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ABSTRACT
We present a Nash equilibrium analysis for single-buyer single-

seller multi-unit 𝑘-double auctions for scaling-based bidding strate-

gies. We then design a Deep Deterministic Policy Gradient (DDPG)
based learning strategy, DDPGBBS, for a participating agent to sug-
gest bids that approximately achieve the above Nash equilibrium.

We expand DDPGBBS to be helpful in more complex settings with

multiple buyers/sellers trading multiple units in a Periodic Double

Auction (PDA), such as the wholesale market in smart-grids. We

demonstrate the efficacy of DDPGBBS with Power Trading Agent

Competition’s (PowerTAC) wholesale market PDA as a testbed.
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1 INTRODUCTION
A double auction is a process of buying or selling goods or items [21]

involving multiple buyers and sellers placing their bids/asks. It is

extensively used to trade stocks, energy, and many other goods

and services in the real world [7, 10]. The double auction plays a

significant role in smart-grids [2], where multiple power generating

companies (GenCos) and energy brokers trade energy in the whole-

sale market through PDA. PDA is a specific type of double auction

where bids are cleared periodically in a sequence of pre-defined

time periods. As PDA involves multiple discrete clearing periods,

the buyer needs to participate in a series of auctions, and therefore,

a bidding strategy involves planning across current and future auc-

tions. European power market leader, Nord Pool, showed trades of

995 𝑇𝑊ℎ of volume, with close to 60% of the volume traded using

APIs [1]. Clearly, a bidding strategy that can optimize the cost of
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energy brokers even by a small amount would significantly improve

profits and make the system more efficient.

In this paper, we first characterize Nash equilibria for single-

buyer single-seller (SBSS) multi-unit (two identical and indivisible

units)𝑘-double auctions, where both buyer and seller follow scaling-

based bidding strategies. Characterizing equilibrium becomes in-

tractable beyond two units; hence, we design an intelligent agent

(buyer) who can learn the equilibrium strategy. Motivated by the

recent success stories of employing neural networks (NN) to solve

game theoretical problems [14–17], we develop a DDPG-based bid-

ding strategy DDPGBBS (technique derived from Reinforcement
Learning (RL)) and perform validation experiments to show that

it approximately achieves the theoretical equilibrium. We then

extend DDPGBBS to work in general PDAs with no restriction

on the number of participants or units traded in the auction. The

strategy thus developed is then tested on a smart-grid ecosystem

called PowerTAC, which is an efficient simulation of the real-world

smart-grids; primarily, it simulates PDA for energy trading in the

wholesale market [11]. We show that Extended DDPGBBS con-

sistently outperforms benchmark and state-of-the-art PowerTAC

bidding strategies. To the best of our knowledge, we are the first

to utilize the policy gradient based RL algorithm in PowerTAC

[4, 5, 8, 9, 12, 18–20, 22, 23], enabling us to work with PowerTAC’s

continuous state and action space more effectively.

2 DDPGBBS BIDDING STRATEGY
Notation: Let us assume that the true types (valuations) of buyer

𝐵 and seller 𝑆 are 𝜃𝐵 and 𝜃𝑆 , respectively. Both 𝐵 and 𝑆 place two

bids/asks in the auction by following scale-based bidding strategies
𝑏𝐵 and 𝑏𝑆 , respectively. The 𝑏𝐵[𝑏𝑆 ] is defined as a strategy in which

the buyer[seller] places two bids[asks] 𝑏1
𝐵
= 𝛼𝐵1𝜃𝐵 and 𝑏2

𝐵
= 𝛼𝐵2𝜃𝐵

[𝑏1
𝑆
= 𝛼𝑆1𝜃𝑆 and 𝑏2

𝑆
= 𝛼𝑆2𝜃𝑆 ]. Here, 𝛼𝐵1 and 𝛼𝐵2 [𝛼𝑆1 and 𝛼𝑆2] are

the scale factors by which 𝐵 [𝑆] scales its true type.

The below theorem presents ourmain results.We refer the reader

to the extended version of our paper for the complete analysis [3].

Theorem 2.1. For an SBSS two-unit 𝑘-double auction with 𝑘 = 0.5,
where 𝜃𝐵 ∼ U[𝑙𝐵, ℎ𝐵] and 𝜃𝑆 ∼ U[𝑙𝑆 , ℎ𝑆 ], respectively; when they
deploy scale based bidding strategies 𝑏𝐵 and 𝑏𝑆 , we get a system of
equations, solving which results in a unique set of scale factors for the
buyer and the seller that constitute a Bayesian Nash equilibrium.
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DDPGBBS–Learning Equilibrium Bidding Strategies: Due

to analytical intractability beyond SBSS two-units auctions for scale-

based strategies, we train a DDPG based strategy to learn equilib-

rium scale factors for the buyer. First, we study if DDPGBBS is

able to learn the known equilibrium as follows: The state-space 𝑆

consists of quantity to buy (𝑞), where 𝑞 ∈ 𝑄 = {0, 1, 2}; and buyer’s
true type 𝜃 ∈ [0, 1]. The actions are the buyer’s scale-factors 𝛼𝐵1,
𝛼𝐵2 ∈ [0, 1]. Buyer receives reward 𝑟 = 0 if no market-clearing

happens, else it receives reward 𝑟 = −𝑐𝑝 ∗ 𝑐𝑞 (where 𝑐𝑝 and 𝑐𝑞

are clearing price and buyer’s clearing quantity, respectively). An

optimal strategy would be one that maximizes the expected reward.

