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ABSTRACT
In sequential multi-objective decision making (MODeM) settings,
when the utility of a user is derived from a single execution of a
policy, policies for the expected scalarised returns (ESR) criterion
should be computed. In multi-objective settings, a user’s prefer-
ences over objectives, or utility function, may be unknown at the
time of planning. When the utility function of a user is unknown,
multi-policy methods are deployed to compute a set of optimal poli-
cies. However, the state-of-the-art sequential MODeM multi-policy
algorithms compute a set of optimal policies for the scalarised ex-
pected returns (SER) criterion. Algorithms that compute a set of
optimal policies for the SER criterion utilise expected value vec-
tors which cannot be used when optimising for the ESR criterion.
We propose multi-objective distributional value iteration (MODVI)
that replaces value vectors with distributions over the returns and
computes a set of optimal policies for the ESR criterion.
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1 INTRODUCTION
When making decisions in the real world, trade-offs between mul-
tiple, often conflicting, objectives must be made [16]. In many real-
world decision making settings, a policy is only executed once. The
current state-of-the-art multi-objective decision making (MODeM)
literature focuses almost exclusively on computing polices that are
optimal over multiple executions [14]. Therefore, to fully utilise
MODeM in the real world, wemust develop algorithms to compute a
policy, or set of policies, that are optimal given the single-execution
nature of the problem.

MODeM distinguishes between two optimality criteria. In scenar-
ios where the utility of a user is derived from multiple executions
of a policy, the scalarised expected returns (SER) criterion should
be optimised [8]. In scenarios where the utility of a user is derived
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from a single execution of a policy, the expected scalarised returns
(ESR) criterion should be optimised [6, 7, 13].

The majority of multi-policy MODeM algorithms are designed to
compute a set of optimal policies for the SER criterion [1, 4, 5, 18].
However, the current state-of-the-art SER methods [11, 17] are fun-
damentally incompatible with the ESR criterion [9, 10]. When the
utility function of a user is unknown, SER methods use expected
value vectors to compute a set of optimal policies [17, 18]. To com-
pute policies under the ESR criterion, a distribution over the returns,
or return distribution, must be maintained [9].

We proposemulti-objective distributional value iteration (MODVI,
Algorithm 2) that computes a set of optimal policies for the ESR
criterion in scenarios when the utility function of a user is unknown
at the time of planning.

2 MULTI-OBJECTIVE DISTRIBUTIONAL
VALUE ITERATION

To compute a set of optimal policies for the ESR criterion when the
utility function of a user is unknown, we propose multi-objective
distributional value iteration (MODVI, Algorithm 2). MODVI main-
tains sets of return distributions for each state and uses ESR domi-
nance [9] to compute a set of non-dominated return distributions,
known as the ESR set [9, 10].

To compute a set of optimal polices for the ESR criterion, ex-
pected value vectors must be replaced with return distributions [9].
Generally, expected value MODeM algorithms utilise the Bellman
operator [3] to compute the expected value vectors for each state.
Given our approach is distributional, we adopt the distributional
Bellman operator [2], T𝜋

𝐷
, to update the return distribution for each

state-action pair:

T𝜋
𝐷
z(𝑠, 𝑎) 𝐷= r𝑠,𝑎 + 𝛾 z(𝑠 ′, 𝑎′). (1)

To represent a return distribution in multi-objective settings, we
use a multivariate categorical distribution similar to the distribu-
tions used by Reymond et al. [12] and Bellemare et al. [2]. The
categorical distribution is paramaterised by a number of atoms,
𝑁 ∈ N, where the distribution has a dimension per objective, 𝑛.
The atoms outline the width of each category and are bounded by
the minimum returns, R𝑚𝑖𝑛 , and maximum returns, R𝑚𝑎𝑥 .

To update the multivariate categorical distribution, we utilise the
state space, action space and reward function of the model. During
an update of the multivariate categorical distribution, we iterate
over each atom, 𝑗 , for each objective. To update the return distribu-
tion, z𝑠 , for state 𝑠 , we compute the distributional Bellman update
T̂ z𝑠,𝑗 = r𝑠,𝑎,𝑠′ +𝛾z𝑠′, 𝑗 for each atom 𝑗 , for a given reward r𝑠,𝑎,𝑠′ and
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return distribution, z𝑠′ , for state 𝑠 ′. We then distribute the probabil-
ity, 𝑝 , for the atom, 𝑗 , of the return distribution, 𝑝 𝑗 (z𝑠′), in state 𝑠 ′,
to the corresponding atom of the updated return distribution, 𝑧𝑠 ,
for state s.

