7 CONCLUSION
We have contributed an agent-based network formation model for

the study of group segregation relaxing the common assumption

of complete information. We have done so by introducing notions

of expectations and beliefs that are allowed to be heterogeneous

across agents. The resulting model can be parameterised to nest a

complete information model directly and is also capable of gener-

ating all complete information network graphs under incomplete

information, thus providing greater modelling flexibility. Beyond

this, we have demonstrated that socially sub-optimal segregation

equilibria can be supported when agents are sufficiently biased. We

have proceeded to a simulation-based approach to investigate the

dynamics of segregation and found clear evidence pointing to the

role of biased beliefs in generating segregation under incomplete

information.

This has not been an exhaustive study of beliefs. The belief mech-

anisms we have assumed throughout have been relatively static

to enable our focus on the presence and absence of complete in-

formation. A promising avenue of further research would be to

imbue our mechanisms with greater realism, such as by assuming

that beliefs update gradually, such as in Zhang and van der Schaar

[27], or by assuming that agents have imperfect memory and forget

each other over time, or by including a budget constraint on the

number of edges an agent can form. A second line of extensions

could emanate from incorporating more complex relationships be-

tween social groups and beliefs, where a spatial cost topology, such

as in Johnson and Gilles [16], could be applied to model expected

costs between ordinal costs, or additional heterogeneity in benefits

could be introduced, such as in Galeotti et al. [8]. This could be

useful in moving the focus from overall segregative patterns as

in this paper to studying segregation between specific groups. A

third topic of future research could revolve around the stability

conditions underlying our model. While pairwise stability offers

some attractive properties, it would be worthwhile investigating

the effect of coalitional stability concepts, such as in Jackson and

van den Nouweland [12].
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