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ABSTRACT
Augmented reality (AR) technologies have been applied to human-
robot collaboration (HRC) domains to enable people to visualize
the state of the robots. Current AR-based visualization strategies
are manually designed. This design process requires a lot of hu-
man efforts, and domain knowledge. When too little information
is visualized, human users find the AR interface not useful; when
too much is visualized, they find it difficult to process the visual-
ized information. In this paper, we develop an intelligent AR agent
that learns visualization policies (what to visualize, when, and how)
from demonstrations. We developed a Unity-based platform for sim-
ulating warehouse environments where human-robot teammates
work on collaborative delivery tasks. We have collected a dataset
that includes 6000 demonstrations of visualizing robots’ current
and planned behaviors. Our results from experiments with real hu-
man participants show that, compared with competitive baselines
from the literature, our learned visualization strategy significantly
increases the efficiency of human-robot teams in delivery tasks.
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1 INTRODUCTION
Augmented Reality (AR) has been employed for human-robot col-
laboration (HRC) to provide an alternative communication mecha-
nismwith high bandwidth and low ambiguity [1, 5, 6, 8, 9, 11, 12, 15].
For instance, researchers have developed AR systems that allow
humans to visualize the state of the robots [10], as well as the robot
intentions [2, 14]. Existing AR-based HRC systems employ a static
visualization strategy where the visualizations are always displayed
to the user. As a result, those systems are not able to take important
runtime factors into account (e.g., the number of robots, the current
status of robots, the future intentions of robots, and the current sta-
tus of human) to adapt the visualizations. The consequence is that
AR interfaces can alter attentional focus and result in inattentional
blindness [7], if there is visual clutter caused by too many unwanted
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visualizations. Such concerns motivate our research on enabling
our AR agent to learn a policy for dynamically selecting visualiza-
tion actions given the state of the human-multi-robot system. We
design a framework called, Visualizations for Augmented Real-
ity using Imitation Learning (VARIL), for human-multi-robot
collaboration in a shared environment.

2 VARIL FRAMEWORK
In this section, we describe our VARIL framework, and how it
enables human-multi-robot teams to collaborate in a shared envi-
ronment. VARIL allows the human to track the status of a team of
robots using an AR interface. Moreover, VARIL supports learning
an AR visualization policy using expert demonstrations, where the
visualization agent uses the learned policy to dynamically select a
visualization action based on the state of the human-multi-robot
teams. Consider a team of robots working with a human worker in
a shared space. The team of robots constantly share their state and
plans using the AR interface, which is used by the human worker to
track the status of the team of robots. The human worker simulta-
neously collaborates with the team of robots to complete the tasks.
VARIL also consists of a human expert that gives demonstrations of
AR visualizations at runtime, indicating what information should
be visualized (or not) at specific times. Once a new policy is gener-
ated, the visualization agent updates the visualizations in the AR
interface to mimic the expert demonstrator’s suggested actions.

2.1 State-Action Space of Visualization Agent
In our implementation of VARIL, we learn a visualization strategy
for two types of visualizations, one for the visualization of robots,
and another one for the visualization of shared tasks. The state-
space (𝑆𝑅 ) of our visualization agent for the robot consists of the
following:

• ℎ𝑢𝑚𝑎𝑛𝑆𝑡𝑎𝑡𝑒: {𝑐𝑙𝑜𝑠𝑒,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝑓 𝑎𝑟 }
• 𝑟𝑜𝑏𝑜𝑡𝑇𝑎𝑠𝑘𝑆𝑡𝑎𝑡𝑒 : {𝑝𝑖𝑐𝑘𝑖𝑛𝑔, 𝑑𝑟𝑜𝑝𝑝𝑖𝑛𝑔}
• 𝑟𝑜𝑏𝑜𝑡𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝑇𝑎𝑠𝑘𝑠 : {𝑓 𝑒𝑤,𝑚𝑎𝑛𝑦}
• 𝑟𝑜𝑏𝑜𝑡𝑊𝑎𝑖𝑡𝑖𝑛𝑔𝑇𝑖𝑚𝑒 : {𝑠ℎ𝑜𝑟𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑛𝑔}
• 𝑛𝑒𝑎𝑟𝑏𝑦𝑅𝑜𝑏𝑜𝑡𝑠: {𝑓 𝑒𝑤,𝑚𝑎𝑛𝑦}
• 𝑛𝑒𝑎𝑟𝑏𝑦𝑅𝑜𝑏𝑜𝑡𝑉𝑖𝑧𝑆𝑡𝑎𝑡𝑢𝑠 : {𝑓 𝑒𝑤,𝑚𝑎𝑛𝑦}

The above state representation consists of all the key states that
represent the entire human-multi-robot system from each agent’s
perspective. The action space of the visualization agent depends
on the number of different visualizations. In our case for robots,
we have three different visualizations, which are, the live location,
planned trajectory, and transparent avatar to visualize the status
of the robots. Each of the visualizations can be turned on or off for
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(a) No AR visualization (b) Full AR visualization (c) Learned AR visualization (ours)

