
Towards Assume-Guarantee Verification of Strategic Ability
Extended Abstract

Łukasz Mikulski1,2, Wojciech Jamroga2,3, and Damian Kurpiewski2,1
1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland

2 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
3 Interdisciplinary Centre for Security, Reliability and Trust, SnT, University of Luxembourg, Luxembourg

lukasz.mikulski@mat.umk.pl,wojciech.jamroga@uni.lu,d.kurpiewski@ipipan.waw.pl

ABSTRACT
Formal verification of strategic abilities is a hard problem. We pro-
pose to use the methodology of assume-guarantee reasoning in
order to facilitate model checking of alternating-time temporal
logic with imperfect information and imperfect recall.

KEYWORDS
model checking, assume-guarantee reasoning, strategic ability
ACM Reference Format:
ŁukaszMikulski, Wojciech Jamroga, and Damian Kurpiewski. 2022. Towards
Assume-Guarantee Verification of Strategic Ability: Extended Abstract. In
Proc. of the 21st International Conference on Autonomous Agents and Multia-
gent Systems (AAMAS 2022), Online, May 9–13, 2022, IFAAMAS, 3 pages.

1 INTRODUCTION
Alternating-time temporal logic ATL∗ [1, 2, 32] and Strategy Logic
SL [10, 29] provide powerful tools to reason about strategic aspects
of MAS. Specifications in agent logics can be used as input to
algorithms and tools formodel checking [3–5, 7–9, 11, 19, 21, 24, 26].
However, verification of strategic abilities suffers both from state-
space and strategy-space explosion. Even for the more restricted
logic ATL, model checking of its imperfect information variants
ranges from ∆P

2–complete to undecidable [6, 14, 16, 20, 32].
In this paper, we make the first step towards compositional

model checking of strategic properties in asynchronous multi-agent
systems with imperfect information and imperfect recall. To this
end, we creatively expand the assume-guarantee framework of [27,
28]. Instead of searching through the states and strategies of the
entire model, we “factorize” it and perform most of the search
locally, using assume-guarantee reasoning [12, 31]. We illustrate the
approach by means of a simple voting scenario. Finally, we evaluate
the practical gains through verification experiments.
Relatedwork.Compositional verification dates back to [18, 23, 30],
and has been intensively studied for temporal specifications [12,
13, 15, 17, 25, 27, 28, 31]. Our approach is based on [27, 28], where
assume-guarantee rules were defined for liveness properties of
MAS. A related scheme for ATL with perfect information strategies
and aspect-oriented programs was considered in [13].

2 MODELS OF CONCURRENT MAS
We use the MAS representations of [27, 28], which allow for asyn-
chronous and synchronous composition of local transitions.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

?, ?, ?

start

1, ?, ? 2, ?, ?

1, 1, ? 1, !, ? 2, !, ? 2, 2, ?

1, 1, T 1, 1, F 1, !, F 1, !, T 2, !, T 2, !, F 2, 2, F 2, 2, T

∀ ∀

∀ ∀ ∀ ∀

T F F T T F F T
? ? ? ?

∀ ∀ ∀ ∀ ∀ ∀ ∀ ∀

Figure 1: Module of a voter deciding between two candidates

Modules. Let D be a domain (for all variables used in the system).
For any set of variables X , let DX be a set of all valuation functions
onX . We follow [28], and divide the variables in a module into state
variables and input variables. An agent can read and modify only
its state variables. The input variables are not a part of its state, but
their values limit the set of executable transitions.

Definition 2.1 (Module [28]). A module isM = (X , I ,Q,T , λ,q0),
where: X , I are finite sets of state and input variables, respectively,
with X ∩ I = ∅; Q is a finite set of states; λ : Q → DX labels
each state with a valuation of the state variables; q0 ∈ Q is the
initial state; T ⊆ Q × DI × Q is a transition relation. We require
that if (q,α ,q′) ∈ T ,q , q′, then (q,α ,q) < T , and for each pair
(q,α) ∈ Q × DI there exists q′ ∈ Q such that (q,α ,q′) ∈ T .

Example 2.2. We use a voting scenario, inspired by [21, 22], con-
sisting of modulesM (1) , . . . ,M (n) of voters andM (c) of a coercer.

Every voter has three local variables in X (i) : vote (i) : the vote
being cast (?, 1, or 2); reported (i) : the vote value presented to the
coercer (?, 1, 2 or !), where !means that the voter decided not to show
her vote; pstatus (i) : the punishment status (?,T or F). Moreover,
I (i) consists of variable pun(i) controlled by the coercer. The voter
first casts her vote, then decides whether to share its value with the
coercer. Finally, she waits for the coercer’s decision to punish her
or to refrain from punishment. The module is shown in Figure 1.

