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ABSTRACT

We propose a novel policy-level generative adversarial learning
framework to enhance cooperative multiagent reinforcement learn-
ing (MARL), which consists of a centralized advisor, MARL agents
and discriminators. The advisor is realized through a dual graph
convolutional network (DualGCN) to give advice to agents from a
global perspective via fusing decision information, resolving spatial
conflicts, and maintaining temporal continuity. Each discriminator
trained can distinguish between the policies of the advisor and an
agent. Leveraging the discriminator’s judgment, each agent learns
to match with the advised policy in addition to learning by its
own exploration, which accelerates learning and enhances policy
performance. Additionally, an advisor boosting method which in-
corporates the relevant suggestion made by the discriminators into
the training of Dual GCN is proposed to further help improve MARL
agents. We validate our methods in cooperative navigation tasks.
Results demonstrate that our method outperforms baseline methods
in terms of both learning efficiency and policy efficacy.
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1 INTRODUCTION

Conventional multiagent reinforcement learning (MARL) meth-
ods suffer from low sample efficiency and poor local optimum in
complex tasks. For example, in cooperative navigation [13, 14],
a cooperative target selection policy that minimizes the overall
arrival time is hard to be learned. Previous studies resort to exoge-
nous expert demonstrations [5, 11, 17, 20, 22] or agents’ mutual
advising [2-4, 7, 19]. However, the expert demonstrations are usu-
ally unavailable in complex multiagent problems. Mutual advising
between agents lacks global coordination at agent level.
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In this work, we propose learning to advise and learning from
advice (LALA) to improve MARL. We focus on the cooperative
tasks where agents need to avoid decision conflicts, such as target
selection conflicts in cooperative navigation [12-14, 16, 18]. Each
agent is deemed an advisee. A centralized advisor is learned to
give advice to agents. We construct a space-time decision graph to
characterize the relations between agents’ decisions and propose a
dual graph convolutional network (DualGCN) to learn smoothed
and reconciled decisions as advice. To guide each agent to learn
from the advice, we propose a policy-level generative adversarial
network (PLGAN), where a discriminator distinguishes between
the state-action sets characterizing the policies of the advisor and
an agent. Each agent learns to follow the advice by optimizing
a compound objective function consisting of an MARL objective
and a regularization term reflecting closeness to the advised policy.
Since the advised policy is reconciled and smoothed, it can improve
MARL. Leveraging the discerning power of the discriminator, we
propose a method to boost the advisor and further improve MARL.

2 METHOD

2.1 Learning to Advise with Dual GCN

The advisor module is illustrated in the bottom right part of Figure 1.
A space-time graph is used to characterize the relations between
agents’ decisions. Each agent at each time step corresponds to a
vertex. Vertices of the same agent are connected (green edges) along
the time dimension. Vertices of different agents at the same time
step are connected with each other (red edges).

We propose DualGCN to fuse decision information and generate
advice. The input features of a vertex is the decision made by an
agent, denoted as nﬁgem. The output is the advised decision denoted
as 1. To cope with constraints imposed on agents’ decisions for
maintaining temporal continuity and resolving spatial conflicts, we
divide the neighbors of each vertex by spatial domain and temporal
domain as Ns(v) and N;(v). For each neighbor set, a mean aggre-
gator function similar to that used in GraphSAGE [9] is employed
to aggregate features. The cost function for DualGCN is given as
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Figure 1: Illustration of LALA framework.

where o is a sigmoid function. The first two terms are temporal
discontinuity cost and spatial conflict cost, respectively. The last
term is used to generate advice that can improve agents in a gradual
manner, where [j,p;(0) is an indicator function to express whether
a decision made by an agent is the most confident among all agents.

2.2 Learning from Advice with PLGAN

To guide each agent to learn from advice, we propose PLGAN
illustrated as the upper part of Figure 1. PLGAN includes an advisor-
advisee discriminator that consists of a Transformer encoder [21]
and a classifier. Similar to a previous work [15], the Transformer
encoder is employed to learn representations of a policy with a
set of state-action pairs as raw feature input. A class token (CLS)
[6] is concatenated with the raw input. The learned embedding of
the CLS token is deemed the representation of the policy and then
mapped by the classifier to a judging probability.

Formally, let Bis , ﬂ{r , and ﬂic denote a set of states, actions
taken by the agent’s policy on these states, and the advised actions
given byDualGCN, respectively. DYi denotes the discriminator
parameterized with 1;. The loss function for the discriminator is

Lpisci = ~Egs |log DY (AT (Q), B7) +log (1~ DVi (AT (6:), BY)) |
@
where 0; denotes parameters of the policy of agent i, and Q denotes
parameters of DualGCN shared by all agents. Unlike typical GANs
[1, 8] where there is ground truth data, the advice in LALA is learned
as well in accordance with a global objective.
Each agent learns to match with the advised policy by maximiz-
ing the discriminator’s loss, in addition to reward-based learning.
Thus, the loss function for each agent is given by

Lagenti = Ly + \Egs log(1 - DV (AT (0:), B)), )

where Lgi is a loss function for policy learning of an MARL algo-
rithm. A is a positive weight that balances agent’s active learning
and learning from advice.

2.3 Advisor Boosting via Advisor-Advisee
Discriminator

By leveraging the discerning power of the discriminator, we propose
a method to boost advisor’s capability. The discriminator trained
with (2) can give a higher probability score to the advisor than an
agent. This probability score can thus be deemed a metric measuring
the extent of advantage that the advisor’s policy has over that of an
agent. Therefore, we introduce an additional term into the original
loss (1) for DualGCN, which reflects the advantage of the advisor’s
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Figure 2: Convergence curves of average episode reward.

Table 1: Cooperation success rate of different methods

LALA LALA-NB LALA-SA KDA No-Advice
N=7 0.930 0.890 0.888 0.913 0.874
N=10  0.757 0.520 0.449 0.000 0.015

policy. Thus, the loss function for the advisor is given by

Ladoisor = ), | Y, ~loglolrgm)) = Y, log(o(-m, 7))
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where p1 is a positive weight; 87 denotes a set of states obeying the
same sampling distribution as that used to train the discriminator;
B? denotes the vertex index set corresponding to 5;.

3 EXPERIMENTS

We evaluate LALA in a multi-agent cooperative navigation task
with the same settings used in [13, 14]. In this task, N agents need to
cooperate to reach the same number of targets using the minimum
time. At each timestep, each agent selects a target and moves a step
toward it. Potential decision conflicts exist in their target selections.
We implement LALA based on an MARL baseline [13] (No-
Advice). We compare LALA with it and three advising approaches,
i.e. knowledge distillation [10] (KDA), LALA with single state-action
pair based discriminators [20] (LALA-SA), and LALA with no advi-
sor boost (LALA-NB). Figure 2 shows the convergence curves of
average episode reward. As can be seen from the results, LALA
outperforms other methods consistently in terms of convergence
speed and average reward. Table 1 shows the cooperation success
rate. LALA achieves the highest success rate and performs the
most stably among all methods. The result corresponding to N=10
indicates the significant superiority of LALA over other methods.

4 CONCLUSION AND FUTURE WORK

We propose LALA approach to improve MARL, which involves

three-part learning, i.e. Dual GCN advisor, MARL agents, and advisor-
agent discriminators. Experimental results demonstrate the superi-
ority of LALA in terms of both convergence speed and cooperation

performance. For future works, introducing a more powerful GCN

and GAN into LALA would be worthy of investigating.
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