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ABSTRACT
The last-mile delivery market is highly competitive and is satu-

rated with numerous small operators. In this context, the fierce

competition between operators, joint with the rapid increase in

the demand for home-delivery, resulted in a significant increase in

urban freight traffic further worsening congestion and pollution.

To tackle these issues, previous research has studied the imple-

mentation of collaborative last-mile operations, with organisations

sharing resources in the form of inventory space or transportation

capacity. However, a common limitation of the proposed models

is ignoring time windows and the effects of externalities such as

network congestion.

In this work, we propose a framework to quantify the efficiency

loss in urban last-mile delivery system by comparing the solutions

of a fully-decentralised and fully-centralised last-mile delivery prob-

lem. In doing so, we develop a Multi-depot Vehicle Routing Problem

with Time Windows and Congestible Network that is solved using

a bespoke Parallel Hybrid Genetic Algorithm that accounts for the

non-linearities arising from modelling endogenous network con-

gestion. The model is evaluated on a case study based on central

London to assess the efficiency gaps of realistic last-mile delivery

operations. When time window constraints are not included, our

results show that the efficiency loss fluctuates the most with a

small number of customers, while it stabilises to less than 15% for

instances with over 100 customers. However, time windows could

significantly exacerbate this issue, resulting in an additional 25% of

efficiency loss.

KEYWORDS
Price of Anarchy; Last-Mile Delivery; Vehicle Routing Problem

ACM Reference Format:
Keyang Zhang, Jose Javier Escribano Macias, Dario Paccagnan, and Panagio-

tis Angeloudis. 2022. The Competition and Inefficiency in Urban Road Last-

Mile Delivery. In Proc. of the 21st International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAA-
MAS, 9 pages.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

1 INTRODUCTION
Last-Mile Delivery is a crucial component of nowadays logistics

systems and has seen substantial growth over recent years, partially

as a result of the increasing popularity of e-commerce and home

delivery [13]. Worldwide retailers have experienced approximately

a 20% yearly revenue growth in e-commerce sales since 2014 [10].

In the UK, the proportion of internet sales has increased to 26% in

2021 from 2.7% in 2006 [12], with over 82% of customers opting for

home delivery instead of alternative delivery options [33].

However, the last-mile delivery market is fragmented by thou-

sands of companies and often dominated by small private busi-

nesses, resulting in a non-cooperative and decentralised system

[16, 17]. Due to customer dynamics and lack of collaboration, the

workload among companies tends to be unevenly distributed and

resources are not fully utilised. Furthermore, the proliferation of de-

livery agents, joint with limited coordination, results in a significant

freight traffic on the road, which generates significant externalities

including congestion, pollution, and traffic accidents. In this respect,

the number of registered Light Good Vehicles (LGVs) has increased

by 12% during the last five years in the UK [19].

Naturally, congestion and pollution significantly impact the

livelihood of inhabitants. In the UK, domestic transport is respon-

sible for approximately a quarter of UK’s total green-house gas

emissions, with urban and municipal delivery contributing to 50%

of the freight sector’s total [15].

Amid this backdrop, collaborative supply chains and deliveries

could provide the means to substantially reduce the congestion and

emissions arising from last-mile delivery. This can be carried out

either through horizontal collaboration between the couriers, or

through the installment of a mandated governmental body that

regulates urban deliveries. It is therefore paramount to evaluate the

potential gains arising from collaborative delivery. In this context,

the impact of externalities (e.g. endogenous congestion) has not

been considered, and is at the core of this work. Specifically, we use

the notion of Price of Anarchy (PoA) to evaluate the optimality gap

between the status quo, where each company optimises their deliv-

ery plan individually, and that where this process is coordinated

centrally.

Our analysis of the current literature (see Section 2) reveals that

few studies include externalities when evaluating collaborative

last-mile delivery, and aspects of endogenous network congestion

are disregarded. The latter is of particular importance as it has a
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direct effect on delivery travel time, vehicle emissions and citizen’s

livelihood.

Figure 1: Map of three London boroughs and road network
used for our numerical evaluation

This study focuses on urban road last-mile delivery where cus-

tomers are served by local depots and vehicles are owned by mul-

tiple companies. In doing so, we propose a Multi-depot Vehicle

Routing Problem with Time Windows and Congestible Network

(MDVRP-TWCN) that aims to quantify the inefficiencies arising

from non-collaborative delivery. The problem is solved by using a

Parallel Hybrid Genetic Algorithm (H-GA) that is validated against

well-known Solomon Benchmark scenarios [45]. Additionally, a

case study scenario is developed based on the central area of London.

Overall, the contributions of this study are three-fold:

(1) We propose a framework based on the vehicle routing prob-

lem for measuring the efficiency loss in urban last-mile de-

livery, which accounts for multiple factors.

(2) We formulate a vehicle routing variant, MDVRP-TWCN,

which explicitly considers endogenous congestion effects.

And utilise this formulation to estimate the efficiency loss

arising from the presence of uncoordinated last-mile deliv-

ery.