The coercer has two available actions per voter: to punish the
voter or to refrain from punishment. He can execute them in any
order, but only after the respective voters decide to share or not.

ModulesM,M ′ are asynchronous if X ∩X ′ = ∅. Note that all the
modules presented in Example 2.2 are asynchronous.
Composition of Modules. The model of a MAS is given by the
asynchronous compositionM = M (1) | . . . |M (n) that combinesmod-
ulesM (1) , . . . ,M (n) into a single moduleM [28]. The composition
is standard; it only requires the compliance of the valuations.

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1702

Traces and Words. A trace of a moduleM is an infinite sequence
of alternating states and transitions σ = q0α0q1α1 . . ., where q0 is
the initial state and (qi ,αi ,qi+1) ∈ T for every i ∈ N. An infinite
word w = v0v1, . . . ∈ (DX)ω is derived by module M with trace
σ = q0α0q1α1 . . . if vi = λ(qi) for all i ∈ N. An infinite word
u = α0α1, . . . ∈ (DI)ω is admitted byM with σ if σ = q0α0q1α1 . . .
. Finally,w (resp. u) is derived (resp. admitted) byM if there exists
a trace ofM that derives (resp. admits) it.

3 WHAT AGENTS CAN ACHIEVE
Alternating-time temporal logic ATL∗ [1, 2, 32] introduces strate-
gic modalities ⟨⟨C⟩⟩γ , expressing that coalition C can enforce the
temporal property γ . In this paper, we use the imperfect informa-
tion/imperfect recall variant without next step operatorX and nested
strategic modalities, denoted sATL∗ (“simple ATL∗”).
Syntax. Formally, the syntax of sATL∗ is defined by:
ϕ ::= p (Y) | ¬ϕ | ϕ ∧ ϕ | ⟨⟨C⟩⟩γ ; γ ::= p (Y) | ¬γ | γ ∧ γ | γ Uγ .

where p : Y → D for some subset of domain variables Y ⊆ X .
That is, each atomic statement refers to the valuation of a subset
of variables used in the system. U is the “strong until” operator
of LTL. The “sometime” and “always” operators F and G can be
defined as usual by Fγ ≡ ⊤Uγ and Gγ ≡ ¬(⊤U¬γ).
Semantics.Amemoryless imperfect information strategy for agent i
is a function si : Qi → Ti . We say that a trace σ (word derived with
σ) implements a strategy si if for any j where q (i)j , q

(i)
j+1 we have

si (q
(i)
j) = (q

(i)
j ,α j ,q

(i)
j+1), where α j : Ii → D and α j (x) = λ(qj) (x).

Let C ⊆ {1, . . . ,n} be a set of agent indices. We define joint
strategies forC as tuples of individual strategies, one per i ∈ C . The
semantics of strategic operators is given by the following clause:

M,q |= ⟨⟨C⟩⟩γ if there exists a joint strategy sC for C such that,
for any wordw that implements sC , we haveM,w |= γ .

4 ASSUMPTIONS AND GUARANTEES
We propose an assume-guarantee scheme, where one can reduce
the complexity of model checking sATL∗ by verifying individual
strategic abilities of single agents against overapproximating ab-
stractions of its environment, i.e., the rest of the system. The general
idea is that if an agent has a successful strategy in a more nonde-
terministic environment, then it can can use the same strategy to
succeed in the original model. Moreover, it often suffices to prepare
the abstraction based only of the modules that are connected with
the agent by at most k synchronization steps.
Assumptions and Guarantees. The environmental abstractions
are formalized by assumptions A = (MA, F), whereMA is a module
and F is a set of accepting states that provide Büchi-style accepting
rules for infinite traces derived by M . The assumption should be
constructed so that it guarantees that the set of computations ac-
cepted by A covers the sequences of changes in the input variables
IM of moduleM . We capture those changes by the notion of curtail-
ment. Formally, a sequence v = v1v2 . . . over DY is a curtailment
of sequence u = u1u2 . . . over DX (where Y ⊆ X) if there exists
an infinite sequence of indices j1 < j2 < ... with j1 = 1 such that
∀i∀ji ≤k<ji+1vi = uk |Y .

