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ABSTRACT
Belief propagation algorithms including Max-sum and its variants
are important methods for solving DCOPs. However, they may
face a tough challenge when handling n-ary constraints since the
computational overheads grow exponentially with the number of
variables that a utility function holds.

In this paper, we update the state-of-the-art technique called
Function Decomposing and State Pruning (FDSP) which can signif-
icantly reduce such an expenditure, by introducing two heuristic
techniques. By introducing a round-robin mechanism to control the
order of exploration, we propose Concurrent-search-based FDSP
(CONC-FDSP). Besides, we propose Best-first-search-based FDSP
(BFS-FDSP) by using the 𝐴∗ search to find the optimal path to the
solution. Finally, we demonstrate their efficiency in solving the
benchmarks compared with the state-of-the-art.

KEYWORDS
DCOPs; Max-sum; Belief Propagation

ACM Reference Format:
Junsong Gao, Ziyu Chen, Dingding Chen, and Wenxin Zhang. 2022. Be-
yond Uninformed Search: Improving Branch-and-bound Based Acceleration
Algorithms for Belief Propagation via Heuristic Strategies: Extended Ab-
stract. In Proc. of the 21st International Conference on Autonomous Agents
and Multiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS,
3 pages.

1 INTRODUCTION
DCOP algorithms can be classified into two categories: incomplete
algorithms[11, 13, 14, 20] and complete algorithms[9, 12, 15–17, 19].
Max-sum [6] and its variants are important incomplete algorithms
based on the Generalized Distributive Law [1]. They have drawn
considerable attention in the DCOP community for their ability
to handle 𝑛−ary constraints and multiple variables per agent [2].
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However, they face a tough challenge since the computing for
beliefs in Max-sum requires each agent to repetitively maximize
the sum of its local constraint function and the incoming utilities
to find the locally best configuration of the involved variables. The
computation complexity of this process grows exponentially with
the number of the variables involved in a constraint function.

To alleviate this issue, two kind of strategies have been proposed
to speed up the maximization operation in Max-sum. The first
ones include G-FBP [8], GDP [7], GD2P and ART-GD2P [5], all
of which require (partially) sorted local utilities, while the second
ones, including BnB-MS [18], BnB-FMS [10] and FDSP [3], employ
a branch-and-bound technique with estimations. FDSP performs
the best among the BnB-based ones, but it could fail to find a
high-quality lower bound due to its blind depth-first search and is
defeated by ART-GD2P in some scenarios.

Here, we aim to help FDSP to find better lower bounds and
enhance its performance by introducing two heuristic strategies,
which also means to help BnB-based methods revive again. The
first strategy is based on concurrent search[12]. It regards each
search space as a process and introduces a round-robin mechanism
to help guide the search process. In each round, only the process
with the highest estimation can perform exploration. The second
strategy makes full use of the estimations constructed by FDSP
which is proved optimistic and admissible, and acts like 𝐴∗ search
[4], which always explores the most promising partial assignment.

2 MAX-SUM
1Max-sum is an inference-based belief propagation algorithm oper-
ating on a factor graph, a bipartite graph representation to a DCOP,
which comprises variable nodes representing variables and func-
tion nodes representing utility functions, respectively. In Max-sum,
the propagation and accumulation of beliefs are implemented by
message exchanges between variable nodes and function nodes
throughout a factor graph. Formally, the query message sent from a
variable node 𝑥𝑖 to its neighboring function node 𝐹𝑚 (xm) is defined
by 𝑄𝑥𝑖→𝐹𝑚 (𝑥𝑖 ) = 𝛼𝑖𝑚 + ∑

𝐹 𝑗 ∈𝑁𝑖\{𝐹𝑚 } 𝑅𝐹 𝑗→𝑥𝑖 (𝑥𝑖 ) where 𝛼𝑖𝑚 is a

1For lack of space we do not present a formal definition of DCOP and refer the reader
to our recent paper[3]
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normalization term such that
∑
𝑥𝑖 𝑄𝑥𝑖→𝐹𝑚 (𝑥𝑖 ) = 0, 𝑥𝑖 ∈ xm and

𝑁𝑖\{𝐹𝑚} is a set of neighbours of 𝑥𝑖 except the target function node
𝐹𝑚 . The response message sent from a function-node 𝐹𝑚 (xm) to
its neighboring variable node 𝑥𝑖 is given by the following:
𝑅𝐹𝑚→𝑥𝑖 (𝑥𝑖 ) = maxxm\{𝑥𝑖 } (𝐹𝑚 (xm) +

∑
𝑥 𝑗 ∈xm\{𝑥𝑖 } 𝑄𝑥 𝑗→𝐹𝑚 (𝑥 𝑗 ))

When a variable node 𝑥𝑖 makes a decision, it chooses a value in its
domain 𝐷𝑖 according to the current beliefs it receives to maximize
the total utilities, formalized by𝑥∗

𝑖
= argmax𝑥𝑖

∑
𝐹𝑚 ∈𝑁𝑖

𝑅𝐹𝑚→𝑥𝑖 (𝑥𝑖 ).

