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ABSTRACT
In network science, centrality indices are used to determine impor-

tant nodes by virtue of their position in a network. In social choice

theory, voting rules are used to aggregate preferences of voters to

determine the winners of an election. Exploiting parallels between

these two fields, we propose a novel approach to define network

centrality indices based on voting rules. Since formal properties

of voting rules have been studied in much greater depth, this will

not only lead to new applications of social choice theory but also

facilitate a deeper understanding of centrality in networks.
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1 INTRODUCTION
Network science is the study of network models [11] in an ever

increasing number of domains including the social sciences, eco-

nomics, communications, intelligence, engineering, and biology

[26, 27, 35]. A particularly important concept is the centrality of
nodes [9, 22], which, depending on the domain, may concern the

identification of influencers in viral marketing, super-spreaders in

epidemiology, or criminal actors in covert networks, the placement

of beacons in communication networks, finding influential papers

in bibliometrics, and many similar tasks. We suggest that voting, a
powerful tool studied in social choice theory [1, 2] since centuries

and currently also in computational social choice [12, 28], may

serve to advance the design and analysis of centrality concepts. The

key idea is to interpret basic or derived network relations as prefer-

ences that nodes may have regarding the other nodes, and to then

rank nodes by aggregating the preferences others have about them.

This readily leads to equivalent formulations but also to new no-

tions of centrality. Only minor adaptations are necessary to extend

elections to rankings and to accommodate ties in preferences.

2 CENTRALITY INDICES
For the purpose of this note, a network is a simple undirected graph

𝐺 = (N , E), where N are the nodes or vertices and E ⊆
(N
2

)
are the links or edges between them. By 𝑛 we denote the number
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of nodes in the network. By 𝑁 (𝑖) = { 𝑗 ∈ N : {𝑖, 𝑗} ∈ E} we
denote the neighborhood of 𝑖 , and by 𝑁 [𝑖] = 𝑁 (𝑖) ∪ {𝑖} its closed
neighborhood. A centrality index is a mapping 𝑐 : N → R such

that 𝑐 (𝑖) > 𝑐 ( 𝑗) is interpreted as 𝑖 being more central than 𝑗 . Before

adding a constraint that justifies this interpretation, we present

three examples of common centrality indices.

Degree centrality. The degree of a node 𝑖 ∈ N is the cardinality

of its neighborhood, deg(𝑖) = |𝑁 (𝑖) |, so that a node is central

according to degree centrality 𝑐𝐷 (𝑖) = deg(𝑖) if it is linked directly

to many others.

Closeness centrality. To take indirect links to other nodes into ac-
count, closeness centrality considers shortest-path distances 𝛿 (𝑠, 𝑡),
i.e., the minimum number of edges in any path between 𝑠 and 𝑡 .

While typically defined as the inverse of the sum of distances to

all other nodes, we here refer to an index called harmonic closeness
𝑐𝐶 (𝑖) =

∑
𝑡 ∈N\{𝑖 }

1

𝛿 (𝑖,𝑡 ) to simplify the exposition. Note that non-

reachable nodes are treated conveniently by defining their distance

as infinite and letting
1

∞ = 0.

Betweenness centrality. Let 𝜎 (𝑠, 𝑡) denote the number of short-

est paths from 𝑠 to 𝑡 and 𝜎 (𝑠, 𝑡 |𝑖) the number of those shortest

paths from 𝑠 to 𝑡 also passing through a brokering node 𝑖 . Then

betweenness centrality [10] is given by 𝑐𝐵 (𝑖) =
∑
𝑠,𝑡 ∈N

𝜎 (𝑠,𝑡 |𝑖 )
𝜎 (𝑠,𝑡 ) .

