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ABSTRACT
Online bipartite-matching platforms are ubiquitous and find appli-

cations in important areas such as crowdsourcing and ridesharing.

In the most general form, the platform consists of three entities: two

sides to be matched and a platform operator that decides the match-

ing. The design of algorithms for such platforms has traditionally

focused on the operator’s (expected) profit. Recent reports have

shown that certain demographic groups may receive less favorable

treatment under pure profit maximization. As a result, a collection

of online matching algorithms have been developed that give a

fair treatment guarantee for one side of the market at the expense

of a drop in the operator’s profit. In this paper, we generalize the

existing work to offer fair treatment guarantees to both sides of the

market simultaneously, at a calculated worst case drop to operator

profit. We consider group and individual Rawlsian fairness criteria.

Moreover, our algorithms have theoretical guarantees and have

adjustable parameters that can be tuned as desired to balance the

trade-off between the utilities of the three sides. We also derive

hardness results that give clear upper bounds over the performance

of any algorithm.
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1 INTRODUCTION
Online bipartite matching has been used to model many important

applications such as crowdsourcing [5, 10, 17, 18], rideshare [4,

12, 20] and online ad allocation [9, 13]. Although there has been

some work which addresses fairness in this topic [8, 11, 14–16, 19],

shortcomings still remain. In particular, online bipartite matching

systems consist of three entities: the platform operator and the two

sides of the market to be matched and the given utility guarantees

have so far ignored at least one side. However, in this paper we

provide algorithms with a guarantee for the operator’s profit as

well fairness guarantees for each side of the market. We consider

group as well as individual notions of fairness. Our algorithms

have adjustable parameters that enable us to trade the utility of
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each side as desired. We also provide impossibility results over the

performance of any algorithm and complement our results with

emprical verification over a real-world dataset.

2 ONLINE MODEL & OPTIMIZATION
OBJECTIVES

Ourmodel follows that of [1, 3, 7, 13] and others.We have a bipartite

graph𝐺 = (𝑈 ,𝑉 , 𝐸) where𝑈 represents the set of static (offline) ver-

tices (workers) and 𝑉 represents the set of online vertex types (job

types) which arrive dynamically in each round. The online match-

ing is done over 𝑇 rounds. In a given round 𝑡 , a vertex of type 𝑣 is

sampled from 𝑉 with probability 𝑝𝑣,𝑡 with
∑

𝑣∈𝑉 𝑝𝑣,𝑡 = 1,∀𝑡 ∈ [𝑇 ]
where 𝑝𝑣,𝑡 is known beforehand for each type 𝑣 and each round 𝑡 .

This arrival setting is referred to as the known adversarial distri-

bution (KAD) setting [1, 2, 4]. When the distribution is stationary,

i.e. 𝑝𝑣,𝑡 = 𝑝𝑣,∀𝑡 ∈ [𝑇 ], we have the arrival setting of the known in-

dependent identical distribution (KIID). Accordingly, the expected
number of arrivals of type 𝑣 in𝑇 rounds is 𝑛𝑣 =

∑
𝑡 ∈[𝑇 ] 𝑝𝑣,𝑡 , which

reduces to 𝑛𝑣 = 𝑇𝑝𝑣 in the (KIID) setting. We assume that 𝑛𝑣 ∈ Z+
for (KIID) [3]. Every vertex 𝑢 (𝑣) has a group membership, with

G being the set of all group memberships, for any vertex 𝑢 ∈ 𝑈 ,

we denote its group membership by 𝑔(𝑢) ∈ G (similarly, we have

𝑔(𝑣) for 𝑣 ∈ 𝑉 ). Conversely, for a group 𝑔, 𝑈 (𝑔) (𝑉 (𝑔)) denotes
the subset of 𝑈 (𝑉 ) with group membership 𝑔. A vertex 𝑢 (𝑣) has

a set of incident edges 𝐸𝑢 (𝐸𝑣 ) which connect it to vertices in the

opposite side of the graph. In a given round, once a vertex (job)