(3) We find that, in a typical e-commerce scenario, the average

efficiency degradation could be as high as 37% and is mainly

attributed to excess vehicles, travel cost, and idling time.

The remainder of the paper is structured as follows: Section 2 re-

views the related work. Section 3 formulates the MDVRP-TWCN.

Section 4 presents the H-GA used to solve the routing problem. The

results and discussion are presented in Section 5 and 6, respectively.

Finally, summary and conclusions are included in Section 7.

2 RELATEDWORK
It is well known that, when self-interested agents participate in

joint decision making, the resulting outcome could be highly sub-

optimal from a societal perspective (e.g., selfish routing). In this

context, the notion of Price of Anarchy, originally introduced in

[26, 38], is often utilised to measure the performance degradation

arising from self-interested decision making. This quantity has been

thoroughly studied within the realm of congestible traffic networks,

where Wardrop’s first principle is often used to describe the worst

emergent equilibrium flow (user-base equilibrium) [23, 35, 40, 41].

However, few studies have focused on the PoA of supply chains,

and only at a macroscopic level. Within this stream of research,

[39] measured the efficiency loss of a supply chain containing sup-

pliers, assembly, and retailers, where the efficiency is measured

based on the operational profit. This definition was followed and

subsequently applied in reverse supply chains [48] and closed-loop

supply chains [29]. Instead of using profits, [8] defined a cost-based

efficiency for warehouse management operations. Finally, [27] fol-

lowed this definition and investigated a freight transportation game.

However, their analysis was based on an abstract grid map that

describes the transportation between different regions.

Reference [6] is one of the first works focusing on collabora-

tive VRP. Therein, authors conducted a joint route planning by

single-depot VRP with time windows where orders were served by

multiple companies. They introduced the notion of Synergy Value,

defined as the cost saving arising from collaboration, and showed

that such value could reach 30%. [28] also confirmed this opportu-

nity for cost savings based on the VRP with pickup. Advancing to

more realistic settings, [49] formulated a multi-depot VRP to model

the multi-player delivery, and results suggested that the synergy

value regarding travel costs could reach 18% of initial costs in the

grand coalition.

However, several factors affecting the efficiency and utility of

delivery were not considered in the cited literature, particularly

the effect of time windows in the routing sequence and network

congestion. While the VRP with time windows has extensively been

studied in the literature [4, 9], the network congestion remains

relatively unexplored. The prevailing method of considering real

road network in VRP is adopting a time-dependent travel cost

matrix and altering the matrix based on real-time traffic data, which

converts a common VRP into a Time-Dependent Vehicle Routing

Problem (TDVRP) [25, 31, 32]. However, the TDVRP only captures

the congestion effect resulted from exogenous traffic.

Our work addresses this gap by accounting for collaboration and

the effect of endogenous traffic arising from last-mile delivery. In

doing so, we define a utility and cost function that evaluates order

fulfillment rate, the total travel time, the total idle time of vehicles,

number of vehicles used, and any extra working hours required to

complete the delivery for the decentralised and centralised routing

strategies. The routing algorithm is also subject to customers’ time

windows, and any delay of service is computed as a cost.

3 MODEL
Our framework estimates the efficiency loss by modelling and com-

paring the costs and utilities under two scenarios: a selfish or fully

decentralised case where each company is an independent control

unit and operates one or several depots to satisfy its own customer

orders, and a collaborative or centralised scenario where vehicle

fleets and customers are integrated into a single central planner.

The distributed case aims to describe an equilibrium allocation

arising from real operation, as opposed to an optimum allocation

modelling the case of centralised decision-making. Both of them

are modelled by vehicle routing problems.

The centralised case resembles the original VRP, where a single

entity seeks to minimise the routing cost and ensures all customers

are served within their specified time window. In contrast, in the

Main Track AAMAS 2022, May 9–13, 2022, Online

1474



decentralised case each company seeks to maximise its own profit

without concern of potential externalities affecting competition.

Thus, companies only consider congestion resulted from exoge-

nous traffic. Furthermore, customers cannot be reallocated across

companies, nor they can share resources.

3.1 Definition of System Efficiency
In the context of urban delivery, the benefit and cost are dependent

on the routing plans assumed by companies, which specifies the

customer visiting sequence of vehicles. Thus, we develop the evalu-

ation functions (1) and (2) which define the overall utility𝑈 (𝑅) and
total cost 𝐶 (𝑅) to the company based on its specific routing plan 𝑅.

𝑈 (𝑅) =𝛽𝑞𝑄 (𝑅) −𝐶 (𝑅) (1)

𝐶 (𝑅) =𝛽𝑣𝑉 (𝑅) + 𝛽𝑇𝑇𝑇𝑇 (𝑅)+
𝛽𝐷𝑇𝐷𝑇 (𝑅) + 𝛽𝐼𝑇 𝐼𝑇 (𝑅) + 𝛽𝑂𝑇𝑂𝑇 (𝑅)

(2)

Where 𝑄 (𝑅) is the number of orders satisfied, 𝑉 (𝑅) denotes the
number of vehicles utilised, 𝑇𝑇 (𝑅) defines the total travel time,

𝐷𝑇 (𝑅) represents the total delay of service, 𝐼𝑇 (𝑅) is the total idle
time of all vehicles, and 𝑂𝑇 (𝑅) denotes the total overtime of all

drivers under route plan 𝑅. Parameters 𝛽𝑞, 𝛽𝑣, 𝛽𝑇𝑇 , 𝛽𝐷𝑇 , 𝛽𝐼𝑇 , 𝛽𝑂𝑇
are coefficients used to convert the above metrics into a monetary

value. The rationale for each cost parameter is described below.