A state 𝑠 transitions to the next state, where quantity to buy is the

remaining quantity 𝑞′ (𝑞′ ∈ 𝑄 = {0, 1, 2}) after auction-clearing
in state 𝑠 , while 𝜃 remains the same. We consider a single-shot

auction; thus, the episode terminates after a single step, and the

buyer receives a terminal reward 𝑟 = −𝑞′ ∗ 𝜃 . DDPGBBS follows

a similar configuration as described in [13]. However, due to the

smaller state and action spaces, the NN used for the actor and critic

had two hidden layers with only 40 and 30 units, respectively.

We perform controlled experiments to validate that DDPGBBS
empirically follows the obtained theoretical equilibrium for each

case by following the same assumptions used for theoretical analy-

sis. The empirical result obtained using DDPGBBS is within 12.2%

of theoretical 𝛼𝐵1 for {𝛼𝐵1 = 𝛼𝐵2, 𝛼𝑆1 = 𝛼𝑆2} case. Similarly, for

other cases, too, empirical results are reasonably close to the theoret-

ical results (refer Section 5 in [3]). Additionally, DDPGBBS showed
low variances for all the scale factors, reinforcing its stability.

Extended DDPGBBS–Bidding Strategy for Smart-grids:
As PDA allows multiple auction instances for a delivery slot, our

DDPGBBS needs to be updated accordingly; thus, we propose Ex-
tended DDPGBBS to be helpful in general PDAs. We use Power-

TAC’s wholesale market PDA to test the Extended DDPGBBS and

use the ZI strategy to train it (The ZI strategy follows a randomized

approach to bid in a PDA by sampling a price from a uniform dis-

tribution between the minimum bid price and maximum bid price).

Below are the modifications incorporated in Extended DDPGBBS.
The state-space 𝑆 includes an additional parameter proximity

(𝑝 ∈ 𝑃 = {0, 1, 2, ..., 24}) and expands the domain of quantity to buy
(𝑞 ∈ 𝑅). We consider the buyer’s true type (𝜃 ∈ 𝑅) as the average
unit balancing price for buying from PowerTAC’s balancing market

in a game. During the game, Extended DDPGBBS outputs two

scale-factors (𝛼𝐵1, 𝛼𝐵2 ∈ [0, 1]) which get multiplied with 𝜃 to form

the two bids in the auction, while the required bidding quantity

is equally distributed into these two bids. The reward function

remains the same, except, in a terminal state, it receives reward

𝑟 = −𝑞′ ∗𝜃 , where 𝑞′ is the remaining quantity in the terminal state

𝑇 . After each auction, state transition occurs, Proximity changes

from 𝑝 to 𝑝 − 1, quantity to buy (𝑞) becomes the remaining quantity

after auction clearing, and buyer’s true type (𝜃 ) remains the same.

The episode ends in 𝑇 , either when 𝑝 = 0 or when 𝑞 = 0.

Extended DDPGBBS is trained offline by collecting experiences

in the replay buffer, using the PowerTAC PDA simulator. To collect

experiences, we run two sets of experiments. In the first[second]

set, Extended DDPGBBS competes against one[three] 𝑍𝐼 broker[s]

in two-player[four-player] games. In each set, we distribute hourly

demand equally between all the competing brokers to make each

broker participate equally in the wholesale market PDA. It updates

Table 1: Relative Unit Clearing Price Comparison

DDPGBBS SPOT VV ZI ZIP

1.0 1.2832 1.0992 1.3376 1.1920

Figure 1: Average Unit Clearing Price Comparison

the replay buffer after each auction instance in the game. After the

execution of both sets is completed, we update ExtendedDDPGBBS
using the combined replay buffer of both sets by following the

standard DDPG update procedure. We train Extended DDPGBBS
against 𝑍𝐼 brokers as they do not follow any particular bidding

pattern, and thus Extended DDPGBBS gets to see a wide range of

states in the state-space, which improves its learning. Note that,

unlike some previous PowerTAC brokers, ExtendedDDPGBBS does
not incorporate any additional heuristics in its bidding strategy.

Experiments and Results: We benchmark the performance

of Extended DDPGBBS against baseline and the state-of-the-art

strategies using isolated PowerTAC wholesale market PDA. We

perform two batches of experiments; the first batch of experiments

is divided into four sets. In each of these four sets, we play ten

two-player games between Extended DDPGBBS and one of the

broker from the set {𝑆𝑃𝑂𝑇 [4, 5], 𝑉𝑉 [8], 𝑍𝐼𝑃 [6], 𝑍𝐼 }. Similarly,

in the second batch, we play ten five-player games having all the

available brokers in the game. In the first batch of experiments, we

compare the average unit clearing price of the opponent in each set

with respect to the Extended DDPGBBS’s clearing price; a value

greater than 1 indicates that the opponent in that set had a higher

average clearing price than Extended DDPGBBS after playing ten

games. As shown in Table 1, Extended DDPGBBS outperforms all

the other bidding strategies consistently by at least 9.9% in two-

player games while achieving a 33.76% improvement against 𝑍𝐼 . In

the second batch, we compare each broker’s average unit clearing

price across ten games in five-player games. Here too, as shown

in Figure 1, Extended DDPGBBS consistently outperforms all the

other brokers by at least 21.42% (against second-best 𝑉𝑉 ), while

achieving almost 46% improvement against other brokers.

3 CONCLUSION
We presented a Nash equilibrium analysis and showed that DDPG

based bidding strategy, DDPGBBS, approximately achieves theo-

retical equilibrium. DDPGBBS can adapt to the increasing number

of participating players and items in the real-world PDAs. We ex-

amined the efficacy of our novel bidding strategies against baseline

and the state-of-the-art bidding strategy of PowerTAC PDA, where

it consistently outperforms some of the best bidding strategies.
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