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ABSTRACT
We consider average-based and min-based altruistic hedonic games

and study the problem of verifying popular and strictly popular

coalition structures. While strict popularity verification has been

shown to be coNP-complete in min-based altruistic hedonic games,

this problem has been open for equal-treatment and altruistic-

treatment average-based altruistic hedonic games. We solve these

two open cases of strict popularity verification and then provide the

first complexity results for popularity verification in (both average-

and min-based) altruistic hedonic games, where we cover all three

degrees of altruism.
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1 INTRODUCTION
Much work has been done in recent years to study hedonic games,

coalition formation games where players express their preferences

over those coalitions that contain them. Drèze and Greenberg [9]

were the first to propose hedonic games and Bogomolnaia and

Jackson [4] and Banerjee et al. [3] formally defined and investigated

them. For more background and the rich literature on hedonic

games, we refer to the book chapters by Aziz and Savani [2] and

Elkind and Rothe [10] and the survey by Woeginger [20].

We focus on altruistic hedonic games (AHGs) that, based on the

friend-and-enemy encoding of the players’ preferences due to Dim-

itrov et al. [8], were introduced by Nguyen et al. [16]. Schlueter and

Goldsmith [18] generalized them to “super AHGs,” using ideas of

the “social distance games” due to Brânzei and Larson [6]. Bullinger

and Kober [7] introduced the related notion of loyalty in hedonic

games. Nguyen et al. [16] defined three degrees of altruism depend-

ing on the order in which players take their own or their friends’

preferences into account. They chose to model players’ utilities by

taking the average of these friends’ valuations in the same coalition.

Wiechers and Rothe [19] studied the same three degrees of altruism
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for minimum-based utilities, and Kerkmann and Rothe [15] applied

the original model to coalition formation games in general. For an

overview of various notions of altruism in both cooperative and

noncooperative game theory, we refer to the survey by Rothe [17].

We study both average-based and min-based AHGs. For these

two classes of games (and for hedonic games in general), many

stability notions have been studied, including stability based on

single-player deviations (such as Nash stability) or on deviations

by groups of players (such as core stability) (see, e.g., [2, 10, 20]).

By contrast, for popularity and strict popularity we look at entire

coalition structures (i.e., partitions of the players into coalitions)

and ask—similarly to the notion of (weak) Condorcet winner in

voting—whether a (strict) majority of players prefer a given coali-

tion structure to every other coalition structure. Previous litera-

ture on popularity in hedonic games is, e.g., due to Aziz et al. [1],

Brandt and Bullinger [5], and Kerkmann et al. [13]. We study the

complexity of the problem of verifying (strictly) popular coalition

structures in AHGs. While strict popularity verification is known to

be coNP-complete in all three degrees of min-based AHGs [19] and

for so-called selfish-first average-based AHGs [16], its complexity

was open for the other two degrees of average-based altruism.

We solve these two missing cases via technically rather involved

constructions in Section 3. In addition, in Section 4 we provide

the first complexity results for popularity verification in average-

based and min-based AHGs, covering for both all three degrees of

altruism. We show that the problem in all cases is coNP-complete.

2 PRELIMINARIES
Let N = {1, . . . ,n} be a set of n players. A subset of players is a

coalition. For any player i ∈ N , N i = {C ⊆ N | i ∈ C} denotes
the set of coalitions containing i . A coalition structure is a partition

Γ = {C1, . . . ,Ck } of the players into coalitions (i.e.,

⋃k
i=1Ci = N

andCi ∩Cj = ∅ for i , j), where the coalition containing player i is
denoted by Γ(i). The set of all coalition structures for a set of agents

N is given by CN . A hedonic game is a pair (N , ⪰), where N is a

set of agents, ⪰ = (⪰1, . . . , ⪰n ) is a profile of preferences, and the

preference ⪰i of any agent i ∈ N is a complete weak order overN i
.

For coalitions A,B ∈ N i
, player i weakly prefers A to B if A ⪰i B,

and analogously for (strict) preference ≻i and indifference ∼i .

When introducing altruistic hedonic games, Nguyen et al. [16]

used the friends-and-enemies encoding by Dimitrov et al. [8]: Each

player i partitions the set of other players into a set of friends

Fi and a set of enemies Ei , and assigns the friend-oriented value

vi (A) = n |A∩ Fi | − |A∩Ei | to any coalitionA ∈ N i
. The friendship

relations, which are assumed to be mutual, can then be represented
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by a network of friends, an undirected graph where two players are

connected by an edge if and only if they are friends of each other.

Nguyen et al. [16] introduce altruism into a player i’s prefer-
ence by incorporating the valuations of those friends of i’s that
are in the same coalition into i’s utility, considering the average

of these friends’ valuations. Wiechers and Rothe [19] vary this

model by considering the minimum of those friends’ valuations

instead. For any coalition A ∈ N i
, we use the following notations:

avg
F
i (A) =

∑
a∈A∩Fi

va (A)
|A∩Fi |

; avg
F+
i (A) =

∑
a∈(A∩Fi )∪{i }

va (A)
|(A∩Fi )∪{i } |

;

min
F
i (A) = min

a∈A∩Fi
va (A); min

F+
i (A) = min

a∈(A∩Fi )∪{i }
va (A), where

the minimum of the empty set is defined as zero. We also define

these values for coalition structures Γ ∈ CN by the value of the

coalition that agent i belongs to, e.g., avgFi (Γ) = avg
F
i (Γ(i)).