• 𝑄 (𝑅): Orders may not be fulfilled by a company due to lack

of resources in the decentralised scenario. However, these

can be reallocated to companies with spare capacity if col-

laboration is allowed.

• 𝑉 (𝑅): The number of total vehicles used can be reduced by

collaboration, increasing the vehicle occupancy rates.

• 𝑇𝑇 (𝑅): In collaboration, customers can be assign to the clos-

est depots. Furthermore, companies will avoid the congestion

resulted from the fleets of other companies.

• 𝐷𝑇 (𝑅) and 𝐼𝑇 (𝑅): When the temporal distribution of cus-

tomers is uneven, the customers can be reallocated to another

company to reduce the delay of service and idling time due

to early arrival.

• 𝑂𝑇 (𝑅): In some cases, the courier must work overtime due

to excessive demand and dispersed time slots. This can be

resolved by orders reallocation.

Based on the cost and utility functions, two complementary def-

initions of PoA, utility-based PoA (3) and cost-based PoA (4), are

proposed. They are both variables ranging from 1 to infinity. A

larger value of these two variables indicates a larger efficiency loss.

Compared with the utility-based definition, the cost-based one ig-

nores the number of sales and could lead to an underestimated

value. However, when the system is profitable in the collaborative

scenario while unprofitable in the non-collaborative scenario, the

utility-based one yields a negative value and becomes invalid, but

the cost-based PoA still works. Therefore, although the utility-based

PoA is preferred, it should be only used for a profitable delivery

system.

𝑃𝑜𝐴𝑈 =
𝑈 (𝑅𝑐 )
𝑈 (𝑅𝑑 )

(3)

𝑃𝑜𝐴𝐶 =
𝐶 (𝑅𝑑 )
𝐶 (𝑅𝑐 )

(4)

Where 𝑅𝑐 is the collaborative route plan optimising the total utility

of all companies, and 𝑅𝑑 defines the integrated route plan of all

companies under decentralised scenarios.

For a given delivery system, (3) and (4) are computed by the

following 4 steps: (1) Formulate separate MDVRP-TWCN instances

for each company in the system. Combining the solutions of all

these instances provides the optimal selfish routing plans 𝑅𝑑 . (2)

All the customers and depots are integrated into a single instance

and formulated as a centralised MDVRP-TWCN. The solution 𝑅𝑐
of this instance yields the optimal collaborative routing plan. (3)

The utilities and costs of the collaborative and selfish cases are

recalculated by applying equations (1) and (2). (4) Calculate the

efficiency ratio or PoA based on equations (3) and (4).

3.2 Vehicle Routing Formulation
A Multi-depot Vehicle Routing Problem with Time Window and

Congestible Network (MDVRP-TWCN) is proposed to model the

two scenarios. This formulation is a variant of MDVRP-TW in

which a set of orders are served by capacitated vehicles from multi-

ple depots within booked time slots. The modification is that the

travel cost of each link is dependent on the vehicle flows. The for-

mulation is subject to the following assumptions: (1) The number

of customers, number of depots, and their location are predeter-

mined; (2) The vehicle fleet is heterogeneous; (3) Each customer

can only be visited once; (4) A vehicle can only be assigned one

route and should start and end at the same depot; (5) The beginning

of service at customer 𝑖 should be within the time window [𝑒𝑖 , 𝑙𝑖 ].
If the vehicle arrives earlier than 𝑒𝑖 , it will wait and the idle time is

recorded. Conversely, if it arrives after 𝑙𝑖 , a penalty of delay will be

added for this service.

Obtained from regression analysis based on substantial traffic

survey data, the Bureau of Public Roads (BPR) function is commonly

employed to relate travel time, traffic flow and link capacity [36].

To capture the externalities of traffic flows in congestible networks,

the following modified BPR function that explicitly models both

freight traffic flow and passenger traffic flow is adopted to estimate

the travel cost of routing plans [11].

𝑡𝑎 (𝑣 𝑓𝑎 ) = 𝑡𝑎 (0)
1 + 𝛼 𝑓

(
𝑣
𝑓
𝑎

𝐶𝑎

)𝛽𝑓 
1 + 𝛼𝑝

(
𝑣
𝑝
𝑎

𝐶𝑎

)𝛽𝑝  (5)

where 𝑡𝑎 (𝑣 𝑓𝑎 ) denotes the total travel time of link 𝑎 subject to freight

flow 𝑣
𝑓
𝑎 , 𝑡𝑎 (0) is the free-flow travel time, 𝑣

𝑓
𝑎 represents the freight

traffic flow on link 𝑎, 𝑣
𝑝
𝑎 denotes the passenger traffic flow on link

𝑎, and 𝐶𝑎 is the capacity of link 𝑎. Parameters 𝛼 𝑓 , 𝛽𝑓 , 𝛼𝑝 , 𝛽𝑝 need

to be calibrated by realistic data.

