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ABSTRACT
We propose the notion of deep reinforcement learning-based strat-
egy templates for multi-issue bilateral negotiation. Each strategy
template consists of a set of interpretable parameterized tactics that
are used to decide an optimal action at any time. This contrasts
with existing work that only estimates the threshold utility for
those tactics that require it. As a result, we build automated agents
for multi-issue negotiations that can adapt to different negotiation
domains without the need to be pre-programmed.
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1 INTRODUCTION
We study the problem of modelling a self-interested agent nego-
tiating with an opponent over multiple issues while learning to
optimally adapt its strategy. Recent work [3] develops interpretable
strategy templates to guide the use of a series of tactics whose opti-
mal use can be learned during negotiation. The structure of such
templates depends upon a number of learnable choice parameters,
determining which acceptance and bidding tactic to employ at any
time during negotiation. As these tactics represent hypotheses to
be tested by the strategy developer, they can be explained to a user,
and can depend on learnable parameters.

The benefit of the above work is that it can combine three differ-
ent approaches: hand-crafted predefined heuristics, meta-heuristics
and machine learning algorithms. Heuristics are used for the com-
ponents of the template and meta-heuristics or machine learning
are used for evaluating the choice parameter values of these com-
ponents. At first, the choice parameters of the components for
the acceptance and bidding templates were learned once (during
training) and used in all the different negotiation settings (during
testing) [3]. However, such a one-size-fits-all mechanism for learn-
ing the choice parameters does not accumulate experience and
abstracts away from what is learned in a specific domain once the
negotiation has finished, so it cannot transfer experience to new
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Figure 1: The DLST Agent Negotiation Model

domains or unseen opponents. To address these issues, we propose
the idea of using Deep Reinforcement Learning (DRL) to estimate
the choice parameter values of components in strategy templates.
We name the proposed interpretable strategy templates as “Deep
Learnable Strategy Templates (DLST)”.

2 DLST-BASED NEGOTIATION MODEL
Given the negotiation setting and agent architecture of [3], we as-
sume our agent 𝐴𝑢 is situated in an environment 𝐸 containing the
opponent agent𝐴𝑜 . As in [3], at any time 𝑡 our agent𝐴𝑢 senses the
current state 𝑆𝑡 of 𝐸, but unlike [3] the state now is explicitly rep-
resented as a set of internal state attributes (see Fig. 1, purple box).
We use the internal state attributes to estimate the threshold utility
below which no bid should be accepted/offered from/to the oppo-
nent agent [3]. These state attributes include information derived
from the sequence of previous bids offered by 𝐴𝑜 (e.g., utility of
the most recently received bid from the opponent 𝜔𝑜

𝑡 , utility of the
best opponent bid so far 𝑂𝑏𝑒𝑠𝑡 , average utility of all the opponent
bids 𝑂𝑎𝑣𝑔 and their variability 𝑂𝑠𝑑 ) and information stored in 𝐴𝑢 ’s
knowledge base (e.g., number of bids 𝐵 in the given partial order,
𝑑𝐷 ,𝑢𝑟𝑒𝑠 , Ω, and 𝑛), and the current negotiation time 𝑡 . This internal
state representation, denoted with 𝑠𝑡 , is used by 𝐴𝑢 (in acceptance
and bidding strategies) to decide what action 𝑎𝑡 to execute from the
set of Actions based on the negotiation protocol 𝑃 at time 𝑡 . Action
execution then changes the state of the environment to 𝑆𝑡+1. For
the acceptance strategy, 𝑠𝑡 requires additional state attributes as
follows: fixed target utility 𝑢, dynamic and learnable target utility
𝑢𝑡 , utility𝑈 (𝜔) of received bid 𝜔 w.r.t. 𝑈 , 𝑞 quantile value which
changes w.r.t time 𝑡 , and quantile function 𝑄

𝑈 (Ω𝑜
𝑡 )
(𝑞). Similarly,

for the bidding strategy, 𝑠𝑡 requires the additional state attributes as
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follows: 𝑏Boulware , 𝑃𝑆 Pareto-optimal bid, 𝑏𝑜𝑝𝑝 (𝜔𝑜
𝑡 ) a bid by greed-

ily manipulating the last bid received from the opponent 𝜔𝑜
𝑡 , and a

random bid from the uniform distribution above 𝑢𝑡 .
The action 𝑎𝑡 is derived via two functions, 𝑓𝑎 and 𝑓𝑏 , for the ac-

ceptance and bidding strategies, respectively, as in [3]. The function
𝑓𝑎 takes as inputs 𝑠𝑡 , a dynamic threshold utility 𝑢𝑡 , the sequence
of past opponent bids Ω𝑜

