
Minimizing Robot Navigation Graph
for Position-Based Predictability by Humans

Extended Abstract

Sriram Gopalakrishnan
School Of Computing & AI, Arizona State University

Tempe, USA
sgopal28@asu.edu

Subbarao Kambhampati
School Of Computing & AI, Arizona State University

Tempe, USA
rao@asu.edu

ABSTRACT
When multiple humans and robots are moving in spaces like restau-
rants, hospitals, or banks, making the robot’s movements easy to
predict can help the humans co-navigate the space with the robots.
Since people would be busy with their own goals, they are not
paying close attention to the prior movements, or goals of multiple
robots. So predictability from the robot’s current position alone
would help. With this in mind, we propose using an algorithm to
lay out fixed paths for the different tasks the robots would do, such
that predictability from only the current position alone is optimized,
and motion costs are kept within acceptable bounds.

KEYWORDS
Robot Navigation; Navigation Graphs; Human-Robot Interaction;
Position-Based Predictability

ACM Reference Format:
Sriram Gopalakrishnan and Subbarao Kambhampati. 2022. Minimizing Ro-
bot Navigation Graph for Position-Based Predictability by Humans: Ex-
tended Abstract. In Proc. of the 21st International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAA-
MAS, 3 pages.

1 INTRODUCTION
Existing research on robot navigation with multiple humans and
robots uses a complex interplay of sensing, high level path plan-
ning, predicting human motion, and reactive behavior (collision
avoidance) [5]. Navigation in larger groups of people is much
harder as things like crowd dynamics need to be considered as
well ([6], [7], [1]). We take a different approach and compute a
restricted navigation-graph that limits the robot’s motion, and
keeps motion costs within a predefined bound. Limiting motion
was previously done with Automated/Autonomous Guided Vehi-
cles (AGVs) which is a mature technology, and already in use for
industrial settings, and even hospitals [2]. AGVs followed a prede-
fined path laid out with special tape to move between positions. In
this paper, we propose to algorithmically computing the AGV grid
(as a directed graph) for more predictable trajectories to humans;
predictability is paramount for human robot interactions [5] and
more predictability would improve adoption of AGV’s in everyday
settings like restaurants. We do this by minimizing the number
of “Branching-Vertices", which are vertices (positions) with more

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

than one outgoing edge. Fewer branching vertices in the naviga-
tion graph mean fewer possible trajectories from any position; this
allows easier prediction or bounding of the robot’s motion from
just the current position, which we call position-based predictability.
This matters since the human is not paying much attention to the
robot, and may only know the current position. We don’t expect
that a person will predict the entire future path of the robot; they’d
only predict the immediate next steps, enough to decide their own
path. This is what we aim to make easier.

In this paper, we formalize the problem ofminimizing the navigation-
graph for position-based predictability.We then introduce measures
for position-based predictability, followed by a hill-climbing algo-
rithm to minimize the graph and optimize for position-based pre-
dictability. For a more complete description of our work, please see
our full paper on arxiv [4].

2 PROBLEM FORMULATION
The problem of graphminimization for position-based predictability
is given by the tuple, 𝑃𝑚𝑖𝑛 = ⟨𝐺,𝑇 ,𝐶,𝑊 ⟩ and the terms are defined
as follows:
G is a directed graph with vertices and edges (V,E). It captures all
allowed motion of the robot.
T is the set of ordered vertex pairs associated to tasks, that need to
remain connected in order to do those tasks.
C gives the cutoff (distance) cost associated to each task in T.
W returns the weight of each pair in T. This can be the probability
or importance weight. The objective is to reduce the input graph G
to improve position-based predictability measures (as follows).