During routing, the freight traffic volume of the route plan R is

loaded into network by the following steps: (1) Take a node pair

(𝑖, 𝑗) in routes plan 𝑅; (2) Find all the links used by the shortest

path between 𝑖 and 𝑗 based on static travel cost 𝑡 (0); (3) For each
link used, add traffic volume of 1/𝛿𝑇 unit to this link where 𝛿𝑇

is the time interval modelled in the vehicle routing problem; (4)

Repeat the above three steps until all node pairs in routes plan 𝑅

are executed.
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Sets:

𝐷 The set of depots

𝐶 The set of customers

𝑁 The union of 𝐶 and 𝐷

𝐾 The set of vehicles

𝐾𝑑 The set of vehicles at depot 𝑑

Parameters:

𝑒𝑖 The earliest starting time of service at customer 𝑖

𝑙𝑖 The latest starting time of service at customer 𝑖

𝑐𝑖 𝑗 (𝑥) The travel cost from node 𝑖 to node 𝑗 subject

to route plan 𝑥

𝑠𝑖 The duration of service at customer 𝑖

𝑑𝑖 The demand of customer 𝑖

𝑣 The price of a unit of demand

𝑡𝑘 The maximum working hours of vehicle 𝑘

𝑞𝑘 The capacity of vehicle 𝑘

|𝐾𝑑 | The number of vehicles at depot 𝑑

Decision Variables:

𝑥𝑘𝑖 𝑗 Boolean: equals 1 if vehicle 𝑘 directly travels from

node 𝑖 to node 𝑗 , otherwise, 0

Auxiliary Variables:

𝑎𝑘𝑛 The actual arrival time of vehicle 𝑘 at node 𝑛

𝑏𝑘𝑛 The beginning time of service at node 𝑛 for vehicle 𝑘

𝑤𝑘 The working duration of vehicle 𝑘

maximise

∑
𝑖∈𝐶

𝑣𝑑𝑖

∑
𝑗 ∈𝑁

∑
𝑘∈𝐾

𝑥𝑘 𝑗𝑖 −
∑
𝑘∈𝐾

∑
𝑖∈𝑁

∑
𝑗 ∈𝑁

𝑐𝑖 𝑗 (𝑥)𝑥𝑖 𝑗 (6.1)∑
𝑖∈𝐶

∑
𝑘∈𝐾

𝑥𝑘𝑑𝑖 ≤ |𝐾𝑑 | ∀𝑑 ∈ 𝐷 (6.2)∑
𝑗 ∈𝐶

𝑑 𝑗

∑
𝑖∈𝑁

𝑥𝑘𝑖 𝑗 ≤ |𝑞𝑘 | ∀𝑘 ∈ 𝐾 (6.3)∑
𝑑∈𝐷

∑
𝑗 ∈𝐶

𝑥𝑘𝑑 𝑗 =
∑
𝑑∈𝐷

∑
𝑖∈𝐶

𝑥𝑘𝑖𝑑 ≤ 1 ∀𝑘 ∈ 𝐾 (6.4)∑
𝑘∈𝐾

∑
𝑖∈𝑁

𝑥𝑘𝑖 𝑗 ≤ 1 ∀𝑗 ∈ 𝐶 (6.5)∑
𝑖∈𝑁

𝑥𝑘𝑖 𝑗 −
∑
𝑖∈𝑁

𝑥𝑘 𝑗𝑖 = 0 ∀𝑗 ∈ 𝑁,𝑘 ∈ 𝐾 (6.6)∑
𝑖∈𝑅

∑
𝑗 ∈𝑅

𝑥𝑘𝑖 𝑗 ≤ |𝑅 | − 1 ∀𝑅 ⊆ 𝐶, 𝑘 ∈ 𝐾 (6.7)∑
𝑖∈𝐷

∑
𝑗 ∈𝐷

𝑥𝑘𝑖 𝑗 = 0 ∀𝑘 ∈ 𝐾 (6.8)

𝑥𝑘𝑖 𝑗 (𝑏𝑘𝑖 + 𝑠𝑖 + 𝑐𝑖 𝑗 (𝑥) − 𝑎𝑘 𝑗 ) = 0 ∀𝑖, 𝑗 ∈ 𝑁,𝑘 ∈ 𝐾 (6.9)

𝑏𝑘𝑖 ≥ 𝑎𝑘𝑖 ≥ 0 ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝐾 (6.10)

𝑒𝑖 ≤ 𝑏𝑘𝑖 ≤ 𝑙𝑖 ∀𝑖 ∈ 𝐶, 𝑘 ∈ 𝐾 (6.11)

𝑤𝑘 ≤ 𝑡𝑘 ∀𝑘 ∈ 𝐾 (6.12)

