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ABSTRACT
Measuring and comparing resilience is crucial for evaluating differ-
ent algorithms’ performance. Existing resilience metrics focus on a
system’s ability to maintain a particular state, but are inadequate to
evaluate whether a system can achieve a novel state after an unex-
pected disturbance. The presented resilience power metric is used to
analyze two best-of-N algorithms. Both algorithms exhibited high
resilience power when changing the collective’s population size,
but this result did not correlate with high overall task performance.
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1 INTRODUCTION
Robotic systems are increasingly operating in uncertain and dy-
namic environments. Robots must exhibit resilience, meaning re-
sistance to unexpected disruptions, or recovery from unavoid-
able events through adaptive behaviors. Quantitatively comparing
resilience between different algorithms is necessary to evaluate
robotic systems’ performance. Robotic collectives offer unique ad-
vantages for certain tasks, such as searching a large spatial area.
Real-world operations can introduce unexpected changes to the
collective or its operational environment. The collective’s algorithm
must adjust to current circumstances and recover from unexpected
setbacks. Resilience metrics must measure how well an algorithm
copes with unexpected events, and enable evaluation of whether
alternative algorithms improve the collective’s performance.

2 RELATED RESEARCH
The best-of-N consensus decision making problem requires agents
select from two or more alternatives (e.g., honeybee nest selection
[13, 14]). Scouts search for prospective site locations, and recruit
other scouts to consider the discovered options. The best-of-N prob-
lem is an achievement oriented task, where the task is complete
after a particular goal state is reached [16]. Existing resilience met-
rics were primarily developed for equilibrium based control systems

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

seeking to maintain a desired property/state over time (e.g., [1, 4–
7]). These metrics assess the deviation from a nominal state, and the
time and effort required to restore the system’s prior performance.

Studies of disturbances’ effects on robotic collectives are limited.
Agent-based consensus decision-making implementations gener-
ally focus on unchanging environmental configurations and collec-
tive sizes; however, both the number of agents and the potential
sites’ spatial distribution can affect the collective’s selection accu-
racy [9, 10, 15]. Understanding external disturbances’ impact on
the decision process is critical to designing resilient collectives.

3 CONSENSUS ALGORITHMS
The performance and resilience of two best-of-N algorithms are
investigated. The 𝐴𝑐𝑜𝑟𝑒 algorithm implements Reina’s agent-based
model [11]. Robots probabilistically transition between uncommit-
ted and favoring states while forming a consensus. Robots in latent
states explore the environment, while interactive robots wait in
the hub. Robots that sense a quorum transition to a committed
state and no longer consider alternatives. A limitation of 𝐴𝑐𝑜𝑟𝑒 is
environmental bias, where a site closer to the hub is selected over
the highest valued site [10, 15]. The collective can build sufficient
support for the nearby site and select it before robots favoring the
highest valued site can recruit enough uncommitted robots [8, 12].

𝐴𝑒𝑥𝑡 extends𝐴𝑐𝑜𝑟𝑒 in two ways.𝐴𝑒𝑥𝑡 introduces state transition
delays that enable simultaneous comparison of sites. Robots favor-
ing nearby sites are delayed more than robots favoring distant sites.
𝐴𝑒𝑥𝑡 also increases the interaction rate of robots favoring more
distant sites relative to each sites’ distance to the hub [2, 3].

Disturbances affect the outcome by altering the states, the possi-
ble state transitions induced by an agent’s actions, the state transi-
tion probabilities, or a combination thereof. Disturbances can alter
the outcome even if a robot or the collective is not directly affected.

4 EXPERIMENTAL DESIGN
The hypothesis was that 𝐴𝑒𝑥𝑡 will achieve greater or equal selec-
tion accuracy as 𝐴𝑐𝑜𝑟𝑒 when agents are removed during runtime
(Remove Agents disturbance). The task successfully completed if
the highest valued site was selected, and failed if any other site
was selected or there was no consensus after 100,000 iterations.
Fifty trials were conducted for each combination of independent
variables and site configurations, as well as with no disturbance.
The independent variables (see Table 1) were the number of
agents at a trial’s start, the site locations and qualities (listed in
increasing distance from the hub), the disturbance timing relative
to the decision progress, and the change in collective population
size. The dependent variables were selection accuracy and re-
silience power. Selection accuracy represents the percentage of trials
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Table 1: Independent variables

Variable Values

Number of Agents 100, 300, 500
Site Value 60, 70, 80, 90
Site Locations 250-400m from the hub
Disturbance Timing 15%, 35%, 60%
Agents Removed 25%, 50%

Site configurations

SC.1 Easy (90, 80, 70, 60)
SC.2 Easy (60, 90, 80, 70)
SC.3 Hard (80, 70, 60, 90)

in which the collective selected the best site. The resilience power is
the probability that an algorithm starting at a state 𝑠0 successfully
reaches a goal state before a time deadline 𝑇 :

𝜃 (𝑇 ; 𝑠0) =
(
𝑃𝐺 (true|𝑠0;𝑇 )

)
.

