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ABSTRACT
Training reinforcement learning agents in real-world environments

is costly, particularly for safety-critical applications. Human input

can enable an agent to learn a good policy while avoiding unsafe ac-

tions, but at the cost of bothering the human with repeated queries.

We present a model for safe learning in safety-critical environments

from human input that minimises bother cost. Our model, JPAL-HA,
proposes an efficient mechanism to harness human preferences and

justifications to significantly improve safety during the learning

process without increasing the number of interactions with a user.

We show this with both simulation and human experiments.
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1 INTRODUCTION
The trial-and-error approach to training traditional Reinforcement

Learning (RL) models, as used in complex games [15, 20, 22], is not

suited for use directly in safety-critical environments. An agent

exploring without taking into account safety can lead to damage to

itself or its environment (e.g. in self-driving cars or robotics).

Safe RL addresses this Safe Exploration problem [9], and numer-

ous techniques have been proposed that use information such as

safety constraints [2, 4, 5, 10, 21]. These methods, however, do not

offer both performance and safety guarantees during training. Our
solution lies in the human-in-the-loop class and more specifically

makes use of the technique where the agent learns from Human

Preference queries. The agent samples two actions from its policy

and asks the human which one they prefer. This is essentially an

Active Learning [19] method and Christiano et al. [6] show why it

is more sample efficient than other human-in-the-loop techniques

such as Imitation Learning [13], Inverse Learning [1, 16], Reward

Shaping [3, 23] and Human Intervention [18]. The main difference
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between our model and [6] is that the policy is learnt directly by

supervised learning from an increasing dataset of human prefer-

ences, omitting the creation of a reward model learnt from human

preferences and used with the traditional RL methods. Such a model

would not tackle safe exploration as during optimisation the agent

would continuously try unsafe actions to maximise the total reward.

Our contributions lie in two novel and generalisable ideas: (i)

we augment preferences expressed by a human over a choice of

actions with justifications such as one action is preferred because

the other is unsafe; and (ii) we use these justifications to guide the

generation of future queries over hypothetical actions (inspired by

[17]), enabling the agent to more effectively map out unsafe areas.

As a learning paradigm and for the evaluation we use a modified

version of the Island Navigation environment from [14] (initial state

shown in Figure 1a) which, besides its small state-space, captures

the safety semantics of the Safe Exploration problem well. Only

horizontal and vertical actions are permitted, an episode ends with

a death when the agent steps into a blue cell, and remains at the

same place when it moves to a green cell. The goal is to avoid as

many deaths as possible during training until the optimal policy

(one that gives the fastest route to the goal state) is found.

(a) A: agent, G: goal, Dark
blue cells: water, Green cells:
wall, Grey cells: free road

(b) Human experiments with
Thymio mobile robot (same
configuration as on the left)

Figure 1: Island Navigation environment

2 JPAL-HA
Our algorithm, called Justified HumanPreferences forActive Learning
with Hypothetical Actions (JPAL-HA) (Algorithm 1) builds on the

Parenting algorithm [8] with the main similarities being the direct

policy learning from human preferences (Line 19) and the parenting
query decision idea, i.e. ‘the more familiar the agent’s current state

𝑠𝑡 is, the less likely it is to query from there, but instead act greedily’

(Lines 11-13, 18, where 𝑓 (𝑠𝑡 ) is the number of queries been issued

from 𝑠𝑡 ). Our method uses: (i) Before-The-Fact-Queries (BTFQs), i.e.
queries issued to the human by the agent with dynamic probability

before an action is taken (Lines 1-9); and (ii) After-The-Fact Queries
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Table 1: Average number of training deaths, etc. in simulation
experiments until the optimal policy is found (Conservative
setting, 1000 trials, mean and standard deviation 𝜇 ± 𝜎)

Parenting JPAL JPAL-HA

Training Deaths 0.07 ± 0.27 0.04 ± 0.23 0.02 ± 0.15
BTFQs 26.25 ± 5.8 31.12 ± 8.21 25.92 ± 6.53
Recordings 1.59 ± 1.45 1.97 ± 1.72 1.76 ± 1.64
ATFQs 1.32 ± 1.32 1.63 ± 1.54 1.47 ± 1.45
Overall steps 37.72 ± 14.25 41.94 ± 15.58 37.76 ± 14.5

Algorithm 1 JPAL-HA

Input: 𝑝BTFQ ∈ [0, 1): hyperparameter close to 1, 𝑝REC: probability

of recording, 𝑝ATFQ: probability of asking an ATFQ

Output: 𝜋 (𝑎 | 𝑠): agent’s policy model

1: function ask_BTFQ(𝑠𝑡 )

2: sample 𝑎
(0)
𝑡 and 𝑎

(1)
𝑡 and receive 𝑃 and 𝐽𝑃 from human

3: if 𝐽𝑃 = 𝑛 then
4: find 𝑎∗ and 𝜇 from 𝑃 and 𝐽𝑃

5: add entry (𝑠𝑡 , 𝑎
(0)
𝑡 , 𝑎

(1)
𝑡 , 𝜇, 𝐽𝑃 , 𝑎

∗
) to 𝑋

6: execute 𝑎∗

7: else if 𝐽𝑃 = 𝑤 then
8: 𝑎𝑏𝑒𝑠𝑡 ← gen_hypoth_actions(𝑠𝑡 , 𝑎

(0)
𝑡 , 𝑎

(1)
𝑡 , 𝑃 , 𝐽𝑃 )

9: execute 𝑎𝑏𝑒𝑠𝑡

10: repeat
11: if (𝑝BTFQ) 𝑓 (𝑠𝑡 ) > 𝑟

iid∼ 𝑈 [0, 1] then
12: ask_BTFQ(𝑠𝑡 )