2.1 Measures for Position-Based Predictability
Wewill use two intuitive measures for position-based predictability,
which focus on branching vertices. Intuitively, more branching
vertices imply more paths for the human to consider, and so makes
it harder to navigate.
Weighted Prediction Cost (WPC): WPC captures the prediction
cost for tasks in 𝑇 . There are two components multiplied together
in WPC (Equation 1): the first counts the number of branching
vertices that appear on the paths for the robots tasks; the second is
the sum of the branching factor of those branching vertices.

𝑊𝑃𝐶 (𝐺,𝑇 ,𝑊) =
∑︁
𝑡 ∈𝑇

∑︁
𝑣∈𝑆𝑃𝑉 (𝐺,𝑡)

𝑊 (𝑡) ∗ 1[𝑑𝑒𝑔+ (𝐺, 𝑣) > 1]

×
∑︁
𝑡 ∈𝑇

∑︁
𝑣∈𝑆𝑃𝑉 (𝐺,𝑡)

𝑊 (𝑡) ∗ 𝑑𝑒𝑔+ (𝐺, 𝑣) (1)

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1604

where 𝑆𝑃𝑉 (𝐺, 𝑡) returns the shortest path vertices for the input
task (t) in the graph (G) being evaluated, and 𝑑𝑒𝑔+ (𝐺, 𝑣) returns
the outdegree of the vertex(v) in the graph(G). If there are multiple
shortest paths for a task, then the path that contributes the least
cost to WPC is used.
Weighted RatioNV/NBV :where NV is the number of vertices and
NBV is the number of branching vertices. This captures the average
number of sequential steps a robot can take with no branching. This
is also weighted by the task weights. Larger NV/NBV value implies
longer path segments with no branching, and makes predicting
or bounding the next few steps from the current position trivial.
NV/NBV is formalized as:

𝑁𝑉 /𝑁𝐵𝑉 (𝐺,𝑇 ,𝑊) = ∑
𝑡 ∈𝑇

∑
𝑣∈𝑆𝑃𝑉 (𝐺,𝑡)𝑊 (𝑡)∑

𝑡 ∈𝑇
∑

𝑣∈𝑆𝑃𝑉 (𝐺,𝑡)𝑊 (𝑡) ∗ 1[𝑑𝑒𝑔+ (𝐺, 𝑣) > 1] (2)

An example of the type of optimization that this work does is
shown in the rectilinear grid-graph in Figure 1. The blue vertices are
the terminal vertices and vertices highlighted in red are branching
vertices. In the figure, we show two graph optimizations (minimiza-
tions); one that focuses only on graph size (number of vertices and
edges), and another minimization that optimizes for position-based
predictability (fewer branching vertices and graph size). The former
is related to a graph problem known as Strongly Connected Steiner
Subgraph(SCSS) [3] problem(see full paper).

Figure 1: Example of graph minimization for graph size, and
minimization for position-based predictability. Blue vertices
are the terminal vertices that must stay connected, and ver-
tices highlighted in red are branching vertices

3 METHODOLOGY
To optimize the graph, we use a hill-climbing search.We start with a
population of diverse paths connecting the terminals 𝑇 . At the first
step, we assign a random path for each pair in 𝑇 , and during hill-
climbing we replace or remove paths in order to improve the score
of the graph resulting from the combination of paths used. The
critical part of our approach is how a graph is scored. We use two
scores, aGraph-size cost or GSC and a Branching-Vertices Cost (BVC).
GSC counts vertices and edges, and BVC is GSC multiplied by the
number of branching vertices. GSC captures the objective function
of the Strongly Connected Steiner Subgraph(SCSS) problem, and so
is used as the baseline; if using GSC gave competitive results, then it
would imply other SCSS algorithms ought to be considered as well.

Equations for the scoring functions, pseudocode, and algorithm
details can be found in the full version of this paper on arxiv [4].

