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ABSTRACT
Many scientific conferences employ a two-phase paper review pro-

cess, where some papers are assigned additional reviewers after the

initial reviews are submitted. Many conferences also design and

run experiments on their paper review process, where some papers

are assigned reviewers who provide reviews under an experimen-

tal condition. In this paper, we consider the question: how should

reviewers be divided between phases or conditions in order to max-

imize total assignment similarity? We show both empirically (on

real conference data) and theoretically (under certain natural condi-

tions) that dividing reviewers uniformly at random is near-optimal.

The full paper is available at https://arxiv.org/abs/2108.06371.
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1 INTRODUCTION
Peer review is a widely-adopted method for evaluating scientific

research [17]. Careful assignment of reviewers to papers is critically

important in order to ensure that the resulting reviews are of high

quality. At large scientific conferences, the paper assignment is

usually chosen by solving an optimization problem. Given a set of

papers, a set of reviewers, and similarity scores representing the

level of expertise each reviewer has for each paper [3–5, 10, 13,

14, 16, 22], the standard paper assignment problem is to find an

assignment of reviewers to papers that maximizes total similarity,

subject to constraints on the reviewer and paper loads [4, 6, 7, 11, 19,

20]. This standard paper assignment problem is a simple matching

problem and so can be efficiently solved (for example, through

linear programming). Our work is motivated by two scenarios that

arise in the context of paper assignment in conference peer review.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

Motivation 1: Two-phase paper assignment. Many confer-

ences (e.g., AAAI 2021/2022, IJCAI 2022) have adopted a two-phase

review process. After the initial reviews are submitted, a subset

of papers proceed to a second phase of reviews with additional

reviewers assigned. There are a variety of reasons that a two-phase

reviewing process can be helpful. For example, the process can al-

low the conference to solicit additional reviews only on papers that

obtained sufficiently high ratings in the first phase (as done at AAAI

2021/2022). The second phase can also help focus on evaluation of

the papers in the “messy middle”—the papers at the borderline be-

tween acceptance and rejection [15, 18]. In addition, a second phase

of reviews can compensate for reviewers who were unresponsive in

the first phase, who can no longer review due to personal problems,

who discovered conflicts they had with an assigned paper, etc. In all

of these cases, the set of papers that will require additional review

is unknown beforehand. While some venues choose to recruit new

reviewers after knowing which papers proceed to phase two, the

tight timeline of many conferences makes it hard to recruit new

reviewers after phase one [1]. For this reason, it is best if all the

reviewers are recruited at the beginning, and a key question is

then how to assign reviewers to papers in the first phase such that

enough review capacity is saved for the second phase.

Motivation 2: Conference experiment design. Reviewers
also need to be split into two groups when conferences run con-

trolled experiments on the paper review process. Conferences often

run such experiments to test changes to the review process. For

example, the WSDM 2017 conference conducted an experiment to

test the effects of single-blind versus double-blind reviewing [21].

As another example, the NeurIPS 2014 and 2021 conferences ran

experiments testing the consistency of acceptance decisions by

providing some papers with a second set of reviews from a sepa-

rate group of reviewers [2, 9, 15]. In these experiments, all papers

receive reviews conducted in the usual manner (the control con-

dition), but a random subset of papers are additionally assigned

reviewers who provide reviews under an experimental condition.

The key question is then how to divide the reviewers between the

control and experimental conditions. As in the NeurIPS 2014/2021

and WSDM 2017 experiments, this is often done randomly for sta-

tistical purposes. However, conferences still want to ensure that the

resulting assignment of papers to reviewers is of high similarity.
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(a) Second-stage papers drawn uniformly at random
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(b) Second-stage papers chosen as the top- or middle-
scoring papers from ICLR

Figure 1: Range of assignment similarities over 10 random reviewer splits on real conference data, as a fraction of the oracle
optimal assignment’s similarity (computed after observing the second-stage papers). 𝛽 is the fraction of papers in the second
stage. The ICLR similarities [23] (911 papers, 2435 reviewers) are constructed from text-matching between papers and review-
ers’ past work, PrefLib3 [12] (176 papers, 146 reviewers) and Bid1 [13] (600 papers, 400 reviewers) similarities are constructed
from bidding data, and SIGIR [8] similarities (73 papers, 189 reviewers) are constructed from reviewer and paper subject areas.

2 PROBLEM OUTLINE
In this paper, we formally analyze the two-stage paper assignment

problem, which encompasses both above motivations. As stated

earlier, the standard paper assignment problem is to maximize the

total similarity of the assignment subject to load constraints and is

efficiently solvable. However, in the two-stage paper assignment

problem, we must additionally decide how much of each reviewer’s

capacity should be saved to review papers in the second stage

(i.e., the second phase/condition). We assume that the fraction of

papers that will need additional reviews is known and that the set

of second-stage papers is chosen uniformly at random. Because of

constraints present in each setting, the maximum-similarity paper

assignment across the two stages cannot be achieved. In the two-

phase setting, the set of second-stage papers is unobserved when

the first-stage assignment is made, making the problem one of

stochastic optimization. In the experiment design setting, reviewers

are often randomized between stages for statistical purposes. We

show that a simple strategy for choosing reviewers to save for

the second stage performs near-optimally in terms of assignment

similarity and can be used in either setting.

3 CONTRIBUTIONS
(1) We identify and formulate the two-stage paper assignment

problem, an issue of practical importance to modern confer-

ences, with applications to two-phase paper assignment and

conference experiment design.

(2) We prove that a simplified version of the problem is NP-hard,

suggesting that the problem may not be efficiently solvable.

(3) We empirically show that a very simple “random split” strategy,

which chooses a subset of reviewers uniformly at random to

save for the second stage, gives near-optimal assignments on

real conference similarity scores. This result is summarized in

Figure 1, which shows the assignment similarity achieved using

random split as compared to the oracle optimal assignment

(which views the set of second-stage papers before optimally

assigning reviewers across both stages) for several datasets. We

find that all random reviewer splits achieve at least 90% of the or-

acle optimal solution’s similarity on all datasets and at least 94%

on all but two experiments. These results hold across similarities

constructed via a variety of methods used in practice, indicating

that random split is robust across methods of similarity con-

struction. They also hold both when the second-stage papers

are drawn uniformly at random (as in Figure 1a) and when they

are selected based on the review scores of the papers (as in

Figure 1b). In practice, this means that program chairs plan-

ning a two-phase review process or a conference experiment

can simply split reviewers across the two phases/conditions

at random without concerning themselves with the potential

reduction in assignment quality. We also show that this good

performance is not achieved in general: there exist similarity

matrices on which random split performs very poorly.

(4) We theoretically explain why random split performs well on

our real conference similarity matrices by deriving theoretical

bounds on the suboptimality of this random strategy under

certain natural conditions. We consider two such sufficient

conditions here, which are met by our datasets: if the reviewer-

paper similarity matrix is low-rank, and if the similarity matrix

allows for a high-value assignment (in terms of total similarity)

with a large number of reviewers assigned to each paper. From

these results, we give key actionable insights to conference

program chairs to help them decide–well before the reviewers

and/or papers are known–if random split is likely to perform

well in their conference.
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