
A Graph Neural Network Reasoner for Game Description
Language

Extended Abstract

Alvaro Gunawan
Auckland University of Technology

Auckland, New Zealand
alvaro.gunawan@aut.ac.nz

Ji Ruan
Auckland University of Technology

Auckland, New Zealand
ji.ruan@aut.ac.nz

Xiaowei Huang
University of Liverpool

Liverpool, United Kingdom
xiaowei.huang@liverpool.ac.uk

ABSTRACT
General Game Playing (GGP) aims to develop agents that are able to
play any game with only rules given. The game rules are encoded in
the Game Description Language (GDL). A GGP player processes the
game rules to obtain game states and expand the game tree search
for an optimal move. The recent accomplishments of AlphaGo and
AlphaZero have triggered new works in extending neural network
approaches to GGP. In these works, the neural networks are used
only for optimal move selection, while the components dealing with
GDL still use logic-based methods. This motivates us to explore
if a neural network based method would be able to approximate
the logical inference in GDL with a high accuracy. The structured
nature of logic tends to be a difficulty for neural networks, which
rely heavily on statistical features. Inspired by the recent works
on neural network learning for logical entailments, we propose a
neural network based reasoner that is able to learn logical inferences
for GDL. We present three key contributions: (i) a general, game-
agnostic graph-based representation for game states described in
GDL, (ii) methods for generating samples and datasets to frame the
GDL inference task as a neural network based machine learning
problem and (iii) a GNN based neural reasoner that is able to learn
and infer various game states with a high accuracy and has some
capability of transfer learning across games.

KEYWORDS
Game Description Language; Inference; Graph Neural Network
ACM Reference Format:
Alvaro Gunawan, Ji Ruan, and Xiaowei Huang. 2022. A Graph Neural Net-
work Reasoner for Game Description Language: Extended Abstract. In Proc.
of the 21st International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 3 pages.

1 INTRODUCTION
General Game Playing (GGP) [1] aims to develop agents that are
able to play any game with only rules given. The game rules are
encoded in Game Description Language (GDL). In order to play
games, the players in GGP parse the game rules using logic-based
inferences to obtain game states and expand the game tree search
for an optimal move. These inferences are typically done through
Prolog or PropNet (propositional networks) [2] implementations.

The recent accomplishments of AlphaGo [3, 4] andAlphaZero [5]
use Monte-Carlo Tree Search, deep neural networks and learning

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

through self-play. These methods are limited in that they do not
automatically extend to play other games and the game types are
assumed to be two-player, turn-taking and zero-sum. In the domain
of GGP, an agent must be able to account for games with any
number of players, simultaneous action and non-zero-sum. A few
recent works [6, 7] have shown the effectiveness of extending the
methods of AlphaZero to the domain of GGP with some limitations.

Evans et al. [8] introduces a dataset of logical entailment exam-
ples and a newly proposed PossibleWorldNet model. Rawson and
Reger [9] extends this by applying a Graph Neural Network-based
architecture to a graph based encoding for the logical statements.
Beyond these two works, some other researchers have applied
graph neural networks to the logical domain [10–15]. This moti-
vates us to explore if a neural network based method would be able
to approximate the logical inference in GDL with a high accuracy.

We present three key contributions: (i) a general, game-agnostic
graph-based representation for game states described in GDL, (ii)
methods for generating samples and datasets to frame the GDL
inference task as a neural network based machine learning problem
and (iii) a GNN based neural reasoner that is able to learn and infer
various game states with a high accuracy and has some capability
of transfer learning across games.

2 OVERVIEW OF THE NEURAL REASONER
Two key inference tasks in GDL are to find out (1) what are the
legal actions for the players at the current state and (2) what is the
next state if the agents make a joint move. Task (1) can be formalized
as the following: to find out in game G for each player 𝑖 , its legal
moves𝑚 at the current state 𝑠 , as in a logical representation𝐺 ∧𝑠 |=
𝑙𝑒𝑔𝑎𝑙 (𝑖,𝑚). Task (2) can be formalized as the following: to find out
all the fluents 𝑓 that holds in the next state, given each player
𝑖 ∈ [1, 𝑘] doing a move 𝑚𝑖 at the current state 𝑠 , as in a logical
representation 𝐺 ∧ 𝑠 ∧ 𝑑𝑜𝑒𝑠 (1,𝑚1) ∧ ... ∧ 𝑑𝑜𝑒𝑠 (𝑘,𝑚𝑘 ) |= 𝑛𝑒𝑥𝑡 (𝑓 ).

Our neural reasoner is designed to approximate the |= functions
in the above tasks. Figure 1 gives an overview of the different
components in our neural reasoner for GGP. We start with a game
described as a set of rules in GDL. It is converted into a rule graph,
which is built upon the dependency of the fluents or other predicates
in such rules. The rule graph is then combinedwith a game state into
an instantiated rule graph (IRG).We apply a node-vector embedding
to the nodes of the IRG to prepare it as input of the Graph Neural
Network component. The output of the GNN component is a rule
graph with node probabilities. Node masking is then applied based
on node type to extract the probabilities of the legal and next
nodes, using information from the input rule graph. During training,
the output probabilities are compared to the ground truth training

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1607



Instantiated rule graph

Rule graph

(<= . . . )
(<= . . . )
(<= . . . )

GDL rules 𝐺

×
⃝

⃝ ×

State 𝑠

(does . . . )
(does . . . )

Joint action


0
.
.
.