𝑥𝑘𝑖 𝑗 ∈ 0, 1 ∀𝑘 ∈ 𝐾, 𝑖, 𝑗 ∈ 𝑁 (6.13)

𝑤𝑘 =
∑
𝑖∈𝐶

𝑥𝑘𝑖𝑑 (𝑏𝑘𝑖 + 𝑠𝑖 + 𝑐𝑖𝑑 (𝑥))

−
∑
𝑖∈𝐶

𝑥𝑘𝑑′𝑖 (𝑎𝑘𝑖 − 𝑐𝑖𝑑′ (𝑥)) ∀𝑘 ∈ 𝐾,𝑑, 𝑑 ′ ∈ 𝐷 (6.14)

The MDVRP-TW formulation is presented above for the cen-

tralised case. In the decentralised case, each company optimises

the operation using this same problem irrespective of the other’s

routing plan.

The objective (6.1) maximises the utility of the routing plan. Con-

straint (6.2) limits the number of vehicles available to each depot,

with (6.3) ensuring vehicle capacity is not exceeded. Constraint

(6.4) present that the start and end of a route should be the same

depot. Constraint (6.5) forces each customer to be visited no more

than once. Subtour elimination constraints are specified by (6.7)

and (6.8). Constraints (6.9)-(6.11) specify the limitation of time win-

dows. Constraints (6.12) present the limitation of working hours.

Note that constraints (6.11)-(6.12) will be relaxed and converted to

penalty terms in the objective function in GA-based solving.

4 SOLUTION ALGORITHM
While the VRP-TW problem has been previously solved to opti-

mality in a small or medium scale, incorporating the non-linear

congestion (5) results in a much more challenging problem. In this

context, Genetic Algorithms (GAs) are a widely used family of meta-

heuristics for large-scale VRPs, especially owing to their solution

time scaling linearly with the problem size [7]. Their performance

have been shown to be close to the best-known solutions recorded

[2, 20, 24].

For this reason, we develop a bespoke Hybrid Genetic Algorithm

(H-GA). Its structure (shown in Figure 2) consists of a generation

stage which creates the initial population of solutions, a selection

stage that discards under-performing solutions, and a modification

stage that alters the solution structure through mutation, crossover

and education. These key processes are described in the following

subsections.

Figure 2: Execution flow of H-GA
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4.1 Solution Representation and Chromosome
Decoding

Every feasible route plan is encoded into a chromosome, which is a

permutation of customers and depots. Using a two-step decoding

algorithm based on Split Algorithm [3], each chromosome can

be decomposed into depot routes and vehicle routes: the former

denotes a sequence of customers served by a depot, while the latter

defines a sequence of customers served by a vehicle. The two-step

decoding algorithm is described in Algorithm 1.

Algorithm 1 Two-step decoding method

1: Break the chromosome into𝑚 + 1 slices from the locations of

depot nodes

2: Assign the first m-1 slices to the first m-1 depots in sequence,

and the combination of the 𝑚𝑡ℎ and (𝑚 + 1)𝑡ℎ slices to 𝑚𝑡ℎ

depot to construct depot routes

3: Apply a modified Split Algorithm that uses vehicle-specific

capacities as constraints to split each depot route to several

vehicle routes

Figure 3 demonstrates the conversion process where 0,1 are

depots and the number in green dashed box is demand. The chro-

mosome, [2,3,4,0,5,6,1,7,8,9], is divided into two depot routes: [2,3,4]

for depot 0 and [5,6,7,8,9] for depot 1. The latter is then split into

[5,6],[7],[8,9] for three vehicles.

Figure 3: Simple decoding example

4.2 Initialization
The population is initialized through either a random permutation

or the Nearest Neighbourhood Search (NNS) heuristic as in Algo-

rithm 2. A parameter 𝑟𝑁𝑁𝑆 denotes the probability of individuals

to be generated from the latter method.

4.3 Genetic Operations and Education
During each iteration, a chromosome (i.e., individual) can be modi-

fied by any of the following mutation mechanisms: swap, insertion

and inversion. Swap randomly changes two genes, insertion ran-

domly selects a gene and moves to a randomly selected location

in the chromosome, and inversion reverses the sequence of genes

between two randomly selected bounds. A two-point crossover

Algorithm 2 Initialization

1: function INIT(𝑟𝑁𝑁𝑆 ,𝑛) ⊲ 𝑛 is population size

2: for 𝑖 ← 1 to 𝑛 ∗ (1 − 𝑟𝑁𝑁𝑆 ) do
3: randomly generate an individual

4: end for
5: for 𝑗 ← 1 to 𝑛 ∗ 𝑟𝑁𝑁𝑆 do
6: assign customers to the nearest depot

7: do NNS with randomly selected start for each depot

route

8: end for
9: return population

10: end function

mechanism further combines the solutions of two randomly se-

lected chromosomes in the population.

In addition to mutation and crossover, our algorithm employs

a simplified 2-opt heuristic in the education stage to further im-

prove the quality of solutions. Differing from the original 2-opt

heuristic which checks all possible combinations until no improve-

ment is made [5], this one only performs a single pass through the

chromosome. Its important to note that all the individuals created

from mutation, crossover and education are treated as offspring

and added into population without affecting origin individuals.