Interestingly, these and other centralities can all be unified into

sums of weighted relationships, 𝑐 (𝑖) = ∑
𝑗∈N 𝜔 (𝑖, 𝑗), where weights

are, for example, binary (adjacent/nonadjacent) for degree,𝜔 (𝑖, 𝑗) =
1

𝛿 (𝑖, 𝑗 ) for (harmonic) closeness, and 𝜔 (𝑖, 𝑗) = ∑
𝑠∈N

𝜎 (𝑠,𝑗 |𝑖 )
𝜎 (𝑠,𝑗 ) for be-

tweenness. A common intuition is therefore that central nodes are

linked more strongly to the others. This can be formalized using

the notion of the vicinal preorder [21], defined by 𝑖 ≽ 𝑗 ⇐⇒
𝑁 [𝑖] ⊇ 𝑁 ( 𝑗) for all 𝑖, 𝑗 ∈ N . Indeed, rankings obtained from

standard centrality indices all respect the vicinal preorder, i.e.,

𝑖 ≽ 𝑗 =⇒ 𝑐 (𝑖) ≥ 𝑐 ( 𝑗) for a centrality 𝑐 [30]. Preservation of

the vicinal preorder therefore seems to be a useful minimum re-

quirement. Since all common centrality indices are also invariant

under automorphisms, we define centrality more narrowly.

Definition 1 (Centrality). A node index is a centrality if it is
invariant under automorphisms and respects the vicinal preorder.

3 VOTING IN NETWORKS
Social choice theory concerns methods (so-called voting rules) for
the determination of winners from a set of candidates or alter-

natives 𝐴, based on the preferences of a set of voters 𝑉 . We pro-

pose an interpretation of network centrality based on elections in

which nodes are both voters and candidates at the same time, i.e.,

𝐴 = 𝑉 = N , but are not allowed to vote for themselves.
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While different means of expressing preferences are being con-

sidered in the literature, in this short note we focus on an extension

of ordinal ranks in which voters’ preferences are usually given as

linear orders of the candidates. The extension is that we allow for

indifference between candidates and thus ties in the ordering.

To obtain preferences from a network structure, assume that

voters (nodes) prefer candidates (nodes) that they are closer to.

Formally, node 𝑣 prefers node 𝑖 over 𝑗 , denoted as 𝑖 ≻𝑣 𝑗 , if 𝛿 (𝑣, 𝑖) <
𝛿 (𝑣, 𝑗), and is indifferent w.r.t. 𝑖 and 𝑗 , or 𝑖 ∼𝑣 𝑗 , if 𝛿 (𝑣, 𝑖) = 𝛿 (𝑣, 𝑗).
We refer to these as distance-based preferences. The rank position

of a node (candidate) 𝑖 in the preference of node (voter) 𝑣 can

be defined from two perspectives. Top-aligned ranks are defined

by rank𝑣 (𝑖) = 1 + |{𝑥 ∈ N \ {𝑣} : 𝑥 ≻𝑣 𝑖}|, and bottom-aligned

ranks are defined by

←−−−
rank𝑣 (𝑖) = 1 + |{𝑥 ∈ N \ {𝑣} : 𝑖 ≻𝑣 𝑥}|. In

rankings without ties, rank𝑣 (𝑖) = (𝑛 − 1) −
←−−−
rank𝑣 (𝑖). However, this

correspondence does not hold in general.

We consider the following voting rules to illustrate their relation

with network centralities.

Plurality. Under the plurality rule, all voters assign a score of 1

to the candidates they rank first, and 0 to the others. The associated

centrality index becomes 𝑐
Plu
(𝑖) = |{𝑣 ∈ N : rank𝑣 (𝑖) = 1}|. The

resulting centrality ranking is equivalent to the degree centrality

ranking, although the exact indices in plurality may be higher

in case of isolate nodes, which are indifferent between all nodes

and thus contribute 1 to the score of every other node. Plurality

can thus be seen as the immediate voting rule correspondence to

degree centrality. However, social choice theory is abundant in

voting rules with different properties. Two prominent, yet very

different rules are those by Borda [7] and Copeland [16], which

have been thoroughly studied in computational social choice (see,

e.g., [18, 29]). We derive new centrality indices from them.

