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ABSTRACT
We study the problem of fair allocation of a set of indivisible

items among agents with additive valuations, under cardinality

constraints. In this setting, the items are partitioned into categories,

each with its own limit on the number of items it may contribute

to any bundle. We consider the fairness measure known as the

maximin share (MMS) guarantee, and propose a novel polynomial-

time algorithm for finding 1/2-approximate MMS allocations—an

improvement from the previously best available guarantee of 11/30.
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1 INTRODUCTION
Fairly allocating items in the real world often involves placing

constraints on what items can be allocated together. For example,

one may require that agents receive bundles of connected items

[3, 5, 15, 20], that items deemed conflicting are not allocated to the

same agent [8, 16] or that all agents receive the same number of

items [9]. Suksompong provides a recent overview of constrained

fair allocation [21].

In this paper
1
we explore fair allocation under a type of con-

straints known as cardinality constraints, introduced by Biswas and

Barman [4]. Under cardinality constraints, the items are partitioned

into a set of categories. Each category has a limit on the number of

items any agent may be allocated from the category. This type of

constraints naturally occurs in many real-world settings such as al-

locating seats in a space-constrained conference with synchronized

parallel tracks or, in a more general setting, preventing individual

agents from receiving almost all items of a given type.

Contributions. We develop a polynomial-time algorithm for find-

ing 1/2-approximate MMS allocations under cardinality constraints,

improving on the guarantees of 1/3 and 11/30, provided by Biswas

and Barman [4] and Li and Vetta [19]—to our knowledge the best

guarantees previously available.

1
A full version of the paper, with proofs and experiments, is available [17].
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Related Work. Cardinality constraints may be represented by a

partition matroid, and there exist several works on fair allocation

under matroid constraints [e.g., 13, 14]. As pointed out by Biswas

and Barman [4], the 1/2-approximate MMS algorithm of Gourvès

and Monnot [13] is not applicable here, as the matroid constraint

is applied to the union of all the bundles. There is also some over-

lap between allocation of conflicting items [8, 16] and cardinality

constraints, but neither is a generalization of the other.

2 PRELIMINARIES
An instance of the fair allocation problem under cardinality con-

straints is given by 𝐼 = ⟨𝑀, 𝑁,𝑉 ,𝐶⟩, where 𝑀 = {1, . . . ,𝑚} is the
set of items, 𝑁 = {1, . . . , 𝑛} the set of agents and 𝑉 = {𝑣1, . . . , 𝑣𝑛} a
collection of valuation functions over subsets of𝑀 , 𝑣𝑖 : 2

𝑚 → R≥0,
where 𝑣𝑖 is the valuation function of agent 𝑖 . We consider additive

valuations, i.e., 𝑣𝑖 (𝑆) =
∑

𝑗∈𝑆 𝑣𝑖 ({ 𝑗}). Finally, 𝐶 is a set of ℓ pairs

⟨𝐶ℎ, 𝑘ℎ⟩ of categories 𝐶ℎ and corresponding thresholds 𝑘ℎ such that

the categories constitute a partition of 𝑀 . For an instance 𝐼 , we

wish to find a feasible partition of𝑀 into 𝑛, possibly empty, bundles.
That is, we want a complete allocation 𝐴 = ⟨𝐴1, 𝐴2, . . . , 𝐴𝑛⟩, where
for all bundles 𝐴𝑖 and categories 𝐶ℎ , |𝐴𝑖 ∩𝐶ℎ | ≤ 𝑘ℎ . Without loss

of generality, we assume that |𝐶ℎ | ≤ 𝑛𝑘ℎ for each ℎ ∈ {1, . . . , ℓ}.2
We are concerned with the fairness criterion of the maximin

share guarantee [7]. The maximin share (MMS) of an agent is the

value of the most preferred bundle the agent can guarantee herself

if she were to divide the items into feasible bundles and then choose

her own bundle last. Formally, for an instance 𝐼 = ⟨𝑀, 𝑁,𝑉 ,𝐶⟩, the
maximin share of an agent 𝑖 for the instance 𝐼 , 𝜇𝐼

𝑖
, is given by

𝜇𝐼𝑖 = max

𝐴∈F𝐼
min

𝐴 𝑗 ∈𝐴
𝑣𝑖 (𝐴 𝑗 ) ,

where F𝐼 is the set of feasible allocations for 𝐼 . If 𝐼 is obvious from
context, we write simply 𝜇𝑖 . An allocation, 𝐴, is said to be an MMS
allocation, if 𝑣𝑖 (𝐴𝑖 ) ≥ 𝜇𝑖 for all agents 𝑖 . We are interested in 𝛼-
approximate MMS allocations, which are allocations where for an