1


1
.
.
.

1



0
.
.
.

1




1
.
.
.

1



0
.
.
.

1



X,A

IRG with node-
vector embeddings

Graph Neural
Network 𝑝 = 0.8

𝑝 = 0.2
𝑝 = 0.1

𝑝 = 0.2
𝑝 = 0.1

Output graph with
node probabilities

/

Node
masking

next and legal nodes
𝑝 = 0.8

Output probabili-
ties of legal nodes

𝑝 = 0.1

Output probabili-
ties of next nodes

Legal actions

Next fluents

Figure 1: Overview of the Neural Reasoner
targets to calculate the error for backpropagation. Finally, the nodes
with output probabilities greater than a threshold value are selected
as the legal actions and next fluents.

Game State Representations
Rule graphs [16, 17] are a graph-based representation of game rules
written in GDL. They consist of four types of nodes: keyword nodes,
predicate nodes, label nodes and label argument nodes. Using rule
graphs as a base, we present instantiated rule graphs, a general state
representation generated by instantiating the rule graph of a game,
localising it to a specific state by providing a unique node labelling
for each state. Figure 2 shows an example.

Definition 2.1. Instantiated Rule Graph. Given a rule graph
𝑅 = (𝑉 , 𝐸) and a state 𝑆 = {𝑓1, 𝑓2, . . . , 𝑓𝑛} consisting of fluents 𝑓𝑖 , an
instantiated rule graph is a graph 𝐼 = (𝑉 , 𝐸, 𝐿) where 𝑉 , 𝐸 are the
same as in rule graph 𝑅 and 𝐿𝑆 : 𝑉 → {𝑓 𝑎𝑙𝑠𝑒, 𝑡𝑟𝑢𝑒} is a labelling
function based on state 𝑆 and the following requirements:

For node 𝑛 in rule graph 𝑅 and current state 𝑆 :
• If node 𝑛 is a predicate node that corresponds to a fluent
in state 𝑆 and parent node 𝑛𝑝 is a true node with edge
(𝑛𝑝 , 𝑛) ∈ 𝐸, then nodes 𝐿𝑆 (𝑛) = 𝑡𝑟𝑢𝑒 , 𝐿𝑆 (𝑛𝑝 ) = 𝑡𝑟𝑢𝑒 and
𝐿𝑆 (𝑛𝑐 ) = 𝑡𝑟𝑢𝑒 for all children nodes given (𝑛, 𝑛𝑐 ) ∈ 𝐸.

• For all other nodes, 𝐿𝑆 (𝑛𝑜 ) = 𝑓 𝑎𝑙𝑠𝑒 .

;

<=(..)

1b

cell(1,1,b)

true(..)

1

mark(1,1)

does(..)

1

<=(..)

oplayer

control(oplayer)

true(..)

cell_0

cell\3

cell_2 cell_1

o\0 1\0 mark\2 oplayer\0

mark_1 mark_0

oplayer

true(..)

control\1b\0

1

control_0

o 1

next(..)

cell(1,1,o)

1

oplayer1 1cell(1,1,b)

b 1 1

legal(..)

mark(1,1)

Figure 2: An example of instantiated rule graph
GNN Architecture and Training
As the game state representation we have discussed in the previous
section is defined as a graph, we use a graph neural network. The
overall architecture of our GNN consists of three distinct layers:
an initial set of fully connected input embedding layers, a set of 3
GAT Block layers and finally a set of fully connected output layers.
The GAT Blocks consist of two pairs of Graph Attention Networks
(GAT) [18] acting as bi-directional edge layers and a skip connection.
The Adam optimiser [19] is used with a base learning rate of 0.0001.
PairNorm [20] is used between the graph neural network layers.

The graph neural network components are implemented using the
PyTorch Geometric library [21].

To generate a training dataset, the GDL description of the se-
lected game𝐺 is used to play out random games. As new states are
visited throughout the game plays, we store the states as instanti-
ated rule graphs and use a Prolog based reasoner (implemented with
the PySwip library [22]) to generate ground truth logical inferences
for the states as the training target.

3 RESULTS
As the networks are trained to predict legal actions and next
fluents, we measure the accuracy of the neural reasoner over 100
randomly played games. Table 1 shows the accuracy of the neural
reasoner on 10 different games.

Game IRG size Next fluents Legal actions
Nodes Edges (%) (%)

parallelbuttonsandlights 1602 3245 84.35% 100.00%
tictactoe (TTT) 4810 11031 100.00% 100.00%
tictactoelarge (TTT𝐿 ) 3553 8185 100.00% 63.69%
doubletictactoe (TTT𝐷 ) 7379 16338 100.00% 91.96%
connectfour (C4) 10233 25791 93.58% 100.00%
connectfour3p (C43𝑝 ) 17076 42623 95.50% 91.75%
blocker 5087 12201 88.94% 100.00%
knightstour 12291 30154 100.00% 100.00%
hamilton 14963 31516 94.94% 100.00%
hanoi6disks 28055 70237 87.55% 72.66%
Table 1: Neural reasoner accuracy over 100 games.

