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ABSTRACT
This paper tackles the problem of learning generalizable congestion-
mitigation strategies in simple representations of traffic. In par-
ticular, we look to mixed-autonomy ring roads as depictions of
instabilities common to many generic settings, and ask the ques-
tion: What features are needed to ensure that policies here can be
adapted to typical multi-lane highways? To answer this, we study
the implications of the scale of the source task and the modeling
of pseudo-lane change events within it on the transferability of
policies learned to complex networks. Our findings suggest that
negating the effects of boundary conditions and introducing lane
changes that approximately match trends in more complex systems
can significantly improve the generalizability of learned behaviors.

KEYWORDS
Reinforcement Learning; Social Simulation; Traffic Control
ACM Reference Format:
Abdul Rahman Kreidieh, Yibo Zhao, Samyak Parajuli, and Alexandre M.
Bayen. 2022. Learning Generalizable Multi-Lane Mixed-Autonomy Behav-
iors in Single Lane Representations of Traffic: Extended Abstract. In Proc.
of the 21st International Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 3 pages.

1 INTRODUCTION
Reinforcement learning techniques can provide substantial insights
into the desired behaviors of future autonomous driving systems. By
solving for societal metrics of traffic such as increased throughput
and reduced fuel consumption, such methods can derive maneuvers
that may significantly improve the quality of traffic. These methods,
however, are hindered in practice by the difficulty of designing
accurate large-scale models of traffic, as well as the challenges
associated with learning behaviors for dozens of interacting agents.

In this paper, we demonstrate that policies learned in simple and
computationally efficient ring road settings, if properly defined, can
effectively generalize to more complex problems. To enable proper
generalization, we identify two limiting factors that exacerbate the
dynamical mismatch between the two problems and devise methods
for addressing each of them. For one, to address mismatches that
arise from variations in the boundary conditions, we construct
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a curriculum learning paradigm that scales the performance of
policies learned to larger rings, where boundaries pose less of a
concern. Next, to address perturbations that arise from lane changes
and cut-ins, we introduce a simple approach for simulating such
disturbances in single-lane settings. We validate our method on a
calibrated model of the I-210. Our findings suggest that learning
in larger rings and introducing pseudo-lane changes can greatly
improve the generalizability of resultant behaviors.

2 EXPERIMENTAL SETUP
We define the mixed-autonomy ring road problem as an extension
of the standard model depicted in [2] in which the actions of decen-
tralized agents dictate the desired accelerations of individual AVs.
Let S𝐴𝑉 ⊂ {1, . . . , 𝑛} be the set of AVs whose actions are dictated
by a learning agent, 𝜋𝜃 with shared parameters 𝜃 . The system of
differential equations depicting the dynamics of the network is:

¥𝑥𝑖 (𝑡) = 𝑓 ( ¤𝑥𝑖 (𝑡), ¤𝑥𝑖+1 (𝑡),Δ𝑥𝑖 (𝑡)) 𝑖 = 1, . . . , 𝑛 − 1 | 𝑖 ∉ S𝐴𝑉
¥𝑥𝑖 (𝑡) = 𝜋𝜃 (𝑠𝑖 (𝑡)) 𝑖 ∈ S𝐴𝑉
¥𝑥𝑛 (𝑡) = 𝑓 ( ¤𝑥𝑛 (𝑡), ¤𝑥1 (𝑡),Δ𝑥𝑛 (𝑡))

(1)

where 𝑥𝑖 (𝑡) is the position of vehicle 𝑖 at time 𝑡 , 𝑓 is a car-following
model1, and 𝑠𝑖 (𝑡) is the state of AV 𝑖 at time 𝑡 , defined as the ego
speed, leader speed, and space headway across multiple timesteps.
Within this task, agents are incentivized to solve for socially optimal
driving behaviors by rewarding speeds near the network’s uniform-
flow equilibrium [7]. We expand on this in our main paper.

2.1 Limitations to Generalizability
Learning traffic regulation policies within simulated ring roads
presents several notable benefits in the context of RL. For one, the
simplicity of the dynamics renders the problem easy to reconstruct
and computationally efficient to simulate. In addition, notions of
stability and social optimally render the definition of the reward
function relatively straightforward. The question, nevertheless, re-
mains: Are policies learned within these tasks usable in more com-
plex settings? To study this, we identify and address two features
deemed key in improving the performance of learned policies.

2.1.1 Boundary conditions. The first of these challenges considers
the effect of periodic boundary conditions unique to closed (circu-
lar) networks.These boundaries produce strong couplings between
1We consider the Intelligent Driver Model [5], a popular model for simulating string-
instabilities in human driving, and set the parameters to match the work of [1].
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Figure 1: Explored problem and transfer learning procedure. This paper aims to learn policies in ring road settings that are transferable to
more complex tasks. The target network is a section of I-210 in which outflow restrictions result in the formation of stop-and-go congestion.

Figure 2: Learning curves for different methods/environments.

the actions of an individual vehicle and the response of all other
vehicles. This is contrary to the unidirectional nature of traffic in
open networks [6], and likely results in the formation of undesirable
behaviors. Larger diameter rings with additional vehicles, as noted
in [3], can help dilute the effects of these boundaries. Learning in
these settings, however, poses a challenge to multiagent RL. To
assist policies learn in larger tasks, we design a curriculum learning
paradigm that exploits the extendability of mixed-autonomy rings.
Within this paradigm, policies are originally trained in rings of
length 𝐿 with 1 AV. This solution fails in much larger rings, but
serves as a proper initialization in rings of length 2𝐿 with 2 AVs. As
such, we retrain a policy in the 2 AV setting using the prior warm
start, and continue to repeat this process until a proper initialization
may be provided to an 𝑛-AV problem.