V Monolithic model checking Assume-guarantee verification
#st #tr DFS Apprx #st #tr DFS Apprx

2 529 2216 <0.1 <0.1/Yes 161 528 <0.1 <0.1/Yes
3 1.22e4 1.28e5 <0.1 0.8/Yes 1127 7830 <0.1 <0.1/Yes
4 2.79e5 6.73e6 <0.1 30/Yes 7889 1.08e5 <0.1 0.5/Yes
5 6.43e6 3.42e8 timeout 5.52e4 1.45e6 <0.1 8/Yes
6 timeout 3.86e5 1.92e7 <0.1 135/Yes
7 timeout timeout

Table 1: Results of assume-guarantee verification for simple
voting (times given in seconds; timeout=2h)
The Scheme. LetM = M1 |M2 | . . . |Mn be a system composed from
modules M1,M2, . . . ,Mn , where XMi ∩ XMj = ∅ for i , j. By
Comp1i we denote the composition of all modules directly related
toMi . Moreover, Compki denotes the composition of the modules
in Compk−1i and the modules directly related to them (except for
Mi). Further, letψi , i ∈ C be path formulas of sATL∗, one for each
agent inC . Simple assume-guarantee reasoning for strategic ability
is provided by the following inference rule:

Rk

∀i ∈C Mi |Ai |=ir ⟨⟨i⟩⟩ψi
∀i ∈C Compki |= Ai

M1 |...|Mn |=ir ⟨⟨C⟩⟩
∧
i ∈C ψi

5 EXPERIMENTS
Here, we present preliminary experimental results for the assume-
guarantee rule proposed in Section 4, using the voting scenario
of Example 2.2 as the benchmark. The assumptions are provided
by a simplified module of the coercer, where he only waits for the
value reported by Voter1, no matter how he reacts to other voters’
choices. The algorithms have been implemented in Python, and
run on a server with 2.40 GHz Intel Xeon Platinum 8260 CPU, 991
GB RAM, and 64-bit Linux.

The verified formulawasφ ≡ ⟨⟨Voter1⟩⟩G(¬pstatus1∨voted1 = 1).
The results are presented in Table 1. The first column describes
the configuration of the benchmark, i.e., the number of the voters.
Then, we report the performance of model checking algorithms
that operate on the explicit model of the whole system vs. assume-
guarantee verification. DFS is a straightforward implementation
of depth-first strategy synthesis. Apprx refers to the method of
fixpoint-approximation [21]; besides the time, we also report if the
approximation was conclusive.

6 CONCLUSION
In this paper, we sketch how assume-guarantee reasoning can be
extended for verification of strategic abilities. Themain idea is to fac-
torize coalitional abilities by the abilities of the coalition members,
and to verify the individual abilities against Büchi-style abstractions
of the agents’ environment of action. Preliminary experimental
evaluation has produced very promising results, showing notice-
able improvement in the verification of large models consisting of
asynchronous agents with independent goals.

ACKNOWLEDGMENTS
We acknowledge the support of the National Centre for Research
and Development, Poland (NCBR), and the Luxembourg National
Research Fund (FNR), under the PolLux/FNR-CORE project STV
(POLLUX-VII/1/2019 – C18/IS/12685695/IS/STV/Ryan).

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1703

REFERENCES
[1] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic. In

Proc. of FOCS’97, pages 100–109. IEEE Comput. Soc. Press, 1997.
[2] R. Alur, T.A. Henzinger, and O. Kupferman. Alternating-time Temporal Logic. J.

of the ACM, 49:672–713, 2002.
[3] R. Alur, T.A. Henzinger, F.Y.C. Mang, S. Qadeer, S. Rajamani, and S. Tasiran.

MOCHA: Modularity in model checking. In Proc. of CAV’98, volume 1427 of
LNCS, pages 521–525. Springer, 1998.

[4] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin. Verification of broadcasting
multi-agent systems against an epistemic strategy logic. In Proc. of IJCAI’17,
pages 91–97, 2017.

[5] F. Belardinelli, A. Lomuscio, A. Murano, and S. Rubin. Verification of multi-agent
systems with imperfect information and public actions. In Proc. of AAMAS’17,
pages 1268–1276, 2017.

[6] N. Bulling, J. Dix, and W. Jamroga. Model checking logics of strategic ability:
Complexity. In Specification and Verification of Multi-Agent Systems, pages 125–
159. Springer, 2010.

[7] S. Busard, C. Pecheur, H. Qu, and F. Raimondi. Improving the model checking of
strategies under partial observability and fairness constraints. In Formal Methods
and Software Engineering, volume 8829 of LNCS, pages 27–42. Springer, 2014.

[8] P. Cermák, A. Lomuscio, F. Mogavero, and A. Murano. MCMAS-SLK: A model
checker for the verification of strategy logic specifications. In Proc. of CAV’14,
volume 8559 of LNCS, pages 525–532. Springer, 2014.

[9] P. Cermák, A. Lomuscio, and A. Murano. Verifying and synthesising multi-agent
systems against one-goal strategy logic specifications. In Proc. of AAAI’15, pages
2038–2044, 2015.