4 EXPERIMENTS AND RESULTS
We tested our algorithm on randomly generated 20x20 grid-graphs.
We randomly drop 20% of the vertices, and 20% of the remaining
edges. Lastly we arbitrarily select the terminal vertices. All ordered
pairs of terminal vertices define the set 𝑇 . We vary the number of
terminal vertices as {3, 4, 6, 8}. We also vary cutoff cost 𝐶 for the
path costs between the terminal vertices. The cutoff cost is set as a
multiple of the shortest path cost. We vary 𝐶 as {1, 2, 3, 5} where 1,
means only optimal paths are considered. Lastly, the weights𝑊 are
randomly assigned to all tasks in the range [0, 1) and normalized
so they would sum to 1. In total, the experimental settings include
every combination of the number of terminal vertices and cutoff
bounds. For each combination, we generate 10 random graphs
(setting the random seed in the code from 0 to 9) and ran the
algorithm with both cost functions (GSC and BVC) on the same
graphs to compare them. We found BVC did appreciably better than
GSC for the position-based predictability measures defined earlier.
As GSC captures the objective of SCSS problem, the results tell us
that optimizing for the SCSS problem is not a surrogate for this
problem’s objective. For detailed results see [4].

We also conducted human studies to show the effect of branch-
ing vertices on reasoning about paths. We presented two closely
matched problems of robot navigation with a human following
a fixed path in the same space as shown in Figure 2. We asked
the user to determine at what step a robot would collide with the
human, and measured how long it took them. The problem with
fewer branching vertices took on average 47.5 seconds less than
the other. We verified statistical significance with the paired t-test
analysis; p-value of 0.0006 (t-statistic -3.849) meant we could reject
the null-hypothesis of no difference in time taken. This is expected
as more branching vertices result in more paths to consider; this
makes it harder to plan conflict-free paths in the space.

Figure 2: Problems given in the human subject experiments;
problem 1 (left) has more branching vertices and problem 2
(right) has fewer.

ACKNOWLEDGEMENTS
This research is supported in part by ONR grants N00014- 16-1-2892,
N00014-18-1- 2442, N00014-18-1-2840, N00014-9-1-2119, AFOSR
grant FA9550-18-1-0067, DARPA SAIL-ON grantW911NF19- 2-0006
and a JP Morgan AI Faculty Research grant.

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1605

REFERENCES
[1] Yuying Chen, Congcong Liu, Bertram E Shi, and Ming Liu. 2020. Robot navigation

in crowds by graph convolutional networks with attention learned from human
gaze. IEEE Robotics and Automation Letters 5, 2 (2020), 2754–2761.

[2] Hamed Fazlollahtabar and Mohammad Saidi-Mehrabad. 2015. Autonomous guided
vehicles. Vol. 20. Springer.

[3] Jon Feldman and Matthias Ruhl. 2006. The directed Steiner network problem
is tractable for a constant number of terminals. SIAM J. Comput. 36, 2 (2006),
543–561.

[4] Sriram Gopalakrishnan and Subbarao Kambhampati. 2020. Minimizing Robot
Navigation-Graph For Position-Based Predictability By Humans. arXiv preprint

arXiv:2010.15255 (2020). https://arxiv.org/pdf/2010.15255.pdf
[5] Thibault Kruse, Amit Kumar Pandey, Rachid Alami, and Alexandra Kirsch. 2013.

Human-aware robot navigation: A survey. Robotics and Autonomous Systems 61,
12 (2013), 1726–1743.

[6] Peter Trautman and Andreas Krause. 2010. Unfreezing the robot: Navigation in
dense, interacting crowds. In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems. IEEE, 797–803.

[7] Dizan Vasquez, Billy Okal, and Kai O Arras. 2014. Inverse reinforcement learning
algorithms and features for robot navigation in crowds: an experimental compari-
son. In 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, 1341–1346.

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1606

https://arxiv.org/pdf/2010.15255.pdf

	Abstract
	1 INTRODUCTION
	2 PROBLEM FORMULATION
	2.1 Measures for Position-Based Predictability

	3 METHODOLOGY
	4 EXPERIMENTS AND RESULTS
	References