𝑣 arrives, an irrevocable decision has to be made on whether to

reject 𝑣 or assign it to a neighbouring vertex 𝑢 (where (𝑢, 𝑣) ∈ 𝐸𝑣 )

which has not been matched before. Suppose, that 𝑣 is assigned to𝑢,

then the assignment is not necessarily successful rather it succeeds

with probability 𝑝𝑒 = 𝑝 (𝑢,𝑣) ∈ [0, 1]. This models the fact that an

assignment could fail for some reason such as the worker refusing

the assigned job. Furthermore, each vertex 𝑢 has patience parame-

ter 𝛥𝑢 ∈ Z+ which indicates the number of failed assignments it

can tolerate before leaving the system, i.e. if 𝑢 receives 𝛥𝑢 failed

assignments then it is deleted from the graph. Similarly, a vertex 𝑣

has patience 𝛥𝑣 ∈ Z+, if a vertex 𝑣 arrives in a given round, then it

would tolerate at most 𝛥𝑣 many failed assignments in that round

before leaving the system.

For a given edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, we let each entity assign its own

utility to that match. In particular, the platform operator assigns a

utility of𝑤𝑂
𝑒 , whereas the offline vertex 𝑢 assigns a utility of𝑤𝑈

𝑒 ,

and the online vertex 𝑣 associates a utility of 𝑤𝑉
𝑒 . This captures

entities’ heterogeneous wants. For example, in ridesharing, drivers

may desire long trips from nearby riders, whereas the platform

operator would not be concerned with the driver’s proximity to

the rider, although this maybe the only consideration the rider has.

Similar motivations exist in crowdsourcing as well.
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LettingM denote the set of successful matchings made in the

𝑇 rounds, then our optimization objectives for each entity in the

system are as follows:

• Operator’s Utility (Profit): The operator’s expected profit

is simply the expected sums of the profits across the matched

edges, this leads to E[∑𝑒∈M 𝑤𝑂
𝑒 ].

• Rawlsian Group Fairness:
– Offline Side: Denote by M𝑢 the subset of edges in the

matching that are incident on 𝑢. Then our fairness crite-

rion is equal to

min

𝑔∈G

E[∑𝑢∈𝑈 (𝑔) (
∑
𝑒∈M𝑢

𝑤𝑈
𝑒 )]

|𝑈 (𝑔) | .

This value corresponds to the minimum average expected

utility received by a group in the offline side 𝑈 .

– Online Side: Similarly, we denote by M𝑣 the subset of

edges in the matching that are incident on vertex 𝑣 , and

define the fairness criterion to be

min

𝑔∈G

E[∑𝑣∈𝑉 (𝑔) (
∑
𝑒∈M𝑣

𝑤𝑉
𝑒 )]∑

𝑣∈𝑉 (𝑔) 𝑛𝑣
.

This value corresponds to the minimum average expected

utility received throughout the matching by any group in

the online side 𝑉 .

• Rawlsian Individual Fairness:
– Offline Side: The definition here follows from the group

fairness definition for the offline side by simply consider-

ing that each vertex 𝑢 belongs to its own distinct group.

Therefore, the objective is min

𝑢∈𝑈
E[∑𝑒∈M𝑢

𝑤𝑈
𝑒 ].

– Online Side: Unlike the offline side, the definition does

not follow as straightforwardly. Here we cannot obtain

a valid definition by simply assigning each vertex type

its own group. Rather, we note that a given individual

is actually a given arriving vertex at a given round 𝑡 ∈
[𝑇 ], accordingly our fairness criterion is the minimum

expected utility an individual receives in a given round, i.e.

min

𝑡 ∈[𝑇 ]
E[∑𝑒∈M𝑣𝑡

𝑤𝑉
𝑒 )], where 𝑣𝑡 is the vertex that arrived

in round 𝑡 .