4.4 Selection and Termination
The fitness of an individual is evaluated by the utility function (1).

After each iteration. all the individuals are sorted and individuals

with the lowest fitness are eliminated until the current population

size equals the initial population size.

5 EXPERIMENTAL RESULTS
This section presents the results obtained from the methodology de-

scribed in Sections 3 and 4. The H-GA above is coded in Python 3.9

and executed in a PCwith Intel(R) Core(TM) i7-9750HCPU@2.60GHz

processor and 16 GB RAM.

5.1 Algorithm Validation
The H-GA algorithm is first tested using Solomon’s benchmark

scenarios. These are a series of well-known VRPTW instances that

have been used in the literature to compare the performance of

several algorithms [21, 46]. We solve three scenarios with 100 cus-

tomers and one depot: one where customers are randomly arranged

(R101), another with clustered customers (C101), and a mixed sce-

nario where customers are distributed using both patterns (RC101).

Table 1 compares the results (optimised travel costs) found by our

H-GA (50 samples) and the best-known solutions collected by [43].

Table 1 also reports the number of customers not served in given

time slots, which is denoted by TW Violation, as well as their stan-

dard deviations. These results show that our HGA performs well in

the clustered pattern and slightly less so in the random pattern, due

to our simple mutation and deterministic selection. Nonetheless,

our case study follows a similar pattern to the C101 instance, as

customers are generated only within residential areas.
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Table 1: Validation results of H-GA

Benchmark Instances R101 C101 RC101

Benchmark Results (travel cost) 1650.80 828.94 1696.95

H-GA Results (travel cost) 1628.85 839.24 1873.03

H-GA Standard Deviation 212.07 19.37 138.96

TW Violation 62.00 4.00 19.67

TW-Violation Standard Deviation 3.18 1.80 2.02

5.2 Case Study Design
We develop a case study based on the implementation of last-mile

delivery of e-commerce in central London where customers order

goods from online platforms and the commodities are delivered

from local depots to their homes within given time slots. Every

company operates its own local depots and aims to maximise its

profits by expanding orders, reducing operation costs, and improv-

ing service quality (e.g., reduce the delay of services).

The study area considered consists of three boroughs in central

London —Hammersmith & Fulham (H&F), Kensington & Chelsea

(K&C), and Westminster (W), as shown in Figure 1. The road net-

work is obtained from Open Street Map (OSM) and filtered to re-

move roads inaccessible to delivery vehicles [1, 37]. A total of 11

service points assigned by 4 companies serve as local depots. For the

purposes of this study, 5 vehicles of 100 parcel capacity are available

at each depot, with each driver being able to work a maximum of 8

hours. Customers are randomly generated in residential areas, each

with a demand of 10 parcels and a random time window between

9:00 AM to 18:00 PM. The service duration at each customer is

configured at 5 minutes.

25 problem instances are designed to assess the range of PoA

and its relationships with different factors. 15 instances are under

relaxed time windows (i.e. without constraints (6.11)) with the

customer number ranging from 10 to 150. 10 instances are under

tight time windows (i.e. with constraints (6.11)) with the customer

number ranging from 10 to 100.

5.3 Model Calibration
The parameters of the utility function, cost function, latency func-

tion and H-GA are calibrated based on real-word data or realistic

assumptions.

(1) Utility/Cost Function

As it is not possible to calibrate the coefficients in the cost and

utility function using real route plans (this data is proprietary),

the values of these coefficients are configured based on available

information. The values are summarized in Table 2 and justified as

follows.

• 𝑄 : According to Royal Mail annual report [30], the volume

of UK parcels delivered in 2021 is 1,735 million while the

annual revenue from UK parcels is 3,518 million. Therefore,

the coefficient 𝛽𝑞 is set to £2 per parcel.

• 𝑉 : A vehicle costs £8,056 per year to operate on average if the

cost of acquisition is excluded [44]. Therefore, the coefficient

𝛽𝑣 quantifying the unit cost of vehicle operations is assumed

£22 per day per vehicle.

Table 2: Calibrated parameters

Para. Value Para. Value Para. Value

𝛽𝑞 2 𝛽𝑣 22 𝛽𝑇𝑇 10.25

𝛽𝐼𝑇 10.25 𝛽𝐷𝑇 10.25 𝛽𝑂𝑇 21.25

𝛼 𝑓 0.715 𝛽𝑓 2.480 𝛼𝑝 0.683

𝛽𝑝 2.890 𝑟𝑁𝑁𝑆 0.5 𝑟𝑚 0.8

𝑟𝑐 0.6 𝑟𝑒 0.8

• 𝑇𝑇, 𝐼𝑇 : The largest component associated with driving time

is the labour salary. Therefore, 𝛽𝑇𝑇 and 𝛽𝐼𝑇 are set as the

average salary for a delivery driver in London, which is

£10.25 per hour [22].

• 𝐷𝑇 : The unit cost associated with delay of service is highly

subjective. In experiments, £11 per hour, which is approxi-

mately the average hourly pay in London [42], is adopted.

