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ABSTRACT
Given the ubiquity of AI-based decisions that affect individuals’
lives, providing transparent explanations about algorithms is ethi-
cally sound and often legally mandatory. How do individuals strate-
gically adapt following explanations? What are the consequences
of adaptation for algorithmic accuracy? We simulate the interplay
between explanations shared by an Institution (e.g. a bank) and
the dynamics of strategic adaptation by Individuals reacting to
such feedback. Resorting to an agent-based approach, our model
scrutinizes the role of: i) transparency in explanations, ii) detection
capacity and iii) behavior imitation. We find that the risks of trans-
parent explanations are alleviated if effective methods to detect
faking behaviors are in place. Furthermore, we observe that social
learning and imitation — as often observed across societies — is
likely to alleviate the impacts of (malicious) adaptation.
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1 INTRODUCTION
The expanding use of AI-applications in various decision-making
processes has been accompanied by ethical concerns regarding both
intended and unintended consequences of such applications [6, 15].
In the context of consequential algorithmic decisions, people seek
information on the reasoning behind automated decision-making
processes and the requirements to legitimately attain a desired out-
come. The expectation of recourse is not only ethically sound but
may also be legally mandatory [6, 10, 18]. In the case of a classifica-
tion outcome, the explanations provided by the Institution should
clarify the reasons behind a particular decision. This will help In-
dividuals to understand their situation and adapt in future steps
[17]. While explanations are legitimate and desirable, introducing
recourse also poses some challenges: it is relevant to ensure that the
recipe is not misused to, e.g., manipulate the decision making pro-
cesses and generate wrong decisions (e.g. through disinformation,
gaming or faking behaviours) [1, 3, 7, 11].
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From the perspective of an institution, it is of utmost interest to
understand how to provide explanations without compromising the
original purpose of the algorithm. This is a non-trivial problem that
requires considering the nature of the algorithm, societal norms,
individuals adaptation processes, and the issue at stake.

The goal of this study is to introduce a formal framework to
analyze this problem and illustrate opportunities and pitfalls that
need to be considered when deploying algorithms. This becomes
particularly relevant when algorithms are applied to strategic users
who can learn from private information and from each other.
Related Work. The problem we explore in the present paper is
related to the problem of adversarial [7] or strategic classification
[11], where the goal is to define a learning algorithm that is robust
against the strategic adaption of individuals. Our work is related
with [12], where an explicit distinction between gaming and im-
proving is established. The role of social learning and information
sharing about the classifiers used by institutions, and the impacts
of this process in strategic classification, was addressed in [9]. The
role of transparency in strategic classification is discussed in [1].
This topic also relates with strategyproof regression and classifi-
cation, where the goal is to design estimators that perform well,
given that agents may misreport labeled examples to influence final
classification decisions in their favor [8, 13, 16].

2 MODEL
Let us assume a population with two types of agents: Institution
and Individuals. The goal of the Institution is to accurately classify
individuals to provide them a service (e.g., granting or not a loan).

Figure 1: Overview of the model and feature space.

At time 𝑡 , an Individual 𝑖 is characterized by a (normalized) real
feature value 𝑥1 (𝑖, 𝑡) ∈ [0, 1] and a (normalized) observable feature
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Figure 2: A)We observe that the number of False positives added after strategic adaptation (Δ𝐹𝑃 ) is higher if accurate information
about decisions is provided (low 𝜎). We set 𝑐 𝑓 = 𝑘.𝑐𝑖 and 𝑐𝑑 = (1 + 𝑘)𝑐𝑖 , so that, by controlling parameter 𝑘 , we can interpolate
between scenarios where Individuals are likely (𝑘 = 1.0) or unlikely (𝑘 = 0.0) to improve. The risks associated with strategic
adaptation are alleviated (i.e, Δ𝐹𝑃 is reduced) if B) effective detection mechanisms are in place (high 𝜙) and C) Individuals
imitate the behavior of others (high 𝛼). Parameters (when not specified): 𝑁 = 100, 𝑏 = 1.0, 𝑐𝑖 = 3.0, 𝑘 = 0.5, 𝛼 = 0, 𝜎 = 0.001, 𝜙 = 0.7.

value 𝑥2 (𝑖, 𝑡) ∈ [0, 1]. The Institution does not have perfect access
to the the individuals’ real state (𝑥1). A mismatch between the real
and the observable feature can result from individuals providing er-
roneous information (faking) or Institutions implementing scoring
methods that are not accurate. We assume that: i) the probability
of success by individuals (e.g., to repay a loan) only depends on
the real feature 𝑥1; ii) the classifier set by the company is only a
function of the observable feature 𝑥2. This setting is summarized in
Fig. 1. In the simplified scenario discussed in this work, we assume
that an individual is successful if 𝑥1 (𝑖, 𝑡) > 0.5.