𝛼 > 0, 𝑣𝑖 (𝐴𝑖 ) ≥ 𝛼𝜇𝑖 for all agents 𝑖 . Our algorithm needs a way

to decide if a bundle is worth at least 𝛼𝜇𝑖 to agent 𝑖 . However,

finding 𝜇𝑖 is known to be NP-hard [22].
3
In order to provide a

polynomial-time algorithm, we exploit a common overestimate

of 𝜇𝑖 from unconstrained fair allocation [e.g., 1, 10]. The trick is

to normalize the instance, i.e., rescale agents’ valuations so that

𝑣𝑖 (𝑀) = 𝑛. As a result, 𝜇𝑖 ≤ 1, and giving each agent a bundle

valued at least 𝛼 is sufficient for a 𝛼-approximate MMS allocation.

2
If this is not the case, one can remove the least valuable items in each category after

the later ordering of the instance.

3
In the unconstrained setting, a PTAS exists for finding the MMS of an agent [22], but

this PTAS does not extend to fair allocation under cardinality constraints.
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3 ORDERED INSTANCES
In the unconstrained setting, Bouveret and Lemaître showed that

each instance can be reduced to an instance where all agents have

the same preference order over all items [6]. These instances are

known as ordered instances [2, 10] and can be created by sorting

each agent’s item values and reassign these to the items in some

predetermined common order. This does not change agents’ MMS.

Furthermore, one can convert an allocation in the ordered instance

into one for the original instance such that no agent is worse off.

Thus, MMS approximation need only consider ordered instances.

This approach does not work directly for cardinality constraints,

as reassigning item values across categories may result in infeasi-

bility when converting back from the ordered instance. Instead, we

introduce the following modified definition, which can be shown

to have similar properties as in the unconstrained setting.

Definition 1. An instance 𝐼 = ⟨𝑀, 𝑁,𝑉 ,𝐶⟩ of the fair allocation
problem under cardinality constraints is called an ordered instance

if each category 𝐶ℎ = {𝑐1, 𝑐2, · · · , 𝑐 |𝐶ℎ | } is ordered such that for all
agents 𝑖 , 𝑣𝑖 ({𝑐1}) ≥ 𝑣𝑖 ({𝑐2}) ≥ · · · ≥ 𝑣𝑖 ({𝑐 |𝐶ℎ | }).

Theorem 1. For fair allocation under cardinality constraints, MMS-
approximation reduces to MMS-approximation for ordered instances.

4 REDUCED INSTANCES
If we remove an agent 𝑖 and a bundle 𝐵 ⊆ 𝑀 from an instance, the

result is called a reduced instance. If the bundle’s value is sufficiently

high (𝑣𝑖 (𝐵) ≥ 𝛼𝜇𝑖 ) and the MMS of each remaining agent is at

least as high after the removal, this is called a valid reduction [11],

a concept used in many MMS approximation algorithms for the

unconstrained fair allocation problem [e.g., 10, 12, 18].

Being able to guarantee that no agent 𝑖 values any item at 𝛼𝜇𝑖
or higher limits the impact a single item can have on a bundle’s

value under additive valuations—a property that is important in our

algorithm. For unconstrained instances, this property can easily

be obtained, since the removal of an agent 𝑖 and an item 𝑗 with

𝑣𝑖 ({ 𝑗}) ≥ 𝛼𝜇𝑖 is a valid reduction. Under cardinality constraints,

however, a reduction with a single item may result in an instance

with no feasible allocations. We can still construct a valid reduc-

tion, given a single item 𝑗 worth at least 𝛼𝜇𝑖 to some agent 𝑖 , as

any bundle must contain at least |𝐶ℎ | − (𝑛 − 1)𝑘ℎ items from each

category𝐶ℎ . Thus, a bundle of 𝑗 and the |𝐶ℎ \ { 𝑗}| − (𝑛 − 1)𝑘ℎ least

valuable items of each category 𝐶ℎ forms a valid reduction.