• 𝑂𝑇 : To impose the penalty on overtime, the coefficient of

𝑂𝑇 is set to the sum of 𝛽𝑇𝑇 and 𝛽𝐼𝑇 .

(2) Latency Function

Based on real-road data, 𝛼 𝑓 , 𝛽𝑓 , 𝛼𝑝 and 𝛽𝑝 are set to 0.715, 2.480,

0.683, 2.890 respectively as given by [11]. The static travel time

𝑡𝑎 (0), capacity 𝐶𝑎 and passenger (exogenous) traffic flow 𝑣
𝑝
𝑎 are

calculated and imputed as follows.

• 𝑡𝑎 (0): It equals to the ratio of link length over free-flow

speed. The free-flow speed is approximated and replaced by

the maximum speed provided from OSM [37]. For the cases

where the value of the maximum speed is not provided, a

typical value of 38km/h for central urban roads in London is

used instead as recommended by [14].

• 𝐶𝑎 : The maximum realistic value of capacity per lane for

central urban roads in London is 800 veh/h/lane [14]. There-

fore, the capacity of each link is calculated by the production

of this value and the number of carriageways of that link

which is provided by OSM [37]. If no value is provided, a

single lane is assumed as a default.

• 𝑣𝑝𝑎 : Traffic flow in Passenger Car Equivalent, which is 40% of

link capacity, is loaded on the network to simulate the effect

of exogenous traffic.

(3) H-GA

The values of parameters are determined by manual parameter

tuning. To balance the diversity and quality, 𝑟𝑁𝑁𝑆 is set to 0.5.

Mutation rate 𝑟𝑚 , crossover rate 𝑟𝑐 and education rate 𝑟𝑒 are tested

from 0.2 to 0.8 with step 0.2. Given the average performance (10

runs), the process yields a 𝑟𝑚 ,𝑟𝑐 and 𝑟𝑒 of 0.8, 0.6, 0.8 respectively.

The population is of 100 size and with 4 sub-populations.

5.4 Results
Figures 4 and 5 show the decentralised and centralised route plans

for the instance with 150 customers and relaxed time windows,

which is taken as an example for illustration. The utilities, costs

and corresponding PoA are summarized in Table 3 where MD and

MD-TW indicate whether time windows are relaxed or tight, re-

spectively.
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(a) Amazon (b) DHL

(c) DPD (d) Royal Mail

Figure 4: Decentralised route plans of four companies
(MD150)

(a) Centralised (b) Decentralised

Figure 5: Centralised and decentralised route plans (MD150)

As shown in Figure 6, with the increase of the scale of the prob-

lem, the value of PoA stabilises between 1.05 and 1.50. One can also

see that when the customer number is less than 50, the efficiency

degradation of instances with tight time windows is significantly

larger than that of instances with relaxed time windows. This part

of inefficiency will not be captured by the purely travel-cost-based

efficiency measurement.

Figure 7 plots the absolute gaps of performance indicators be-

tween two scenarios, which are the differences between the terms

in equation (1) and (2). The results suggest that:

• On average, the major resource that undermines the degree

of efficiency is vehicle operations. However, this effect de-

clines as the number of customers increases.

• The contributions from overtime and travel time due to con-

gestion are not significant within the scale of our experi-

ments.

• With the increase of problem scale, the effect of the travel

cost on the overall efficiency becomes more significant.

• Idle time also accounts for a significant part of inefficiency.

Sometimes it mainly comes from early arrivals, which can be

Table 3: Estimated results for all problem instances. MD -
Relaxed TimeWindow Instances. MDTW - Tight TimeWin-
dows Instances.