𝑡 , and outputs a discrete action 𝑎𝑡 among
accept or reject. When 𝑓𝑎 returns reject, 𝑓𝑏 computes what to bid
next, with input 𝑠𝑡 and 𝑢𝑡 , see (1–2). This separation of acceptance
and bidding strategies is not rare, see for instance [1]. Also, 𝑓𝑎 and
𝑓𝑏 consist of a set of tactics as defined in [3].

𝑓𝑎 (𝑠𝑡 , 𝑢𝑡 ,Ω𝑜
𝑡 ) = 𝑎𝑡 , 𝑎𝑡 ∈ {accept, reject} (1)

𝑓𝑏 (𝑠𝑡 , 𝑢𝑡 ,Ω𝑜
𝑡 ) = 𝑎𝑡 , 𝑎𝑡 ∈ {offer (𝜔), 𝜔 ∈ Ω} (2)

We assume incomplete opponent preference information, therefore,
Decide uses the estimated model𝑈𝑜 . In particular,𝑈𝑜 is estimated at
time 𝑡 using information fromΩ𝑜

𝑡 . Unlike [3], ourDecide component
employs DRL in both the Acceptance as well as the Bidding Strategy
Templates Parameters, in addition to Threshold Utility (see the
three green coloured boxes in Fig. 1). Each DRL component is based
on the actor-critic architecture [6] and has its own Evaluate and
Negotiation Experience components as in [2, 3].

Evaluate refers to a critic helping our agent learn the dynamic
threshold utility 𝑢𝑡 , acceptance template parameters and bidding
template parameters, with the new experience collected against
each opponent. This is a function of random𝐾 (𝐾 < 𝑁 ) experiences
fetched from the agent’s memory. Here, learning is retrospective,
since it depends on the reward 𝑟𝑡 obtained from 𝐸 by performing 𝑎𝑡
at 𝑠𝑡 . The reward values for every critic that are used for estimating
the threshold utility (i.e., 𝑟𝑢𝑡𝑡 ) as well as choice parameter values
of acceptance (i.e., 𝑟𝑏𝑖𝑑𝑡 ) and bidding templates (i.e., 𝑟𝑎𝑐𝑐𝑡 ) depend
on the discounted user utility of the last opponent 𝜔𝑜

𝑡 , or of the
accepted bid 𝜔𝑎𝑐𝑐 and defined as (3), (4) and (5) respectively.

𝑟
𝑢𝑡
𝑡 =


𝑈𝑢 (𝜔𝑎𝑐𝑐 , 𝑡), on agreement
𝑈𝑢 (𝜔𝑜

𝑡 , 𝑡), on received offer
−1, otherwise.

(3)

𝑟𝑏𝑖𝑑𝑡 =

{
𝑈𝑢 (𝜔𝑎𝑐𝑐 , 𝑡), on agreement
−1, otherwise.

(4)

𝑟𝑎𝑐𝑐𝑡 =


𝑈𝑢 (𝜔𝑎𝑐𝑐 , 𝑡), on agreement and 𝑈𝑜 (𝜔𝑎𝑐𝑐 , 𝑡) ≤ 𝑈𝑢 (𝜔𝑎𝑐𝑐 , 𝑡)
𝑈𝑢 (𝜔𝑜

𝑡 , 𝑡), on rejection and 𝑈𝑜 (𝜔𝑜
𝑡 , 𝑡) ≥ 𝑈𝑢 (𝜔𝑜

𝑡 , 𝑡)
−1, otherwise.

(5)
𝑟
𝑢𝑡
𝑡 (3) and 𝑟𝑏𝑖𝑑𝑡 (4) are straight-forward. In (5), 𝑈𝑜 (𝜔, 𝑡) is used

as the reward value because the reward is received from the envi-
ronment 𝐸 where the opponent agent resides. In other words, we
assume that 𝐸 has access to 𝐴𝑜 ’s real preferences, i.e.,𝑈𝑜 , but these
preferences are not observable by our agent 𝐴𝑢 . The first case of
the 𝑟𝑎𝑐𝑐𝑡 deals with an agreed bid and returns a positive reward
value, if the bid gives higher utility to our agent than the opponent.
The second case deals with a rejected bid and returns a positive
reward value, if the bid gives lower utility to our agent than the
opponent. In all other cases, it returns a negative value. Also, in (3),

(4) and (5), 𝑈𝑢 (𝜔, 𝑡) is the discounted reward of 𝜔 defined as (6).