At each iteration, 𝑘 , of MODVI, for each state, 𝑠 , and action, 𝑎, a
set of optimal return distributions is backed up once. In Equation
2, the Bellman operator has been replaced with the distributional
Bellman operator [2],

Q𝑘+1 (𝑠, 𝑎) ←
⊕
𝑠′

𝑇 (𝑠 ′ |𝑠, 𝑎) [r𝑠,𝑎,𝑠′ + 𝛾Z𝑘 (𝑠 ′)] (2)

where Q𝑘+1 (𝑠, 𝑎) and Z𝑘 (𝑠 ′) represent sets of return distributions,
⊕ denotes the cross-sum between sets of return distributions, and
𝑇 (𝑠 ′ |𝑠, 𝑎) represents the probability of transitioning to state 𝑠 ′ from
state 𝑠 after taking action 𝑎.

To compute a set of ESR non-dominated policies for each state,
we define an algorithm known as ESRPrune (Algorithm 1) which
computes a set of ESR non-dominated policies by removing ESR
dominated return distributions from a given set.

Z𝑘+1 (𝑠) ← ESRPrune

(⋃
𝑎

Q𝑘+1 (𝑠, 𝑎)
)

(3)

Equation 3 calculates the set of return distributions for a given state,
𝑠 , by taking the union of each set of return distributions over each
action, 𝑎. The resulting set of return distributions is then passed to
the ESRPrune algorithm as input.

ESRPrune utilises ESR dominance defined by Hayes et al. [9, 10].
Like Pareto dominance, ESR dominance is transitive [19], therefore
we can apply ESRPrune in sequence. To compute ESR dominance,
the cumulative distribution function (CDF) of each return distri-
bution in the given set must be calculated. ESRPrune iterates over
the given set of return distributions and compares the CDFs of the
return distributions to determine which are ESR non-dominated.
The return distributions that are ESR dominated are removed from
the set. A set of non-dominated return distributions is known as
the ESR set [9].

Algorithm 1: ESRPrune

1 Input: Z ← A set of return distributions
2 Z∗ ← ∅
3 while Z ≠ ∅ do
4 z← the first element of Z
5 for z′ ∈ Z do
6 if z′ >𝐸𝑆𝑅 z then
7 z← z′

8 end
9 end

10 Remove z and all return distributions
11 ESR-dominated by z from Z. Add z to Z∗

12 end
13 Return Z∗

Algorithm 2: MODVI
1 Initialise all return distributions and sets
2 while not converged do
3 for 𝑠 ∈ 𝑆 do
4 for 𝑎 ∈ 𝐴 do
5 Q𝑘+1 (𝑠, 𝑎) ←⊕

𝑠′ 𝑇 (𝑠 ′ |𝑠, 𝑎) [R(𝑠, 𝑎, 𝑠 ′) + 𝛾Z𝑘 (𝑠 ′)]
6 end
7 Z𝑘+1 (𝑠) ← E𝑆𝑅𝑃𝑟𝑢𝑛𝑒

(⋃
𝑎 Q𝑘+1 (𝑠, 𝑎)

)
8 end
9 end
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Figure 1: The expected value vectors of the return distribu-
tions in the ESR set (red) are plotted against the expected
value vectors of the Pareto front (blue). The ESR set contains
one extra policy. Under the SER criterion, the extra policy is
Pareto dominated.

3 EXPERIMENTS
We evaluated MODVI using three multi-objective benchmark prob-
lem domains. In this paper, we present the results of MODVI eval-
uated using Space Traders [15]. Space Traders is a problem with
nine policies and a small number of returns per policy. Therefore,
it is possible to visualise each policy in the ESR set.

Figure 1 plots the expected value vectors of each return distri-
bution in the ESR set and also plots the expected value vectors for
the Pareto front [15]. It is important to note, the ESR set for Space
Traders contains a policy that is not present on the Pareto front.
The Pareto front is a set of optimal policies for the SER criterion.
Therefore, certain policies that are optimal under the ESR criterion
are not optimal under the SER criterion. In real-world decision
making, incorrectly selecting an optimality criterion can lead to
sub-optimal performance, given some optimal policies may not be
returned to the user.
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