Instance 𝐶 (𝑅𝑑 ) 𝐶 (𝑅𝑐 ) 𝑈 (𝑅𝑑 ) 𝑈 (𝑅𝑐 ) 𝑃𝑜𝐴𝑈 𝑃𝑜𝐴𝐶

MD10 130.08 53.84 69.92 146.16 2.09 2.42

MD20 157.76 98.55 242.24 301.45 1.24 1.60

MD30 183.50 144.71 416.50 455.29 1.09 1.27

MD40 231.04 190.87 568.96 609.13 1.07 1.21

MD50 323.82 234.30 676.18 765.70 1.13 1.38

MD60 348.01 277.20 851.99 922.80 1.08 1.26

MD70 398.25 322.49 1001.75 1077.51 1.08 1.23

MD80 440.70 386.71 1159.30 1213.29 1.05 1.14

MD90 489.50 430.15 1310.50 1369.85 1.05 1.14

MD100 524.46 472.35 1475.54 1527.65 1.04 1.11

MD110 559.12 517.05 1640.88 1682.95 1.03 1.08

MD120 624.01 558.89 1775.99 1841.11 1.04 1.12

MD130 644.35 600.62 1955.65 1999.38 1.02 1.07

MD140 724.86 673.06 2075.14 2126.94 1.02 1.08

MD150 765.48 685.96 2234.52 2314.04 1.04 1.12

MDTW10 165.94 81.42 34.06 118.58 3.48 2.04

MDTW20 296.12 124.68 103.88 275.32 2.65 2.38

MDTW30 339.89 157.51 260.11 442.49 1.70 2.16

MDTW40 423.13 236.91 376.87 563.09 1.49 1.79

MDTW50 417.29 268.70 582.71 731.30 1.25 1.55

MDTW60 453.05 330.23 746.95 869.77 1.16 1.37

MDTW70 515.23 417.18 884.77 982.82 1.11 1.24

MDTW80 549.28 481.58 1050.72 1118.42 1.06 1.14

MDTW90 611.77 476.74 1188.23 1323.26 1.11 1.28

MDTW100 641.37 536.71 1358.63 1463.29 1.08 1.19

alleviated by a collaborative routing plan. However, limited

by this delivery pattern, when major is from waiting for the

customer to pick up, it is not avoidable. One possible solution

is to adopt the other delivery patterns, such as self-collection.

Figure 6: The values of PoA under different problem sizes.
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Figure 7: Absolute cost gaps between the worst and optimal
cases.

6 DISCUSSION
Our results with relaxed time windows are consistent with prior

observations that collaborative routing could result in a substantial

reduction of travel cost [6, 28]. When the time windows are con-

sidered, this reduction of travel cost decreases and is compensated

by the reduction of vehicle operation cost and delay of service.

Nonetheless, the reduction rate of generalised cost is still consider-

able for instances with less than 100 customers. Although the PoA

stabilises in instances with over 100 customers, its value is highly

sensitive to the coefficients and therefore, is more meaningful in

comparison analysis.

Our case study also shows that congestion travel time is the

lowest contributing cost factor. This, however, can be attributed

to several assumptions and case study design decisions. There are

over 3.2 billion LGVs in traffic in London every year in 2021: i.e.

over 34,000 LGVs every hour in three boroughs [18]. However,

to control the complexity of VRP and get robust estimation, our

experiment only considers 5 vehicles each depot, which means a

maximum of 55 freight vehicles on the road. Furthermore, in our

study, 10 parcels are aggregated in one stop point and couriers can

only do a maximum of 10 stops in 8 hours. This deviates from the

fact that a real-life courier could have 200 parcels to deliver per day

and 1-2 parcels per stop [34], and could amplify the effect of idle

time. Moreover, the traffic in the inner city involves large temporal

and spatial fluctuations and could be highly congested. Given the

flow-delay relationship (5), the increase of exogenous flow will

exacerbate the congestion effect resulted from the freight traffic

flow. This challenges our assumption of uniformly loaded passenger

traffic. Nonetheless, our study provides a complete framework that

can be easily generalised to a larger scale by reducing the time span

and increasing customer size. Further work is required to develop

large case studies of sufficient size and various exogenous traffic

conditions, which represent reality more faithfully.

Our formulation assumes a limitless sharing of resources and

customer orders, which idealises the optimal cases. In reality, com-

panies are not willing to share all their orders and even try to

occupy the market share of other companies [47]. This means that

the efficiency of the routing operation would worsen if unregulated.

In this case, it is expected to regulate and promote the coordination

by government-mandated actions, which can maintain a more suf-

ficient competition by avoiding the monopolization of a platform

(e.g., Amazon) and prompt the integration of resources from the

urban planning level (e.g., Urban Consolidation Centres)

The deployment of incoming technologies, such as drones and

autonomous vehicles (AVs), could further affect the PoA. E.g., drone-

delivery can mitigate the congestion externalities by avoiding tradi-

tional traffic networks. The lead time will also decrease by virtue of

its high velocity. Similarly, AVs can alleviate the congestion through

real-time responses to traffic conditions and reduce the emission of

pollutants and carbon by electrification. The existence of these new

devices needs to be incorporated in future work and our framework

could serve as a basis of their effectiveness assessment.

7 CONCLUSION
In this study, a framework based on the MDVRP-TWCN for evaluat-

ing the degree of inefficiency in urban last-mile delivery is proposed.

Furthermore, a parallel hybrid genetic algorithm is designed for

solving the problem instances, which is validated using several

well-known benchmarks. Finally, several elaborated experiments

are conducted. The results suggest that: (1) Efficiency estimated

is highly dependent on the parameters in utility/cost function; (2)

When the number of customers is small, the degradation of effi-

ciency is larger and stabilises with larger problem instances; (3) The

static travel time, which is determined by exogenous traffic flow,

accounts for a considerable part of the degradation of inefficiency;

(4) The presence of time windows could significantly worsen the

efficiency, and therefore, cannot be ignored during policy making.

On the other hand, there are still limitations needed to be ad-

dressed in future work: (1) The VRP-based formulation introduces

significant computational complexities to overcome when mod-

elling large fleets of vehicles; (2) This study assumes the allocation

of orders is predetermined, which simplifies the interaction be-

tween companies and customers, and future studies can employ an

auction mechanism to carry out the order assignment; (3) Due to

the lack of realistic route plan data, the utility function and cost

function are calibrated manually based on the fragmented informa-

tion. This limits the generalisation of the results of our experiments

because the value of coefficients has a great impact on the range of

value of the estimated PoA.
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