Borda. A formulation of this rule that also works well in the

presence of ties is due to Gärdenfors [24]. It adds 1 to the score of

a candidate for every candidate ranked lower, and subtracts 1 for

each candidate ranked higher. The same outcome is obtained with

combined scores

←−−−
rank𝑣 (𝑖) − rank𝑣 (𝑖), and the Borda score of node 𝑖

is defined as

𝑐Bor (𝑖) =
∑︁

𝑣∈N\{𝑖 }

←−−−
rank𝑣 (𝑖) − rank𝑣 (𝑖) .

In voting, all candidates with maximum Borda score win. We use

the Borda scores simply as a new centrality index.

Theorem 3.1. Borda induces a centrality ranking.

Borda scores reverse distances similarly to radiality central-

ity [32], but since multiple nodes at the same distance reduce the

score of nodes farther away by more than one unit, Borda centrality

ranks nodes quite differently from existing indices.

Copeland. This rule is a polynomial-time computable Condorcet-

consistent method [20]. As all Condorcet-consistent methods, it

is based on the pairwise comparison of candidates. We say 𝑖 wins
against 𝑗 in a pairwise comparison (denoted as 𝑖 ≫ 𝑗 ) if and only if

|{𝑣 ∈ N \ {𝑖, 𝑗} : rank𝑣 (𝑖) < rank𝑣 ( 𝑗)}| >
|{𝑣 ∈ N \ {𝑖, 𝑗} : rank𝑣 (𝑖) > rank𝑣 ( 𝑗)}| .
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Figure 1: Node 6 has the highest closeness, and 11 the highest
betweenness centrality, but 8 is the Condorcet winner.

That is, 𝑖 ≫ 𝑗 if more nodes are strictly closer to 𝑖 than to 𝑗 . A

Condorcet winner [13] is a candidate that wins against every other

candidate in pairwise comparison. However, a Condorcet winner

does not always exist (also not in a network). Therefore, the goal

behind Condorcet-consistent methods like Copeland is to select the

Condorcet winner if it exists, and a node that is as close as possible

to being a Condorcet winner otherwise. The Copeland score of node
𝑖 is defined by

𝑐Cop (𝑖) = |{𝑥 ∈ N : 𝑖 ≫ 𝑥}| − |{𝑥 ∈ N : 𝑥 ≫ 𝑖}| .

Candidates with maximum Copeland score win an election, but we

will simply use these scores as the Copeland centrality index. If a

Condorcet winner exists in a network, it has the highest possible

Copeland score of 𝑛 − 1.

Theorem 3.2. Copeland induces a centrality ranking.

To the best of our knowledge, Copeland centrality is the first

centrality index ever proposed that ranks the Condorcet winner (if

there exists one) first. Figure 1 shows a network where betweenness

and closeness select nodes different from the Condorcet winner.

4 OUTLOOK
We expect the rich body of research on voting to provide consid-

erable leverage for conceptual and axiomatic studies of central-

ity [5, 6, 8, 31]. That voting axioms have immediate counterparts in

network science (such as neutrality and invariance under automor-

phisms, or the Pareto criterion and the vicinal preorder) suggests

that further voting axioms may carry over to and make sense in

network science. Also the study of manipulating votes [3, 14, 15]

and control by adding or deleting candidates or votes [4, 19, 25]

offers further directions of research facilitated by our proposal. For

instance, how easily can the centrality of a node be manipulated

by adding, deleting, or rewiring edges or nodes? This relates to

local hiding discussed by Waniek et al. [33, 34] and graph stabil-
ity studied by Frei et al. [23]. Further, our approach generalizes

beyond distance-based preferences, because many distance and

connectivity relations on networks are consistent with the vicinal

preorder [30] and therefore suitable for preference rankings.
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