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ABSTRACT
Individual rationality, which involves maximizing expected individ-
ual returns, does not always lead to high-utility individual or group
outcomes in multi-agent problems. For instance, in multi-agent
social dilemmas, Reinforcement Learning (RL) agents trained to
maximize individual rewards converge to a low-utility mutually
harmful equilibrium. In contrast, humans evolve useful strategies
in such social dilemmas. Inspired by ideas from human psychology
that attribute this behavior to the status-quo bias, we present a
status-quo loss (𝑆𝑄𝐿𝑜𝑠𝑠) and the corresponding policy gradient al-
gorithm that incorporates this bias in an RL agent. We demonstrate
that agents trained with 𝑆𝑄𝐿𝑜𝑠𝑠 learn high-utility policies in sev-
eral social dilemma matrix games (Prisoner’s Dilemma, Matching
Pennies, Chicken Game). To apply SQLoss to visual input games
where cooperation and defection are determined by a sequence
of lower-level actions, we present GameDistill, an algorithm that
reduces a visual input game to a matrix game. We empirically show
how agents trained with SQLoss on GameDistill reduced versions
of Coin Game and Stag Hunt learn high-utility policies. Finally, we
show that 𝑆𝑄𝐿𝑜𝑠𝑠 extends to a 4-agent setting by demonstrating the
emergence of cooperative behavior in the popular Braess’ paradox.
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1 INTRODUCTION
In sequential social dilemmas, individually rational behavior can
lead to low-utility outcomes for each individual in the group [3,
7, 11, 12]. Current state-of-the-art Multi-Agent Deep RL (MARL)
methods train agents who play individualistically and receive lower
rewards, even in simple social dilemmas [4, 10] such as the Pris-
oner’s Dilemma and Coin Game [4].

Interestingly, humans learn cooperative strategies (without shar-
ing rewards or having access to private information) that benefit
both the individual and the group in such dilemmas. Several ideas
in human psychology [8, 9, 13, 14] have attributed this behavior
to the status-quo bias [6]. Inspired by this idea, we present the
status-quo loss (𝑆𝑄𝐿𝑜𝑠𝑠) and the corresponding status-quo policy
gradient formulation for RL.

Agents with 𝑆𝑄𝐿𝑜𝑠𝑠 achieve high rewards in multi-agent social
dilemmas without sharing rewards, gradients, modeling the other
agent(s), or using a communication channel. Intuitively, 𝑆𝑄𝐿𝑜𝑠𝑠
encourages an agent to stick to past actions provided the actions did
not cause significant harm. 𝑆𝑄𝐿𝑜𝑠𝑠 requires a binary action space.
To apply 𝑆𝑄𝐿𝑜𝑠𝑠 to visual games where cooperation and defection
policies are defined using a sequence of lower-level actions, we
present𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 , an algorithm that reduces a visual input game
to a matrix game.𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 uses self-supervision and clustering
to extract distinct policies from a sequential social dilemma.

Our key contributions can be summarised as:
(1) We introduce a Status-Quo loss and an associated policy

gradient-based algorithm to learn policies in a decentralized
manner for agents playing iterated games where agents can
choose between two distinct policies in each iteration. We
demonstrate that agents trained with 𝑆𝑄𝐿𝑜𝑠𝑠 achieve high
rewards in several social dilemma matrix games.

(2) We propose𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 , an algorithm that reduces a visual
input game to a matrix game by automatically extracting
distinct policies. We show how agents trained with 𝑆𝑄𝐿𝑜𝑠𝑠

on these𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 extracted policies obtain high rewards
in the Coin Game and Stag Hunt.

(3) We demonstrate that 𝑆𝑄𝐿𝑜𝑠𝑠 extends to games with more
than two agents. We show agents trained with 𝑆𝑄𝐿𝑜𝑠𝑠 coop-
erate in the 4-agent setting of the popular Braess’ paradox.
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Figure 1: Extending 𝑆𝑄𝐿𝑜𝑠𝑠 to visual input games using GameDistill: High-level architecture illustrated using coin game. Each
agent runs 𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 by performing steps (1), (2), (3) individually to obtain two oracles per agent. During game-play(4), each
agent (with 𝑆𝑄𝐿𝑜𝑠𝑠) takes either the action suggested by the cooperation or the defection oracle

Figure 2: Results of SQLoss on (1) IPD (2) IMP (3) ICG games and (4) 𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 with SQLoss on visual Coin Game.

