
A Simulation Based Online Planning Algorithm for Multi-Agent
Cooperative Environments

Extended Abstract

Rafid Ameer Mahmud

University of Dhaka

rafidameer-2016814404@cs.du.ac.bd

Fahim Faisal

University of Dhaka

fahim-2016714432@cs.du.ac.bd

Saaduddin Mahmud

University of Massachusetts Amherst

smahmud@umass.edu

Md. Mosaddek Khan

University of Dhaka

mosaddek@du.ac.bd

ABSTRACT
Multi-agent Markov Decision Process (MMDP) has been an effec-

tive way of modelling sequential decision making algorithms for

multi-agent cooperative environments. However, challenges such

as exponential size of action space and dynamic changes limit the

efficacy of proposed solutions. This paper propose a scalable and

robust algorithm that can effectively solve MMDPs in real time. Sim-

ulation, pruning, and prediction are the three key components of the

algorithm. The simulation component enables real time solutions

by using a novel iterative pruning technique which in turn makes

use of the prediction component trained with self play data. The

algorithm is self-sustained as it generates new training data from

simulation and gradually becomes better. Furthermore, we show

empirical results demonstrating the capabilities of the algorithm

and compare them with existing MMDP solvers.
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1 INTRODUCTION
Sequential decision making models for multi-agent environments

hold the key to many real life problems such as autonomous ve-

hicles [10], controlling robots [6], resource allocation [12], games

with multiple types of agents such as Starcraft II [8], multi-agent

path finding [9] and so on. Cooperation among agents and the

curse of dimensionality are the two fundamental challenges of this

domain. As the number of agents increases, the joint action space

and number of states rise exponentially, rendering single agent

planning algorithms impractical in these cases. In multi-agent sys-

tems, the sequential decision making problem can be modeled as a

variant of Markov Decision Process (MDP) [11], called Multi-agent

Markov Decision Process (MMDP) [2].
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Over the years, a number of centralized and decentralized plan-

ning algorithms have been proposed to solve MMDPs. Best et al.

[1] proposed a decentralized online planning algorithm to solve

the dimensionality problem by using parallel MCTS trees and pe-

riodic communication. On the other hand, Aleksander et. al. [4]

introduced an algorithm ABC, where agents do not use commu-

nication, rather they train their individual agent models one at a

time and try to induce cooperation by predicting agent policies

using the learned agent models. Guestrin et al. [5] showed that

communication among agents can be represented as a coordina-

tion graph (CG) and joint value functions can be estimated from

the higher order value factorization. Using this, Choudhury et al.

[3] proposed simulation based anytime online planning algorithm
FV-MCTS-MP, where factored value function is used with CG to

incorporate communication among agents. The proposed solutions

solve both the cooperation and dimensionality problem but fail to

adapt to dynamically changing environments.

we introduce a simulation based anytime planning algorithm,

that we call SiCLOP, for multi-agent cooperative environments.

Specifically, SiCLOP tailors Monte Carlo Tree Search (MCTS) and

uses Coordination Graph (CG) and Graph Neural Network (GCN)

to learn cooperation and provides real time solution of a MMDP

problem. It also improves scalability through an effective pruning of

action space using Gibbs sampling. Additionally, unlike existing ap-

proaches, SiCLOP supports transfer learning, which enables learned

agents to operate in different environments. We also provide theo-

retical discussion about the convergence property of our algorithm

within the context of multi-agent settings. Finally, our extensive

empirical results show that SiCLOP significantly outperforms the

state-of-the-art online planning algorithms.
1

2 SICLOP: MULTI-AGENT ONLINE PLANNING
Our algorithm Simulation based Cooperation Learner and Online
Planner (SiCLOP) is an MMDP solver with three components:

Simulation, SiCLOP-S. We tailor Monte Carlo Tree Search

(MCTS) to present a simulation process that takes an MMDP prob-

lem as input. There are four steps in the simulation process. They

are repeated multiple times within a fixed amount of time to solve

the problem. In the first step, a leaf is reached from the 𝑟𝑜𝑜𝑡 by

sequentially calculating the scores of the children of a node with

Eq. 1. The child with the highest score is then selected.

1
See [7] for detailed discussion about the algorithm, proofs and experiments.
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𝑠𝑐𝑜𝑟𝑒𝑎 = 𝑄 (𝑠, 𝑎) + 𝑐 ∗
√︁
(log𝑁𝑖 )/𝑛𝑖 (1)

Here, 𝑄 (𝑠, 𝑎) is the action value, 𝑐 is the exploration constant, 𝑁𝑖

and 𝑛𝑖 are visit counts of current node and action. After choosing a

leaf node, its child nodes need to be created. The number of possible

child nodes is exponential in magnitude with respect to the number

of agents. Therefore, in the second step, a small subset of joint

actions are sampled from the joint action space with SiCLOP-P. The

child nodes are then created and their state values are predicted
with SiCLOP-NN. The state values are then backpropagated to their

ancestors to complete the next three steps. At the end of generating

the simulation tree, the most visited joint action in the root node is

selected and returned.