Additional experiments show the neural reasoner is capable of
learning to reason multiple games simultaneously with high accu-
racy, as well as some zero-shot transfer capability across similar
games. With multiple games, we have found that mixed training
and sequential training produce neural reasoners with similar ac-
curacy, with mixed training being more stable while sequential
training providing a more practical alternative for training. We
have also found that flattening certain rules in some game descrip-
tions provide an increase in reasoning accuracy, e.g., achieving
100% accuracy for both Next and Legal in TTT𝐿 , TTT𝐷 and C4.

4 CONCLUSION
In this paper we have presented a method to approach GDL rea-
soning with neural networks in a general manner. The translation
of the GDL rules and game states to a graph-based representation
allows for the application of graph neural networks that are able
take as input various games without resorting to game-specific
networks. We have implemented a neural reasoner that is able to
learn to infer the legal actions and next fluents in various games,
with a high accuracy in most of them.

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1608



REFERENCES
[1] N. Love, T. Hinrichs, D. Haley, E. Schkufza, and M. Genesereth, “General game

playing: Game description language specification,” 2008.
[2] E. Schkufza, N. Love, and M. Genesereth, “Propositional automata and cell au-

tomata: Representational frameworks for discrete dynamic systems,” in Aus-
tralasian Joint Conference on Artificial Intelligence, pp. 56–66, Springer, 2008.

[3] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering
the game of go with deep neural networks and tree search,” nature, vol. 529,
no. 7587, p. 484, 2016.

[4] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hu-
bert, L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human
knowledge,” nature, vol. 550, no. 7676, pp. 354–359, 2017.

[5] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess and shogi by self-play
with a general reinforcement learning algorithm,” arXiv preprint arXiv:1712.01815,
2017.

[6] A. Goldwaser and M. Thielscher, “Deep reinforcement learning for general game
playing.,” in AAAI, pp. 1701–1708, 2020.

[7] A. Gunawan, J. Ruan, M. Thielscher, and A. Narayanan, “Exploring a learning ar-
chitecture for general game playing,” in Australasian Joint Conference on Artificial
Intelligence, pp. 294–306, Springer, 2020.

[8] R. Evans, D. Saxton, D. Amos, P. Kohli, and E. Grefenstette, “Can neural networks
understand logical entailment?,” arXiv preprint arXiv:1802.08535, 2018.

[9] M. Rawson and G. Reger, “Directed graph networks for logical entailment,” tech.
rep., EasyChair, 2020.

[10] V. Thost and J. Chen, “Directed acyclic graph neural networks,” in International
Conference on Learning Representations, 2021.

[11] I. Abdelaziz, M. Crouse, B. Makni, V. Austil, C. Cornelio, S. Ikbal, P. Kapanipathi,
N. Makondo, K. Srinivas, M.Witbrock, et al., “Learning to guide a saturation-based

theorem prover,” arXiv preprint arXiv:2106.03906, 2021.
[12] X. Glorot, A. Anand, E. Aygun, S. Mourad, P. Kohli, and D. Precup, “Learning

representations of logical formulae using graph neural networks,” in Neural
Information Processing Systems, Workshop on Graph Representation Learning,
2019.

[13] A. Paliwal, S. Loos, M. Rabe, K. Bansal, and C. Szegedy, “Graph representations for
higher-order logic and theorem proving,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 34, pp. 2967–2974, 2020.

[14] M. Crouse, I. Abdelaziz, C. Cornelio, V. Thost, L. Wu, K. Forbus, and A. Fok-
oue, “Improving graph neural network representations of logical formulae with
subgraph pooling,” arXiv preprint arXiv:1911.06904, 2019.

[15] M. Olšák, C. Kaliszyk, and J. Urban, “Property invariant embedding for automated
reasoning,” arXiv preprint arXiv:1911.12073, 2019.

[16] G. Kuhlmann and P. Stone, “Graph-based domain mapping for transfer learning
in general games,” in European Conference on Machine Learning, pp. 188–200,
Springer, 2007.

[17] S. Schiffel, “Symmetry detection in general game playing,” in Twenty-Fourth AAAI
Conference on Artificial Intelligence, 2010.

[18] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph
Attention Networks,” International Conference on Learning Representations, 2018.

[19] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” in 3rd
International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings (Y. Bengio and Y. LeCun, eds.),
2015.

[20] L. Zhao and L. Akoglu, “Pairnorm: Tackling oversmoothing in gnns,” in Interna-
tional Conference on Learning Representations, 2020.

[21] M. Fey and J. E. Lenssen, “Fast graph representation learning with pytorch
geometric,” CoRR, vol. abs/1903.02428, 2019.

[22] Y. Tekol and contributors, “PySwip v0.2.10,” 2020.

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1609


	Abstract
	1 Introduction
	2 Overview of the Neural Reasoner
	3 Results
	4 Conclusion
	References



