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ABSTRACT
For cooperative mutliagent reinforcement learning tasks, we pro-

pose a novel value factorization framework in the popular central-

ized training with decentralized execution paradigm, called multia-
gent Q-learning with sub-team coordination (QSCAN). This frame-

work could flexibly exploit local coordination within sub-teams

for effective factorization while honoring the individual-global-

max (IGM) condition. QSCAN encompasses the full spectrum of

sub-team coordination according to sub-team size, ranging from

the monotonic value function class to the entire IGM function

class, with familiar methods such as QMIX and QPLEX located at

the respective extremes of the spectrum. Empirical results show

that QSCAN’s performance dominates state-of-the-art methods in

predator-prey tasks and the Switch challenge in MA-Gym.
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1 INTRODUCTION
In large cooperative multiagent systems, agents must coordinate

for success, but full coordination of all agents is not always re-

quired. Typically, the task can be divided into several sub-tasks, and

each sub-task requires exactly a sub-team of agents [3]. The sub-

team structure has been widely used for planning tasks in robotics

and unmanned aerial vehicles [9]. However, exploiting sub-team

structures for effective coordination in multiagent reinforcement

learning (MARL) has not been sufficiently explored.

In this work, we explore value-based cooperative MARL in the

centralized training with decentralized execution (CTDE) paradigm

[5]. We propose a novel value factorization framework, calledmulti-
agent Q-learning with Sub-team CoordinAtioN (QSCAN), to strike a

trade-off between the representational capability and the complex-

ity of the network architecture. QSCAN flexibly handles sub-team
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formation and guarantees the individual-global-max (IGM) [8] con-

dition. The IGM condition is important for value-based methods,

whereby the individuals’ greedy action corresponds to the opti-

mal joint action for the team. We establish a coordination hierar-

chy based on QSCAN where the monotonic and the IGM function

classes are located at the respective extremes. Two specific imple-

mentations, QPAIR and QSCAN, are proposed for our framework. To

characterize coordination among agents, QPAIR simply enumerates

all agent pairs, while QSCAN employs self-attention mechanisms. We

empirically evaluate these implementations in predator-prey tasks

[6] and the Switch challenge [4]. Comparing our implementations

with QMIX [7] and QPLEX [11], we illustrate that the sub-team

coordination pattern improves the results in these tasks. QSCAN
significantly outperforms the two baselines in these settings, while

QPAIR achieves comparable performance. These results show that

our method can provide significant benefits to the CTDE para-

digm. Our work suggests a way forward for more flexible sub-team

coordination and learning in multiple settings beyond the CTDE

paradigm.

2 MULTIAGENT Q-LEARNINGWITH
SUB-TEAM COORDINATION

In this section, we present the architecture of QSCAN. We would

first describe our base architecture. We then discuss QSCAN’s co-

ordination module in detail and propose a general representation

of the relation among sub-team coordination classes, called coordi-
nation hierarchy. Finally, we present two different implementations

based on this hierarchy, QPAIR and QSCAN.
Base architecture. We employ the duplex dueling structure

[11] to achieve a high representational capability. This structure

factorizes each agent i’s action-value function Qi into its individ-

ual value and an advantage function as Vi (τ ) = maxa′i
Qi (τ ,a′i ),

Ai (τ ,ai ) = Qi (τ ,ai ) −Vi (τ ). Meanwhile, the global action-value

function Qtot (τ ,a) is factorized into the global value function

Vtot (τ ) and the global advantage functionAtot (τ ,a), i.e.Qtot (τ ,a) =
Vtot (τ )+Atot (τ ,a). For a task with n agents,Vtot (τ ) =

∑n
i=1Vi (τ )

andAtot (τ ,a) ≈
∑n
i=1 λi (τ ,a)Ai (τ ,ai ), where λi is a non-negative

importance weight for agent i . We extend the approximation ofAtot
withmonotonic functions thatAtot (τ ,a) ≈ f ([λi (τ ,a)Ai (τ ,ai )]ni=1, s ),
where f (x1, . . . ,xn , s ) is a monotonic function with respect to

each xi ≤ 0 (i.e.,
∂f
∂xi
≥ 0), and maintains a maximum value 0

(f (0n , s ) = 0). Following previous work [2, 7, 11], we would use the

global state s as the centralized information, if applicable, or the

joint history τ . Since the base architecture adopts only monotonic

functions, it guarantees the IGM condition.

Coordination hierarchy. In cooperative MARL tasks, agents

could participate in different sub-teams for different sub-objectives.
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QMIX=QSCAN0
(Monotonic)

QSCAN1

QPLEX=QSCANn
(IGM)QSCAN2 ⋯

Figure 1: Coordination hierarchy: Frommonotonic function
class to the entire IGM function class.

Intuitively, the team reward can be credited to each sub-team and

then to each individual. Specifically, consider a sub-team C ⊆ N
containing k agents, where N = {1, . . . ,n} is the agent set of the
task. Let aC denote the joint action ofC . The global credit could be

assigned to each agent as follows:

Atot (τ ,a) ≈
∑

C :C⊆N , |C |=k



∑
i ∈C

(дi (τ ,aC ) · Ai (τ ,ai ))


=

n∑
i=1

*.
,

∑
C :i ∈C⊆N , |C |=k

дi (τ ,aC )
+/
-
Ai (τ ,ai ).