2.1.2 Perturbations by adjacent lanes. In addition to the effects of
boundaries, perturbations induced by lane changes also present a
significant challenge. These perturbations, which include sudden
reductions in gaps from overtaking actions and other fluctuations
in network densities, expose the learned policy to unexpected dis-
turbances which may destabilize the system if not addressed. To
resolve this concern, we attempt tomodel the effects of lane changes
from the perspective of individual lanes. To do so, we take inspi-
ration from the work of [8] and model lane changes as stochastic
insertions and deletions of vehicles within the ring. These behav-
iors are modeled using a uniform distribution for the entry and exit
probabilities, 𝑝enter and 𝑝exit respectively, with entry vehicles being
initially placed at the midpoint between two vehicles and driving at
the average speed of the network. This represents the simplest ap-
proach for modeling such effects in single-lane traffic. In the context
of transfer learning, this closest to domain randomization [4].

3 NUMERICAL RESULTS
In this section, we present numerical results for the proposed train-
ing procedures. Through these results, we aim to answer the fol-
lowing: 1) Does the curriculum learning procedure improve the

Figure 3: Delays incurred by different policies on the I-210.

scalability of learning algorithms? 2) What effect do larger rings
and simulated lane changes have on the transferability of policies?

Ring Experiments Figure 2 depicts the learning performance on
the ring road task with and without the use of lane changes and cur-
ricula, evaluated the policy’s ability to achieve uniform-flow speeds.
As we can see, while early stage problems perform well without
curricula, policies struggle to achieve a similar degrees of traffic
stabilization as the size and complexity of the problem increases.
Conversely, when trained via a curriculum of gradually growing
rings, policies continue to achieve scores near to the ideal value of 1.

Realistic Network Experiments Next, we study the generaliz-
ability of the learned policy by evaluating its zero-shot transfer to
an calibrated model of human-driving. The network considered
(Figure 1) is a 1-mile section of the I-210 in Los Angeles, CA.We here
exploit the work of [1], which explores the role of mixed-autonomy
systems in improving the energy-efficiency of the I-210.

Figure 3 depicts the performance of the different learned policies
once transferred onto the I-210, evaluated on the policy’s ability
to minimize stopped traffic. To evaluate the effect of chosen lane
change distributions, we assume values for 𝑝enter and 𝑝exit that are
multiples of the true values experienced within the I-210. As we can
see, introducing lane changes reduces in the duration of stopped
traffic in the target network. This is also the case as the size of the
problem grows, until the boundary stops plays a significant role. In
must be noted however, that lane changes, while reducing stopped
traffic, also reduce the speed of traffic once severely off-distribution.
You can learn more about this in our full paper.

ACKNOWLEDGMENT
This material is based upon work supported by the U.S. Department
of Energy’s Office of Energy Efficiency and Renewable Energy
(EERE) award number CID DE-EE0008872. The views expressed
herein do not necessarily represent the views of the U.S. Department
of Energy or the United States Government.

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1664



REFERENCES
[1] Jonathan W Lee, George Gunter, Rabie Ramadan, Sulaiman Almatrudi, Paige

Arnold, John Aquino, William Barbour, Rahul Bhadani, Joy Carpio, Fang-Chieh
Chou, et al. 2021. Integrated Framework of Vehicle Dynamics, Instabilities, Energy
Models, and Sparse Flow Smoothing Controllers. In Proceedings of the Workshop
on Data-Driven and Intelligent Cyber-Physical Systems. 41–47.

[2] Gábor Orosz and Gábor Stépán. 2006. Subcritical Hopf bifurcations in a car-
following model with reaction-time delay. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences 462, 2073 (2006), 2643–2670.

[3] Gábor Orosz, R Eddie Wilson, Róbert Szalai, and Gábor Stépán. 2009. Exciting
traffic jams: Nonlinear phenomena behind traffic jam formation on highways.
Physical review E 80, 4 (2009), 046205.

[4] Josh Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba, and Pieter
Abbeel. 2017. Domain randomization for transferring deep neural networks from

simulation to the real world. In 2017 IEEE/RSJ international conference on intelligent
robots and systems (IROS). IEEE, 23–30.

[5] Martin Treiber, Ansgar Hennecke, and Dirk Helbing. 2000. Congested traffic states
in empirical observations and microscopic simulations. Physical review E 62, 2
(2000), 1805.

[6] Martin Treiber and Arne Kesting. 2011. Evidence of convective instability in con-
gested traffic flow: A systematic empirical and theoretical investigation. Procedia-
Social and Behavioral Sciences 17 (2011), 683–701.

[7] Cathy Wu, Aboudy Kreidieh, Eugene Vinitsky, and Alexandre M Bayen. 2017.
Emergent behaviors in mixed-autonomy traffic. In Conference on Robot Learning.
PMLR, 398–407.

[8] Cathy Wu, Eugene Vinitsky, Aboudy Kreidieh, and Alexandre Bayen. 2017. Multi-
lane reduction: A stochastic single-lane model for lane changing. In 2017 IEEE 20th
International Conference on Intelligent Transportation Systems (ITSC). IEEE, 1–8.

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1665


	Abstract
	1 Introduction
	2 Experimental Setup
	2.1 Limitations to Generalizability

	3 Numerical Results
	References