Pruning, SiCLOP-P. We propose a novel joint action sampling

method inspired by Gibbs sampling to effectively search over the

joint policy space. It iterates over the agents to predict their best

response policy 𝐵𝑅𝑖 using SiCLOP-NN by assuming other agent

policies 𝜋−𝑖 to be static. This process repeats for multiple cycles

and at the end of each cycle, a joint action is sampled. At cycle 𝑘 ,

the policy of agent 𝑖 is updated with the conditional best response

policy,

𝜋𝑘𝑖 = Ψ(𝜋𝑖 |𝜋𝑘1 , ..., 𝜋
𝑘
𝑖−1, 𝜋

𝑘−1
𝑖+1 , ..., 𝜋

𝑘−1
𝑛 ) (2)

Here, the updated policy 𝜋𝑘
𝑖
is generated from the current static

policies 𝜋−𝑖 . After a fixed number of cycles, the set of sampled joint

actions is returned.

Lemma 2.1. In any iteration of sampling for agent 𝑖 in group N ,
the new sampled policy 𝜋∗

𝑖
∈ 𝐵𝑅𝑖 (𝜋−𝑖 ) will lead to non-decreasing

reward and iterating through all the agents of N will lead to an
equilibrium for that group.

Proof. If the current joint policy of all the agents is 𝜋 and the

updated policy for agent 𝑖 is 𝜋∗
𝑖
, then for all 𝑠 ∈ 𝑆 , the state value,

∀𝑖 ∈ N 𝑉
(𝜋∗

𝑖 ,𝜋−𝑖 )
𝑖

(𝑠) ≥ 𝑉
(𝜋𝑖 ,𝜋−𝑖 )
𝑖

(𝑠) (3)

If all the agents in the group acquire non-decreasing rewards, the

combined reward will also be non-decreasing. As both the joint

action space and reward are finite, iterating through the policy

space will converge to a joint policy equilibrium for the group N .

In non-stationary situations, an equilibrium may not exist, and the

method will converge to a set of equilibria in that case. □

Prediction, SiCLOP-NN. The neural network SiCLOP-NN is

a GCN based policy predictor and state value estimator with two

parts, feature extraction and prediction. The first part is used for

graph embedding with multiple GCN layers. The second part takes

the extracted feature vectors for each agent and generates the best

response policies as boltzmann probability distribution and state
value estimations. The state values are aggregated to construct a

combined estimated state value. SiCLOP-NN takes the local infor-

mation of the agents and a Coordination Graph (CG) as input. The

definition of the local information can be defined according to the

environment, for example, the cells within a limited range of an

agent. The CG can also be constructed according to predefined

rules. The neural network is trained on the simulation data col-

lected from recent MMDP problem solutions as it better represents

the currently learned policy generation. SiCLOP-NN trains and

predicts on states consisting of a variable number of agents, with
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Figure 1: Performance comparison
their internal interactions passed as CG into the GCN block. Thus,

SiCLOP-NN’s architecture allows making predictions in environ-

ments of any size and shape, allowing it to be transferred to other

environments of varying setups.

3 EMPIRICAL RESULTS AND CONCLUSION
We have evaluated SiCLOP’s performance in a grid world where

the agents need to reach specific cells by cooperating and avoiding

penalties like colliding with each other and obstacles. We tested

the transfer learning capability by training the algorithm in a 10*10

grid with 4 agents and 15 obstacles, then deploying it in different

environments, as shown in Table 1. The average score around 1.0

means the agents were able to complete their tasks successfully.

Environment List

Grid Size Agents Obstacles Avg. Score

20*20 20 24 1.06

50*50 100 200 1.15

100*100 150 250 1.32

Table 1: Transferring and testing in new environments

To compare with other planning algorithms, we tested ABC and

FV-MCTS-MP on the same environment and MMDP problems, as

shown in Figure 1. The negative average score denotes succumbing

to the penalties. As we can see, SiCLOP outperforms other MMDP

solvers as the environment becomes larger.

4 CONCLUSIONS
This paper introduces a scalable and adaptive algorithm to solve

MMDP. Our algorithm SiCLOP uses local information of the agents

to construct state dependant dynamic CGs and uses it to find opti-

mum policies through effective pruning. It has been shown theoreti-

cally that our novel sampling process can find optimal policies for a

group of agents. Combined with simulation and learning, SiCLOP is

then able to recursively find better policies. We have shown that our

algorithm can adapt to larger, dynamic, more realistic environments

and outperform existing online MMDP solvers.
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