Theorem 2. Let 𝐼 = ⟨𝑁,𝑀,𝑉 ,𝐶⟩ be an ordered instance of the
fair allocation problem under cardinality constraints with an item
𝑗 such that 𝑣𝑖 ({ 𝑗}) ≥ 𝛼𝜇𝑖 for an agent 𝑖 and an 𝛼 > 0. Let 𝐵 be
the bundle consisting of 𝑗 and the max(0, |𝐶ℎ \ { 𝑗}| − (𝑛 − 1)𝑘ℎ)
least valuable items in each category 𝐶ℎ . Allocating 𝐵 to 𝑖 is a valid
reduction for 𝛼 .

5 APPROXIMATION ALGORITHM
Theorems 1 and 2 simplify MMS approximation to the case of

normalized ordered instances where no item is worth more than

𝛼 . We now present an algorithm that for such an instance finds a

1/2-approximate MMS allocation (Algorithm 1). In the algorithm,

let 𝐶𝐻
ℎ

and 𝐶𝐿
ℎ
denote the ⌊|𝐶ℎ |/𝑛⌋ most and least valuable items,

respectively, remaining in 𝐶ℎ .

Algorithm 1 Find a 1/2-MMS solution to an ordered instance

Input: A normalized ordered instance 𝐼 = ⟨𝑁,𝑀,𝑉 ,𝐶⟩ with
𝑣𝑖 ({ 𝑗}) < 1/2 for all 𝑖 ∈ 𝑁 , 𝑗 ∈ 𝑀

Output: Allocation 𝐴 consisting of each bag 𝐵 allocated

1 while there is more than one agent left

2 𝐵 =

⋃ℓ
ℎ=1

𝐶𝐿
ℎ

3 while 𝑣𝑖 (𝐵) < 1/2 for all remaining agents 𝑖

4 if 𝐵 ∩𝐶𝐿
ℎ
≠ ∅ for some 𝐶ℎ

5 𝑗 = any element of 𝐶𝐻
ℎ

\ 𝐵
6 𝑗 ′ = any element of 𝐵 ∩𝐶𝐿

ℎ

7 𝐵 = (𝐵 \ { 𝑗 ′}) ∪ { 𝑗}
8 else 𝑗 = any 𝑐 ⌈ |𝐶ℎ |/𝑛⌉ not in 𝐵

9 𝐵 = 𝐵 ∪ { 𝑗}
10 allocate 𝐵 to some agent 𝑖 with 𝑣𝑖 (𝐵) ≥ 1/2
11 remove 𝐵 and 𝑖 from 𝐼 and update 𝐶𝐻

ℎ
and 𝐶𝐿

ℎ

12 allocate the remaining items to the last agent

The algorithm works in a similar manner to that of the bag filling

algorithms in the unconstrained setting [see, e.g, 10, 12], i.e., by

incrementally adding items to (and, in our case, removing items

from) a “bag,” 𝐵, until 𝑣𝑖 (𝐵) ≥ 1/2 for some agent 𝑖 . The major

difference is the initial contents of the bag. As was the case in

Section 4, we must make sure to not end up in a situation where a

category𝐶ℎ contains more items than can be given to the remaining

agents. Thus, we start with a bag containing the ⌊|𝐶ℎ |/𝑛⌋ least

valuable items in each 𝐶ℎ . This guarantees that the bag contains

enough items from each 𝐶ℎ , but is not worth more than 1/𝑛 of

the remaining value. We then incrementally, so as not to increase

the value by 1/2 or more in a single step, exchange each of these

lower-valued items for higher-valued items in the same 𝐶ℎ . If the

bundle is still not worth 1/2 to any agent, individual items are

added, incrementally, from any 𝐶ℎ where the number of items is

not exactly divisible by the number of remaining agents, i.e., where

we earlier had to round down when selecting 1/𝑛 of the items.

When this is done for all𝐶ℎ , there must be an agent that values the

bundle at least 1/2. One can show that the value of each allocated

bundle is no more than 1/𝑛 of the remaining value for all remaining

agents. As a result, each agent receives a bundle, and it is worth at

least half of its MMS.

Theorem 3. Given a normalized ordered instance of the fair al-
location problem under cardinality constraints where all items are
worth less than 1/2, Algorithm 1 finds a feasible 1/2-approximate
MMS allocation in polynomial time in the number of agents and items.

6 DISCUSSION
Our algorithm finds 1/2-approximate MMS allocations under car-

dinality constraints. While an improvement to the previously best

approximation guarantee, it is not unlikely that a better approxima-

tion guarantee is possible. However, different techniques to those

in the unconstrained setting appear to be needed. It also remains

unknown whether cardinality constraints have a stricter upper

bound for MMS-approximation than in the unconstrained setting.
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