[10] K. Chatterjee, T.A. Henzinger, and N. Piterman. Strategy Logic. Inf. and Comp.,
208(6):677–693, 2010.

[11] T. Chen, V. Forejt, M. Kwiatkowska, D. Parker, and A. Simaitis. PRISM-games: A
model checker for stochastic multi-player games. In Proc. of TACAS’13, volume
7795 of LNCS, pages 185–191. Springer, 2013.

[12] E.M. Clarke, D.E. Long, and K.L. McMillan. Compositional model checking. In
Proc. of LICS’89, pages 353–362. IEEE Comput. Soc. Press, 1989.

[13] B. Devereux. Compositional reasoning about aspects using alternating-time logic.
In Proc. of FOAL’03, pages 45–50, 2003.

[14] C. Dima and F.L. Tiplea. Model-checking ATL under imperfect information and
perfect recall semantics is undecidable. CoRR, abs/1102.4225, 2011.

[15] N. Fijalkow, B. Maubert, A. Murano, and M.Y. Vardi. Assume-guarantee synthesis
for prompt linear temporal logic. In Proc. of IJCAI’20, pages 117–123. ijcai.org,
2020.

[16] D.P. Guelev, C. Dima, and C. Enea. An alternating-time temporal logic with
knowledge, perfect recall and past: axiomatisation and model-checking. J. Appl.
Non-Classical Log., 21(1):93–131, 2011.

[17] T.A. Henzinger, S. Qadeer, and S.K. Rajamani. You assume, we guarantee: Method-
ology and case studies. In Proc. of CAV’98, volume 1427 of LNCS, pages 440–451.
Springer, 1998.

[18] C.A.R. Hoare. An axiomatic basis for computer programming. Commun. ACM,
12(10):576–580, 1969.

[19] X. Huang and R. van der Meyden. Symbolic model checking epistemic strategy
logic. In Proc. of AAAI’14, pages 1426–1432, 2014.

[20] W. Jamroga and J. Dix. Model checking ATLir is indeed ∆P2 -complete. In Proc.
of EUMAS’06, volume 223 of CEUR Workshop Proc., 2006.

[21] W. Jamroga, M. Knapik, D. Kurpiewski, and Ł. Mikulski. Approximate verification
of strategic abilities under imperfect information. Artif. Int., 277, 2019.

[22] W. Jamroga, W. Penczek, T. Sidoruk, P. Dembiński, and A.W. Mazurkiewicz.
Towards partial order reductions for strategic ability. J. Artif. Intell. Res., 68:817–
850, 2020.

[23] C.B. Jones. Specification and design of (parallel) programs. In Proc. of IFIP’83,
pages 321–332. North-Holland/IFIP, 1983.

[24] D. Kurpiewski, W. Pazderski, W. Jamroga, and Y. Kim. STV+Reductions: Towards
practical verification of strategic ability using model reductions. In Proc. of
AAMAS’21, pages 1770–1772. ACM, 2021.

[25] M.Z. Kwiatkowska, G. Norman, D. Parker, and H. Qu. Assume-guarantee veri-
fication for probabilistic systems. In Proc. of TACAS’10, volume 6015 of LNCS,
pages 23–37. Springer, 2010.

[26] A. Lomuscio, H. Qu, and F. Raimondi. MCMAS: An open-sourcemodel checker for
the verification of multi-agent systems. Int. J. Soft. Tools Tech. Trans., 19(1):9–30,
2017.

[27] A. Lomuscio, B. Strulo, N.G. Walker, and P. Wu. Assume-guarantee reasoning
with local specifications. In Proc. of ICFEM’10, volume 6447 of LNCS, pages
204–219. Springer, 2010.

[28] A. Lomuscio, B. Strulo, N.G. Walker, and P. Wu. Assume-guarantee reasoning
with local specifications. Int. J. Found. Comput. Sci., 24(4):419–444, 2013.

[29] F. Mogavero, A. Murano, G. Perelli, and M.Y. Vardi. Reasoning about strategies:
On the model-checking problem. ACM Trans. Comp. Log., 15(4):1–42, 2014.

[30] S.S. Owicki and D. Gries. Verifying properties of parallel programs: An axiomatic
approach. Commun. ACM, 19(5):279–285, 1976.

[31] A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In Logics and Models of Concurrent Systems, volume 13 of NATO ASI Series,
pages 123–144. Springer, 1984.

[32] P.Y. Schobbens. Alternating-time logic with imperfect recall. Electr. Not. Theor.
Comput. Sci., 85(2):82–93, 2004.

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1704

	Abstract
	1 Introduction
	2 Models of Concurrent MAS
	3 What Agents Can Achieve
	4 Assumptions and Guarantees
	5 Experiments
	6 Conclusion
	Acknowledgments
	References