Since each agent i’s preference over actions is characterized by

Ai (τ ,ai ), we employ a function дi (τ ,aC ) as the importance weight

ofAi and use дi (τ ,aC ) ·Ai (τ ,ai ) to evaluate i’s contribution to the

sub-team C . The credit of the whole sub-team is thus a simple sum

of all дi · Ai . Based on this insight, we propose QSCANk .

Definition 1 (QSCANk ). QSCANk is a branch of QSCAN which
concerns coordination within sub-teams containing only k agents.
Specifically, QSCANk adopts the following weights yielding from the
sub-team coordinationmodule λi (τ ,a) = h(

∑
C :i ∈C⊆N , |C |=k дi (τ ,aC )),

where h is a non-negative activation function.

λi (τ ,a) corresponds to the total contribution of agent i to all sub-
teams containing k members. Since the advantage as the disparity

from the optimal action should keep non-positive, we use function

h to ensure the positivity of each λ.
Since QSCANk characterizes coordination within k-agent sub-

teams, we could establish a hierarchy over QSCANk ask varies from

0 to n. Specially, QSCAN0 treats the coeficient λi as a fixed positive
constant depending only on the joint history τ and not taking any

action as input, i.e. λi (τ , ·) ≡ λi (τ ). Figure 1 shows a Venn graph

of our coordination hierarchy. We can see that the classic methods,

QMIX and QPLEX, are typical examples in our hierarchy. In the

following, we propose two specific implementations of QSCAN.

Pairwise coordination. QPAIR employs a pairwise coordination

module by enumerating all sub-teams with size 2. This module uses

a multi-layer perceptron (MLP) to calculate the pairwise coordina-

tion coefficients дi . This structure is an instance of QSCAN
2
. The

coefficient of each Ai (τi ,ai ) is based on pairs of agents’ actions as

well as the global state (s, i,ai , j,aj ). In this module, дi (τ ,a {i, j } ) =

MLP(s, i,ai , j,aj ) and λi = h
(∑n

j=1 дi (τ ,a {i, j } )
)
. In practice, we

use the absolute value function for h.
Self-attention. Enumerating all sub-teams will be computation-

ally expensive in large multiagent systems. Inspired by the archi-

tecture of Transformer [10], we propose QSCAN which employs

self-attention module to characterize coordination among agents

(a) Predator-Prey (6 versus 6). (b) Switch4 challenge.

Figure 2: Learning curves of QPAIR, QSCAN, QPLEX, and QMIX
in two different tasks. The average reward with 95% confi-
dence intervals is shown.

hierarchically. The module takes all agent-action pairs and the

centralized information as input and directly produces a series of

non-negative weights [λi ]
n
i=1. Specifically, it first receives all agent-

action pairs [(i,ai )]
n
i=1 and injects the global state s into them

through a feedforward network to obtain a series of embedding

vectors. These vectors will then be fed intom attention layers to

output the weights λ. In each attention layer, we adopt residual

learning to provide agents more flexibility to learn different forms

of coordination. Since each attention layer aggregates the pairwise

information of current inputs, we can expect this module withm
attention layers to characterize the coordination in sub-teams with

at most size 2
m
.

3 EMPIRICAL EVALUATION
We use QMIX and QPLEX as baselines in this work. In experiments,

QSCAN uses one self-attention layer. We evaluate QPAIR and QSCAN
in predator-prey tasks [1] and the Switch challenge [4]. These two

tasks require various styles of coordination to achieve high rewards.

The predator-prey tasks are complicated scenarios with immedi-

ate coordination rewards. In these tasks, the agents need to learn

spatial-temporal local coordination. We evaluate algorithms in the

scenario with 6 predators against 6 prey. The results are shown in

Figure 2a. QMIX fails to learn a positive reward due to the relative

overgeneralization [1] caused by the miscoordination of “capture”

actions. QPLEX could fail to learn the “capture” action, suggesting

the difficulty in representing precise coordination patterns. For

QPAIR, it performs better than QPLEX because the coordination of

“capture” actions only needs pairwise coordination, which QPAIR
is forced to learn. For QSCAN, it outperforms all these approaches

due to its adaptive balance of the pairwise coordination and each

individual’s local information. The Switch challenge is a more com-

plicated coordination task due to the sparse and long-term rewards.

It is a partially observable task that 4 agents need to reach their

corresponding home by passing through the one-agent wide nar-

row corridor. In this task, the sub-team coordination in the very

beginning steps influences deeply over the final rewards. As Fig-

ure 2b shows, QSCAN outperforms others in this task while QPLEX

performs worst. QMIX and QPAIR achieve comparable results after

training but QPAIR achieves better performance during the training

phase. Overall, the results indicate that the sub-team coordination

benefits in various coordination tasks.
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