This metric permits comparing an algorithm’s real-world perfor-
mance to its performance in ideal conditions.

5 RESULTS
Selection accuracy for both algorithms after the Remove Agents dis-
turbance demonstrated similar trends to their respective baselines.
𝐴𝑐𝑜𝑟𝑒 ’s baseline performance ranged from 90-100% for the SC.1 easy
site configuration, 60-94% for the SC.2 easy configuration, and 0-8%
for SC.3, shown as 𝐴𝑐𝑜𝑟𝑒 in Figure 1. 𝐴𝑐𝑜𝑟𝑒 ’s post-disturbance se-
lection accuracy ranged from 82% (original collective = 100 agents)
to 98-100% (500 agents) for SC.1, 66-70% (100 agents) to 94-96% (500
agents) for SC.2, and 12% (100 agents) to 0% (500 agents) for SC.3.

𝐴𝑒𝑥𝑡 ’s baseline selection accuracy ranged from 72-100% for SC.1,
62-90% for SC.2, and 52-88% for SC.3, shown as𝐴𝑒𝑥𝑡 in Figure 1. The
selection accuracy after the disturbance ranged from 68% (original
collective = 100 agents) to 94-96% (500 agents) for SC.1, 72% (100
agents) to 88-92% (500 agents) for SC.2, and 58% (100 agents) to
80-86% (500 agents) for SC.3.

𝐴𝑐𝑜𝑟𝑒 ’s resilience power varied less than𝐴𝑒𝑥𝑡 , from 7 percentage
points below the baseline to 0 points above (SC.1), and increased to 1-
7 points above the baseline (SC.2). SC.3’s power was 0-3 percentage
points above the baseline.

𝐴𝑒𝑥𝑡 ’s resilience power for SC.1 was 4 percentage points below
the baseline for all starting population sizes. SC.2’s power was
between 3 points below the baseline (300 agents) to 5 points above
(100 agents). Finally, SC.3 had the lowest power with 500 agents (2
points below the baseline), while collectives with 100 agents had a
power measurement 4 points above the baseline.

6 DISCUSSION
The hypothesis that the 𝐴𝑒𝑥𝑡 algorithm, with its extensions to
mitigate environmental bias, will demonstrate equal or better per-
formance than the 𝐴𝑐𝑜𝑟𝑒 algorithm was supported. Changing the
collective’s population size at runtime did not cause a substantial
change in either algorithm’s performance relative to the baseline.
The resilience power metric shows that both algorithms are resilient

Figure 1: Results for the Remove Agents disturbance by orig-
inal collective size, population size change, and problem dif-
ficulty. The results for each algorithm are plotted separately.

to the Remove Agents disturbance, due to the relatively small dif-
ference in power between the baseline and post-disturbance results.
However, these results also illustrate that a resilient algorithm is
not necessarily a high-performing algorithm. 𝐴𝑒𝑥𝑡 ’s much greater
selection accuracy for the hard problem (SC.3) demonstrates that
optimizing for resilience alone is an insufficient goal. Resilience is
not a useful attribute if the algorithm has a poor success rate.

The collective’s selection accuracy after the disturbance was sim-
ilar to the undisturbed baseline, because the agents’ state transition
rates were unaffected. The disturbance did not directly alter the
percentage of agents favoring a particular site over a different site,
because agents were removed without regard to their current state
(i.e., the relative proportions of agents in each state was preserved).
The disturbance’s timing also did not affect the collective’s selection
accuracy, because the timing did not affect the rates of initiating
recruitment or inhibition interactions. 𝐴𝑒𝑥𝑡 ’s higher performance
in the hard site configuration demonstrated that the algorithm ex-
tensions mitigated environmental bias, even when the collective’s
population size changed during runtime.

The resilience power metric provides a comparison of the al-
gorithms’ performance between baseline and disturbance config-
urations. The calculation of the power metric was independent
of the algorithms or disturbance variables, which demonstrates
generalizability to other disturbance types and collective tasks.
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