2 APPROACH
In Infinitely Iterated Matrix Games, agents repeatedly play a matrix
game against each other. In each game iteration, each agent has
access to actions played by both agents in the previous iteration. We
refer to infinitely iterated matrix games as iterated matrix games.
In Iterated Prisoner’s Dilemma (IPD), RL agents trained with the
policy gradient update method converge to a sub-optimal mutual
defection (DD) equilibrium (Figure 2, Lerer and Peysakhovich [10])
instead of cooperation (CC). This sub-optimal equilibrium attained
by Selfish Learners motivates us to explore alternatives.

2.1 SQLoss: Motivation
The status-quo bias instills in humans a preference for the current
state provided the state is not harmful to them. Inspired by this idea,
we introduce a status-quo loss (𝑆𝑄𝐿𝑜𝑠𝑠). The 𝑆𝑄𝐿𝑜𝑠𝑠 encourages
an agent to imagine a future episode where the status-quo (current
situation) is repeated for several steps. If an agent has been exploited
in the previous iteration of the game (state DC), then 𝑆𝑄𝐿𝑜𝑠𝑠 will
encourage the agent to imagine a continued risk of exploitation and
subsequently switch to defection and move to state DD. Conversely,
if both agents cooperated in the previous iteration of the game (state
CC), then 𝑆𝑄𝐿𝑜𝑠𝑠 will encourage the agent to imagine a continued
gain from mutual cooperation and subsequently stick to state CC.
Please see our full-version of the paper [1] for details.

2.2 Learning policies using 𝑆𝑄𝐿𝑜𝑠𝑠 and
𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙

Applying 𝑆𝑄𝐿𝑜𝑠𝑠 to visual input games is not straightforward since
𝑆𝑄𝐿𝑜𝑠𝑠 requires a binary action space that typically contains a
cooperation and a defection action. To apply the Status-Quo policy
gradient to such games, we propose𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 , a self-supervised
algorithm that reduces a visual input game to a matrix game.
𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 works as follows.

(1) We initialize agents with random weights and play them
against each other in the game. During random game-play,
whenever an agent receives a reward, we store the sequence
of states and the rewards for both agents.

(2) This collection of state sequences is used to train the
𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 network, which is a self-supervised trajec-
tory encoder. It takes as input a sequence of states and
predicts the rewards of both agents during training.

(3) We now cluster the embeddings extracted from the penul-
timate layer of the trained 𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 network using Ag-
glomerative Clustering [5]. Each embedding is a finite dimen-
sional representation of the corresponding state sequence.
For the Coin Game, we set the number of clusters to two
(since 𝑆𝑄𝐿𝑜𝑠𝑠 requires a binary action space).

(4) We train an oracle to predict the next action given the
current state using the state sequences in each cluster. For
the Coin Game, we get two oracles, one for each cluster.
Each agent uses𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 independently to extract two
oracles that represent a high-level behavior in the game

3 EXPERIMENTS AND RESULTS
We compare our approach Status-Quo Aware Learner or 𝑆𝑄𝐿𝑒𝑎𝑟𝑛𝑒𝑟
to Lola-PG [4] and the Selfish Learner (SL) agents. For all experi-
ments, we perform 20 runs and report average 𝑁𝐷𝑅, along with
variance across runs. 𝑆𝑄𝐿𝑒𝑎𝑟𝑛𝑒𝑟 agents achieve close to optimal
score in the IPD, IMP and ICG (Figure 2). SL agents converge to
mutually harmful selfish behavior. 𝑆𝑄𝐿𝑒𝑎𝑟𝑛𝑒𝑟 agents move towards
equilibrium faster than Lola-PG agents and also has low variance.
For Visual games, Lola-PG agents trained with𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 oracles
achieve higher rates of cooperation than vanilla Lola-PG agents
but lower rates of cooperation than 𝑆𝑄𝐿𝑒𝑎𝑟𝑛𝑒𝑟 agents trained with
𝐺𝑎𝑚𝑒𝐷𝑖𝑠𝑡𝑖𝑙𝑙 oracles. Finally, using a 4-agent Braess’ paradox[2]
game, we extend 𝑆𝑄𝐿𝑜𝑠𝑠 to games beyond two agents.
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