13: else
14: if 𝑝REC > 𝑟

iid∼ 𝑈 [0, 1] then
15: record a <greedy, random> action pair from 𝑠𝑡 in 𝑅

16: if 𝑝ATFQ > 𝑟
iid∼ 𝑈 [0, 1] then

17: ask an ATFQ from 𝑅 and add entry to 𝑋

18: execute greedy action drawn from 𝜋 (𝑎 | 𝑠)
19: train policy 𝜋 (𝑎 | 𝑠) with gradient descent minimising:

L = −
∑︁

𝑠,𝑎∈𝑋

∑︁
𝑖=0,1

𝜇 (𝑖) log
𝜋 (𝑎 (𝑖)𝑡 | 𝑠𝑡 )

𝜋

(
𝑎
(0)
𝑡 | 𝑠𝑡

)
+ 𝜋 (𝑎 (1)𝑡 | 𝑠𝑡 )

(1)

20: until optimal policy is found

(ATFQs), i.e. queries recorded in a temporary memory 𝑅 and issued

to the human at a later step, with the goal to safely explore by elicit-

ing the human’s input upon the greedy and a random action (Lines

14-17). Answers of both types are stored in an embraced memory

𝑋 , in which the agent policy model 𝜋 (𝑎 | 𝑠) (a neural network with

the board state 𝑠 as input and the probabilities of the four actions 𝑎

as output) (Line 19) fits as in traditional supervised learning.

JPAL-HA introduces two novel ideas: (1) Justifications, 𝐽𝑃 ∈
{𝑤,𝑛}, that augment preferences 𝑃 ∈ {1st, 𝑒𝑞𝑢𝑎𝑙, 2nd} over a choice
of initially sampled actions 𝑎

(0)
𝑡 and 𝑎

(1)
𝑡 from 𝜋 (𝑎 | 𝑠). A warning,

‘𝑤 ’, states that at least one action leads to a death, whereas ‘𝑛’

indicates both are safe, making human feedback marginally more

complex. The impact on safety, however, is significant. This is

because a more efficient mapping of 𝑃 × 𝐽𝑃 to the correctly chosen

action 𝑎∗ and 𝜇 ∈ {0, 0.25, 0.5, 0.75, 1} (ground truth label with

𝜇 (0) = 𝜇 denoting how much the first action is preferred to the

second and 𝜇 (1) = 1−𝜇 denoting the opposite) is achieved compared

to previous works which only use the values of 𝜇 ∈ {0, 0.5, 1}; and
(2) Hypothetical Actions (HAs): in case of 𝐽𝑃 being ‘𝑤 ’, then generate

extra queries regarding new (hypothetical) sampled actions that

could have been taken. By that, the agent investigates dangerous

areas faster and potentially picks a better safe action 𝑎𝑏𝑒𝑠𝑡 (Lines

7-9). A subtlety is that in most cases, only with a justification over

the new action (i.e. ‘if I had taken that other action, would it have

been safe?’) we can extract all the information we need in order to

add a new entry in 𝑋 about different actions involved in that step.

3 EVALUATION
Initially, we verified our assumption that traditional RL algorithms

(e.g. Q-learning which suffers at least 20 deaths until it finds the

optimal policy) fail in terms of safety. Table 1 shows the results of

simulation experiments comparing Parenting, JPAL (Justifications
only) and JPAL-HA (Justifications and HAs) on a conservative setting
(high 𝑝BTFQ value): 𝑝BTFQ = 0.95, 𝑝REC = 0.8 and 𝑝ATFQ = 0.8. We

observe that Justifications act immediately on safety (reduced train-

ing deaths), and HAs give a slight further improvement in safety

with Parenting having higher training deaths than JPAL-HA with

p-value < 10
−5

(Dunn’s test [7] with Holm-Bonferroni adjustment

[12]). Importantly, however, the use of HAs reduces human burden

and time (BTFQs and overall steps) to a level not significantly dif-

ferent from Parenting. Additional experiments in a relaxed setting:

𝑝BTFQ = 0.8, 𝑝REC = 0.5 and 𝑝ATFQ = 0.5 showed the same trend.

For JPAL-HA we found 0.13 ± 0.35 training deaths (admissible in-

crease) and 24.02 ± 5.98 BTFQs (decrease), revealing the trade-off
between safety and human burden, which we can control by tuning

𝑝BTFQ according to the application safety requirements.

We also conducted real-world training using the same configu-

ration (Figure 1b) with 8 participants communicating via keyboard

with a mobile robot [11]. We used the conservative JPAL-HA model

and a seed with average values from Table 1. The mean time to

complete training was 5𝑚𝑖𝑛 𝑝𝑙𝑢𝑠 4𝑠 ± 51𝑠 which we consider rea-

sonable for training a real mobile robot. Moreover, we noticed that

the cognitive effort of participants answering preference and justi-

fication queries was minimal. Additionally, the participants ran the

same experiment exclusively on the computer. The mean time was

3𝑚𝑖𝑛 𝑝𝑙𝑢𝑠 45𝑠 ± 46𝑠 . Assuming that most people could, after some

practice, reach the best time which was 2𝑚𝑖𝑛 𝑝𝑙𝑢𝑠 40𝑠 and dividing

this by 27, i.e. the number of total queries, gives a good response

rate of 5.9𝑠/𝑞𝑢𝑒𝑟𝑦 indicating the practicality of the method.

4 CONCLUSION
The novel ideas of Justifications and Hypothetical Actions, com-

bined together in JPAL-HA have led to a significant improvement

in safety, minimising the bother cost. Further experiments with

JPAL-HA are being planned including real-world scenarios and

incorporation of generalisable techniques such as transfer learning.
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