𝑈𝑢 (𝜔, 𝑡) = 𝑈𝑢 (𝜔) · (𝑑)𝑡 , 𝑑 ∈ [0, 1] (6)

In (6), 𝑑 is a temporal discount factor to encourage the agent to
negotiate without delay. We should not confuse𝑑 , which is typically
unknown to the agent, with the discount factor used to compute
the utility of an agreed bid (𝑑𝐷 ).

Negotiation Experience stores historical information about 𝑁
previous interactions of an agent with other agents. Experience
elements are of the form ⟨𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1⟩, where 𝑠𝑡 is the internal
state representation of the negotiation environment 𝐸, 𝑎𝑡 is the per-
formed action, 𝑟𝑡 is a scalar reward received from the environment
and 𝑠𝑡+1 is the new agent state after executing 𝑎𝑡 .

3 STRATEGY TEMPLATES
We consider the same admissible tactics as [3]. The key difference
is that our approach evolves the entire strategy (within the space
of strategies entailed by the template) at every negotiation, which
makes it more adaptable and generalizable. Below, we give an ex-
ample of an acceptance strategy learned with our model in one
domain (Party) and we show how the strategy adapts in the other
domain (Grocery) against the opponent strategy [3].

(a) Party Domain

𝑡 ∈ [0.000, 0.0361) →𝑈𝑢 (𝜔𝑜
𝑡 ) ≥ max

(
𝑄𝑈Ω𝑜𝑡

(−0.20 · 𝑡 + 0.22),𝑢𝑡
)

𝑡 ∈ [0.0361, 1.000] →𝑈𝑢 (𝜔𝑜
𝑡 ) ≥ max

(
𝑢,𝑄𝑈Ω𝑜𝑡

(−0.10 · 𝑡 + 0.64)
)

(b) Grocery Domain

𝑡 ∈ [0.000, 0.2164) →𝑈𝑢 (𝜔𝑜
𝑡 ) ≥ max

(
𝑈𝑢 (𝜔𝑡 ),𝑄𝑈Ω𝑜𝑡

(−0.55 · 𝑡 + 0.05),𝑢𝑡
)

𝑡 ∈ [0.2164, 0.3379) →𝑈𝑢 (𝜔𝑜
𝑡 ) ≥ max

(
𝑈𝑢 (𝜔𝑡 ),𝑄𝑈Ω𝑜𝑡

(−0.60 · 𝑡 + 1.40)
)

𝑡 ∈ [0.3379, 1.000] →𝑈𝑢 (𝜔𝑜
𝑡 ) ≥ max

(
𝑄𝑈Ω𝑜𝑡

(−0.22 · 𝑡 + 0.29),𝑢𝑡
)

Observe that the duration learned in the left-hand side of the tac-
tics is different for different domains, e.g., initially in the 𝑃𝑎𝑟𝑡𝑦
domain, the first rule triggers when 𝑡 ∈ [0.0, 0.0361), while in the
𝐺𝑟𝑜𝑐𝑒𝑟𝑦 domain the first rule triggers at 𝑡 ∈ [0.0, 0.2164) Similarly,
for the parameters on the right-hand side, e.g., in the 𝑃𝑎𝑟𝑡𝑦 domain,
during the very early phase of the negotiation, the strategy uses
a quantile tactic and dynamic threshold utility. However, in the
𝐺𝑟𝑜𝑐𝑒𝑟𝑦 domain, the strategy now employs future bid utility along
with the quantile bid and the dynamic threshold utility. The exper-
imental evaluation of this work is available in the full version of
this paper [4].

4 CONCLUSIONS
We have used DRL based on an actor-critic architecture to support
negotiation in domains with multiple issues. In particular, we have
exploited “interpretable” strategy templates used in the state-of-
the-art to learn the best combination of acceptance and bidding
tactics at any negotiation time. All tactics, including an adaptive
threshold utility, are learned using the DRL [5] algorithm deriving
an initial neural network strategy via supervised learning.
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