3 MAIN CONTRIBUTIONS
Performance Criterion: We note that we are in the online setting,

therefore our performance criterion is the competitive ratio. Denote

by I the distribution for the instances of matching problems, then

OPT(I) = E𝐼∼I [OPT(𝐼 )] where OPT(𝐼 ) is the optimal value of

the sampled instance 𝐼 . Similarly, for a given algorithm ALG, we

define the value of the its objective over the distribution I by

ALG(I) = ED [ALG(𝐼 )] where the expectation ED [.] is over the
randomness of the instance and the algorithm. The competitive

ratio is then defined as minI
ALG(I)
OPT(I) .

Main Contributions: Our work provides three main contributions.

First, we generalize the model and allow an edge to have different

utilities with respect to different entities (two sides being matched

and the platform operator). Second, we provide algorithms with

competitive ratio guarantees for the operator, as well as fairness

guarantees for the offline and online sides of the matching in the

form of group or individual fairness. We also consider two arrival

settings: the KIID and the KAD settings. These theoretical guar-

antees are complemented by hardness results which show that we

cannot achieve large competitive ratios over all objectives simulta-

neously and that group and individual fairness can conflict with

one another, hence we have an upper bound on the competetive

ratio we can achieve for both of them simultaneously. Below we

concretly specifcy the results:

For the KIID arrival setting we have:

Theorem 3.1. For the KIID setting, algorithm TSGFKIID (𝛼, 𝛽,𝛾)
achieves a competitive ratio of ( 𝛼

2𝑒 ,
𝛽
2𝑒 ,

𝛾
2𝑒 )

1 simultaneously over the
operator’s profit, the group fairness objective for the offline side, and
the group fairness objective for the online side, where 𝛼, 𝛽,𝛾 > 0 and
𝛼 + 𝛽 + 𝛾 ≤ 1.

The following two theorems hold under the condition that 𝑝𝑒 =

1,∀𝑒 ∈ 𝐸. Specifically for the KAD arrival setting we have:

Theorem 3.2. For the KAD setting, algorithm TSGFKAD (𝛼, 𝛽,𝛾)
achieves a competitive ratio of ( 𝛼

2
,
𝛽
2
,
𝛾
2
) simultaneously over the

operator’s profit, the group fairness objective for the offline side, and
the group fairness objective for the online side, where 𝛼, 𝛽,𝛾 > 0 and
𝛼 + 𝛽 + 𝛾 ≤ 1.

Moreover, for the case of individual fairness whether in theKIID
or KAD arrival setting we have:

Theorem 3.3. For the KIID or KAD setting, we can achieve a
competitive ratio of ( 𝛼

2
,
𝛽
2
,
𝛾
2
) simultaneously over the operator’s

profit, the individual fairness objective for the offline side, and the
individual fairness objective for the online side, where 𝛼, 𝛽,𝛾 > 0 and
𝛼 + 𝛽 + 𝛾 ≤ 1.

We also give the following hardness results. In particular, for a

given arrival (KIID or KAD) setting and fairness criterion (group

or individual), the competitive ratios for all sides cannot exceed 1

simultaneously:

Theorem 3.4. For all arrival models, given the three objectives:
operator’s profit, offline side group (individual) fairness, and online
side group (individual) fairness. No algorithm can achieve a compet-
itive ratio of (𝛼, 𝛽,𝛾) over the three objectives simultaneously such
that 𝛼 + 𝛽 + 𝛾 > 1.

It is natural to wonder if we can combine individual and group

fairness. Though our algorithms can be extended to give such guar-

antees easily, we show the following hardness result which shows

that individual and group fairness can conflict with one another. In

fact, this is the case even when ignoring the operator’s profit and

fairness on the other side of the graph.

Theorem 3.5. Ignoring the operator’s profit and focusing either on
the offline side alone or the online side alone. With 𝛼𝐺 and 𝛼𝐼 denoting
the group and individual fairness competitive ratios, respectively. No
algorithm can achieve competitive ratios (𝛼𝐺 , 𝛼𝐼 ) over the group and
individual fairness objectives of one side simultaneously such that
𝛼𝐺 + 𝛼𝐼 > 1.

Please see the full manuscript [6] for the full details of the proofs

as well as experimental results.

1
Here, 𝑒 denotes the Euler number, not an edge in the graph.
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