The institution sets the classification threshold 𝜃 for the spe-
cific model assigning a score 𝑆𝑖 (𝑥2 (𝑖, 𝑡)) to each Individual 𝑖 . This
defines the binary classification outcome Θ𝑖 ∈ {0, 1}: Θ𝑖 = 1 if
𝑆𝑖 (𝑥2 (𝑖, 𝑡)) > 𝜃 and Θ𝑖 = 0 otherwise. The institution provides an
explanation and offers a recourse to Individuals for which Θ𝑖 = 0,
i.e. those classified as ”negative”. Individual 𝑖 infers the classification
threshold 𝜃𝑖 via the estimate 𝜃𝑖 defined as

𝜃𝑖 = max(𝑆𝑖 (𝑥2 (𝑖, 𝑡)), 𝑁 ∼ (𝜃, 𝜎)), (1)

where 𝑁 ∼ (𝜃, 𝜎) represents a value sampled from a Normal distri-
bution with mean 𝜃 and standard deviation 𝜎 . Parameter 𝜎 controls
the accuracy of the feedback provided.

Based on the feedback received from the bank, individuals adapt
at time 𝑡 +1 their features. Individuals decision upon the new vector
of features at time 𝑡 +1, namely ®𝑥 (𝑖, 𝑡 +1) = (𝑥1 (𝑖, 𝑡 +1), 𝑥2 (𝑖, 𝑡 +1)),
by maximizing the (expected) utility function 𝑢 (𝑖, 𝑡 + 1) defined as

𝑢 (𝑖, 𝑡 + 1) = (1 − 𝑑 [𝑓 (𝑖, 𝑡 + 1)]) · Θ̂𝑖 (𝑆𝑖 (𝑥2 (𝑖, 𝑡 + 1)), 𝜃𝑖 ) · 𝑏

− Δ1 (𝑖, 𝑡 + 1) · 𝑐𝑖 − 𝑓 (𝑖, 𝑡 + 1)𝑐 𝑓 − 𝑑 [𝑓 (𝑖, 𝑡 + 1)] · 𝑐𝑑 ,
(2)

with Δ1 (𝑖, 𝑡 + 1) := (𝑥1 (𝑖, 𝑡 + 1) − 𝑥1 (𝑖, 𝑡)) indicating the difference
in the real feature. Θ̂𝑖 (𝑆𝑖 (𝑥2 (𝑖, 𝑡 + 1)), 𝜃𝑖 ) indicates the estimate on
the expected classification done by Individual 𝑖; Parameter 𝑏 ≥ 0
indicates the benefit of receiving a ”positive” classification, e.g.
Θ(·) = 1; We use 𝑓 (𝑖, 𝑡), defined as 𝑓 (𝑖, 𝑡) = 𝑥2 (𝑖, 𝑡) − 𝑥1 (𝑖, 𝑡),
to denote the amount of fake information provided at time 𝑡 by
Individual 𝑖 . Parameters 𝑐𝑖 and 𝑐 𝑓 denote, respectively, the cost of
improving and faking. The detection probability for Individual 𝑖 at

time 𝑡 is given by

𝑑 [𝑓 (𝑖, 𝑡)] = 𝑓 (𝑖, 𝑡)1/𝜙 , 𝜙 ≥ 0. (3)

Since 𝑓 (𝑖, 𝑡) ∈ [0, 1], parameter 𝜙 is a measure of detection effec-
tiveness. If 𝜙 = 1, we assume a linear dependence of the detection
probability on the amount of fake information; if 𝜙 = +∞ detection
never fails and faking is always identified; if 𝜙 = 0 detection always
fails. We consider 𝑐𝑑 as the cost for an Individual of being detected
after faking.

Regarding imitation, we assume that a set 𝐼 of individuals imitate
(is influenced by) the behavior of others. We use ®𝑢∗𝑚 to denote
the vector resulting from utility maximization and ®𝑢𝑃 the vector
resulting from the average behavior of a randomly observed pool
𝑃 of individuals. Imitators 𝐼 adapt their behavior by setting

®𝑥 (𝑡 + 1) = ®𝑥 (𝑡) + (1 − 𝛼) · ®𝑢∗𝑚 + 𝛼 · ®𝑢𝑃 , 𝛼 ∈ [0, 1], (4)

where parameter 𝛼 works as imitation strength in the adaptation
process of imitators. Vector ®𝑢𝑃 is the mean adaptation vector of
𝑃 ∈ [0, 𝑁 − 𝐼 ] individuals randomly sampled from the pool of 𝑁 − 𝐼

individuals that are first-movers and act without imitating others.
Results deriving from this model are summarized in Fig. 2.

3 CONCLUSION
Here we formalize the interaction between multiple stakeholders
(Individuals and Institution) and the Individuals social embedding
(through imitation) in the context of a classification problem. Our
work contributes to a recent trend in designing ethical multiagent
systems taking into account their broader sociotechnical context [5,
14]. We find that the risks of transparent explanations are alleviated
if effective methods to detect faking behaviors are in place and
individuals imitate the behavior of others — as often observed across
societies [2, 4]. This points out at least two different directions for
further research to facilitate the ethical use of AI: understanding
the normative factors shaping the imitation patterns in a society;
developing techniques to improve the capacity to spot fraudulent
behaviour associated with strategic classification.
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