Figure 1: Three AR visualization strategies in a virtual warehouse environment, where a virtual human works with a team of
mobile robots on collaborative delivery tasks. (a) No AR visualization, where the human worker does not know where some
robots are, and what the robots plan to do. (b) Full AR visualization, where the human worker can be overwhelmed by the visual
indicators. (c) Our learned AR visualization, where the AR agent uses a learned policy to dynamically determine a visualization
strategy based on the current world state of both human and robots.

each agent. The state-space (𝑆𝐷 ) of our visualization agent for each
drop station is a Cartesian product of the following sets:

• ℎ𝑢𝑚𝑎𝑛𝑆𝑡𝑎𝑡𝑒: {𝑐𝑙𝑜𝑠𝑒,𝑚𝑜𝑑𝑒𝑟𝑎𝑡𝑒, 𝑓 𝑎𝑟 }
• 𝑛𝑅𝑜𝑏𝑜𝑡𝑠𝐴𝑡𝐷𝑟𝑜𝑝𝑆𝑡𝑎𝑡𝑖𝑜𝑛: {𝑓 𝑒𝑤,𝑚𝑎𝑛𝑦}
• 𝑟𝑜𝑏𝑜𝑡𝑠𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒𝐴𝑡𝐷𝑟𝑜𝑝𝑆𝑡𝑎𝑡𝑖𝑜𝑛: {𝑠ℎ𝑜𝑟𝑡,𝑚𝑒𝑑𝑖𝑢𝑚, 𝑙𝑜𝑛𝑔}

The action space for each drop station consists of enabling or
disabling the balloon on the drop station. The state and action space
can vary based on the implementation of the visualization agent.
Data Collection and Policy Learning: We collected a dataset of
6000 demonstrations provided by a human expert at runtime during
which a human worker was working with a team of robots to collab-
orate on a delivery task. The human worker and the human expert
both were provided with an AR interface to track the robots. The
human worker used the AR interface to collaborate with the robots,
whereas the role of the human expert was to provide feedback on
the visualizations seen using the AR interface.

3 EXPERIMENTS
We conducted experiment with 25 participants in a simulated ware-
house environment that we developed using Unity (Figure 1). With
this experiment, we aim to evaluate the following hypothesis: I) VARIL
improves the overall efficiency in human-multi-robot team task
completion in comparison to other AR-based methods from the
literature that employ static visualization policies.

3.1 Experiment setup
We deployed the simulated warehouse environment to a web server
to facilitate the online experiment. We have replicated the visu-
alizations of two different systems from the literature, called AR-
ROCH [4], and CRMIAR [13] 1 to make comparisons of their vi-
sualization strategies with VARIL. In our experiment, human par-
ticipants were able to teleoperate the virtual human around the
environment. Each robot is assigned three boxes for each trial and
once the last box has been dropped off by the robot, it will begin
navigating to its starting position. The trial is completed once all
twelve robots have delivered their three boxes, and reached their
starting position.

1We create the acronym of CRMIAR that indicates “Communicating Robot Motion
Intent with Augmented Reality” for the simplicity of referring to the method.
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Figure 2: A histogram to show the distribution of total wait-
ing time (second) of all robots;

3.2 Results
Figure 2 shows the histogram, where the x-axis represents the total
wait time of all the robots in seconds, whereas the y-axis represents
the number of human-robot teams with the corresponding robot
wait times. From the figure, it can be observed that most human-
robot teams, VARIL had the shortest robot wait times as compared
to ARROCH and CRMIAR. Also, we plotted the Gaussian curves to
clearly show the distribution of the data points for all the methods.
We also analyzed the statistical significance, in every trial, we sum
up the task completion time of all the robots. We found that VARIL
performed significantly better than both ARROCH and CRMIAR,
where 0.01 < 𝑝 − 𝑣𝑎𝑙𝑢𝑒 < 0.05. Additionally, by comparing the
total robot wait times, we observed that the wait times for robots
in VARIL were significantly shorter than the baselines. All of these
results support Hypothesis-I that states VARIL improves the human-
robot team’s task completion efficiency.

4 CONCLUSIONS AND FUTUREWORK
In this paper, we present our framework, Visualizations for Aug-
mented Reality using Imitation Learning (VARIL), that introduces
a learning-based Augmented Reality (AR) visualization strategy
for human-multi-robot collaboration. We have designed a system
that learns a visualization policy using imitation learning, where
the visualization agent dynamically selects a visualization action
based on the state of the human-multi-robot system. We compared
our framework with competitive baselines from the literature, and
the results suggest that VARIL significantly increases the efficiency
of human-robot collaboration. In the future, we will evaluate the
user-experience performance of VARIL through questionnaires and
explore VR-based human-robot collaboration [3].
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