Nguyen et al. [16] introduced their three degrees of altruism by

defining, for a constantM ≥ n5 and any A,B ∈ N i
, player i’s

• selfish-first (SF) preference by A ⪰SF

i B ⇔ uSFi (A) ≥ uSFi (B),

with the SF utility uSFi (A) = M · vi (A) + avg
F
i (A);

• equal-treatment (EQ) preference by A ⪰
EQ

i B ⇔ u
EQ

i (A) ≥

u
EQ

i (B), with the EQ utility u
EQ

i (A) = avg
F+
i (A); and

• altruistic-treatment (AL) preference by A ⪰AL

i B ⇔ uALi (A) ≥

uALi (B), with the AL utility uALi (A) = vi (A) +M · avgFi (A).

The min-based altruistic preferences, denoted by ⪰minSF
, ⪰minEQ

,

and ⪰minAL
, are defined analogously, using the minimum instead

of the average. A pair (N , ⪰), where ⪰ is a profile of preferences

defined by one of the average-based degrees of altruism, is called

an altruistic hedonic game (AHG) with average-based altruistic pref-

erences ⪰. A game (N , ⪰min) with min-based altruistic preferences

⪰min
is said to be a min-based altruistic hedonic game (MBAHG).

We now define popularity, which is based on the pairwise com-

parison of coalition structures. For a hedonic game (N , ⪰) and two

coalition structures Γ,∆ ∈ CN , let #Γ≻∆ = |{i ∈ N | Γ ≻i ∆}|
be the number of players that prefer Γ to ∆. A coalition structure

Γ ∈ CN is popular (respectively, strictly popular) if, for every other

coalition structure ∆ ∈ CN ,∆ , Γ, it holds that #Γ≻∆ ≥ #∆≻Γ

(respectively, #Γ≻∆ > #∆≻Γ). Define the verification problem P-

Veri: Given a hedonic game (N , ⪰) and a coalition structure Γ, is Γ
popular in (N , ⪰)? Relatedly, define the existence problem P-Exi:

Given a hedonic game (N , ⪰), does there exist a popular coalition
structure in (N , ⪰)? The strict variants of the problems, SP-Veri

and SP-Exi, are defined analogously. It is easy to see that all these

verification problems are in coNP. To show their coNP-hardness,

we reduce from the complement of a restricted variant of the exact

cover by 3-sets problem that is denoted by RX3C and defined as

follows: Given a set B = {1, . . . , 3k} (for some integer k ≥ 2) and a

collection S = {S1, . . . , S3k } of 3-element subsets of B, where each
element of B occurs in exactly three sets in S , does there exist an

exact cover of B in S , i.e., a subset S ′ ⊆ S of size k such that

every element of B occurs in exactly one set in S ′
? RX3C is still

NP-complete [11, 12]. In all (omitted) proofs of the coNP-hardness

of (strict) popularity verification, given an RX3C instance (B,S ),

we construct an instance of our problem, i.e., a hedonic game (N , ⪰)
represented by its network of friends and a coalition structure Γ.
We then show that Γ is not (strictly) popular under the considered

model if and only if there exists an exact cover of B in S .

3 STRICT POPULARITY IN AHGS
While Wiechers and Rothe [19] showed that SP-Veri is coNP-

complete for all three degrees of altruism in MBAHGs, Nguyen

et al. [16] showed the same result only for SF AHGs. We solve the

two missing cases (i.e., for EQ and AL).

Theorem 1. SP-Veri is coNP-complete for EQ and AL AHGs.

In the proof of Theorem 1, we use a tie between twomost popular

coalition structures to show that one of them is not strictly popular.

We can use the same construction while not giving any coalition

structure as a part of the instance to show the hardness of SP-Exi.

Corollary 2. SP-Exi is coNP-hard for EQ and AL AHGs.

4 POPULARITY IN AHGS AND MBAHGS
Now, we provide the first complexity results for P-Veri in AHGs

and MBAHGs, and we cover for both all three degrees of altruism.

As mentioned earlier, Nguyen et al. [16, Thm. 12] showed that SP-

Veri is coNP-complete for SF AHGs and Wiechers and Rothe [19,

Thm. 4] showed the same result for SF MBAHGs. We modify their

proofs to establish the same results for P-Veri.

Theorem 3. P-Veri is coNP-complete for SF AHGs and SFMBAHGs.

Since the altruistic tie-breaker is never used in our construction

of Theorem 3 (there never occur indifferences that are broken al-

truistically), the proof also holds for friend-oriented preferences

and P-Veri is coNP-complete for friend-oriented hedonic games.

With an adaptation of our construction in the proof of Theorem 1,

we further get results for P-Veri in EQ and AL AHGs.

Theorem 4. P-Veri is coNP-complete for EQ and AL AHGs.

The last result for P-Veri is again inspired by a proof byWiechers

and Rothe [19, Thm. 4].

Theorem 5. P-Veri is coNP-complete for EQ and AL MBAHGs.

Finally, we turn to P-Exi. Note that we cannot simply modify the

proofs of the preceding theorems in order to show the hardness of

P-Exi (similarly to how we used Theorem 1 to obtain Corollary 2)

because a tie between two most popular coalition structures would

not suffice to show the nonexistence of a popular coalition structure.

However, for both AHGs and MBAHGs and in all three degrees of

altruism, there exist examples where no popular coalition structures

exist, and we suspect that P-Exi is hard for all considered models.

5 CONCLUSIONS
We have solved the two remaining open problems regarding the

complexity of strict popularity verification in AHGs, namely for

equal treatment and altruistic treatment (Theorem 1). The proofs

of these results required new ideas and are technically demanding.

In addition, we have provided the first complexity results for

popularity verification in AHGs and MBAHGs, covering for both

all three degrees of altruism (Theorems 3, 4, and 5). Hence, the com-

plexity of popularity verification and strict popularity verification

is now settled in AHGs and MBAHGs; the picture is complete.
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