3 FUNCTION DECOMPOSING AND STATE
PRUNING

Note that the maximization operation in computing the response
message is exponential to the arity of function 𝐹𝑚 (xm), which pro-
hibits Max-sum from handling constraints with large arity. FDSP
[3] is the state-of-the-art acceleration algorithm which can greatly
reduce such an expenditure. It constructs two kind of function
estimations for each variable node xm,i ∈ xm in a function and con-
putes estimations for messages dynamically. Then, given an partial
assignment, FDSP uses these estimations to build an optimistic and
admissible upper bound to prune the search space.

4 CONCURRENT-SEARCH-BASED FDSP
Different from FDSP which explores in a DFS fashion, CONC-FDSP
performs a prioritized exploration. It divides the search space into
several independent subspaces according to the domain size of the
first variable and the exploration of these subspaces is conducted by
an individual search process. These processes take turns to execute
according to a scheduling strategy which specifies the execution
priority of them, and return the control back to the main process
according to a round-robin mechanism. Besides, the lower bound
found by the pioneer search process is shared to all later search
processes and maintained by all of them. In other words, every
search process can access the shared lower bound 𝑠ℎ𝑎𝑟𝑒𝑑𝐿𝐵 and
update it whenever a better one is found. Besides, we additionally
construct 𝐵𝑒𝑠𝑡𝐸𝑛𝑡𝑟𝑦𝑉𝑖𝑒𝑤 to store the full assignment in the utility
matrix that corresponds to the best utility for the target assignment
to serve as the initial 𝑠ℎ𝑎𝑟𝑒𝑑𝐿𝐵. Finally, a search process is removed
when exhausting all its subspace and CONC-FDSP terminates when
no search processes exist.

5 BEST-FIRST-SEARCH-BASED FDSP
We borrow the best first idea from the famous 𝐴∗ strategies since
we notice that the estimations constructed by FDSP is optimistic
and admissible. BFS-FDSP, also refered as best-first-based FDSP
(BFS-FDSP) in this paper is a more clever way to totally avoid the
dependency of lower bounds for FDSP. In each step of exploration,
BFS-FDSP will only expand a partial assignment with the highest
upper bound (𝑢𝑏) calculated by those estimations constructed by
FDSP. To this end, BFS-FDSP maintains a maximum heap to store
all the expanded partial assignments, among which it chooses to
expand the most promising one (i.e., the partial assignment with
the highest 𝑢𝑏) and puts the expanding results back to the heap for
further expansion. BFS-FDSP terminates when a full assignment is
met, which is also the time when the optimal solution is found. In
other words, the first full assignment BFS-FDSP found is exactly
the optimal solution.

(a) Pruning rate (b) Runtime

Figure 1: Performance comparison on 96 Radars

6 EMPIRICAL EVALUATION
We empirically evaluate the performance of our proposed algo-
rithms with GDP, GD2P, ART-GD2P and FDSP for accelerating
Max-sum on random DCOPs and netRad systems based on pruned
rate and runtime. For the limited space, we only report the exper-
imental results and give a brief description of them. The detailed
information about the configuration can be found in papers [3, 5, 7].

For𝑛−ary randomDCOPs, our proposed methods perform better
than FDSP on both sparse and dense problems for all the metrics.
On sparse problems, BFS-FDSP helps FDSP match ART-GD2P and
outperforms ART-GD2P on large domain and high arity problems
for pruning rate, while on dense problem, BFS-FDSP dominates
other competitors. Besides, CONC-FDSP can also help narrows the
gap between FDSP and ART-GD2P, though not as much as BFD-
FDSP does. For runtime, bothmethods can reduce the it significantly,
especially BFS-FDSP which tops on all settings. As a result, all
the experimental results indicate the efficiency of our proposed
methods.

We then consider the NetRad systems with 96 radars, which is
arranged into 8×12 grids [5]. Fig.1 presents the experimental results
on 96 radars. It can be seen that BFS-FDSP only performsworse than
ART-GD2P and such outperformance narrows with the increase of
the phenomena. But, it will cost less time than ART-GD2P, which
also indicates that ART-GD2P trades time andmemories for efficient
pruning. Besides, we can find CONC-FDSP may prune less search
space and runs slower than FDSP. It is because that the setting
where the maximal arity is just 4 while the maximal domain size is
up to 15, leaving the search space large inwidth but shallow in depth.
As a result, even we select the variable with the smallest domain
size as the Split Node, there are still too many search processes,
which may weaken the advantage of the shared lower bounds held
by CONC-FDSP and costs more time on the scheduling for search
processes.

7 CONCLUSION
In this paper, we propose two heuristic strategies to speed up the
branch-and-bound based acceleration algorithms for belief propaga-
tion. To alleviate the paralyzation of FDSP, we propose to generate
several search processes for exploration concurrently and main-
tain a shared lower bound to all of them. Besides, we also propose
to use a best-first search strategy to find the optimal path to the
soution. Finally, we show the superiority of our proposed methods
experimentally.
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