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ABSTRACT
We consider the computational problem of partitioning items into

bundles among alternatives to maximize social welfare. Unfortu-

nately, many important classes of this problem are computationally

hard, including well-known instances in the multi-agent systems lit-

erature. In this paper we analyze novel concise representations and

restrictions that admit polynomial-time algorithms for many such

combinatorial assignment problems, and prove several complexity

results for them. We provide efficient approximation algorithms

and non-trivial exponential-time algorithms for the hard cases.
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1 INTRODUCTION
Efficiently distributing resources in a sustainable and effective way

is one of the most important and challenging problems in society.

Different combinatorial assignment problems, in which the goal is to

divide a number of indivisible items among alternatives tomaximize

welfare/value, appear in a wide range of settings. Such settings

include operations research, economics and artificial intelligence,

with real-world applications in combinatorial auctions [27], multi-

target tracking and sensor fusion [8], course assignment [4, 19],

resource allocation [15], and team/coalition formation [16, 21].

Many important combinatorial assignment problems are how-

ever computationally hard, hard to approximate in polynomial time,

and/or require an input size that is exponential in one of the pa-

rameters. Important examples of such problems include coalition
structure generation [26], combinatorial auction winner determina-
tion [25], and generalized assignment [5].

In light of this, we investigate the computational aspects of two

hard general classes of combinatorial assignment problems:

(1) Utilitarian combinatorial assignment (UCA), in which the

sum of all the bundle-to-alternative assignments is maxi-

mized with the goal to maximize a system’s total output.
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Examples include multi-agent scenarios where the goal is to

simultaneously form agent teams and assign them to tasks.

(2) Egalitarian combinatorial assignment (ECA), in which the

value of the bundle that is worst off is maximized; i.e., we

want to keep the weakest link as strong as possible. An exam-

ple of this is equitable distribution of indivisible resources.

To this end, our main contributions can be summarized as follows:

• We develop a novel hypergraph characterization of UCA,

enabling us to prove several new state-of-the-art results.

• We consider practical restrictions that make combinatorial

assignment problems tractable and/or approximable in poly-

nomial time. This work includes e.g., bounded combinatorial
assignment, in which bundles of size larger than some con-

stant are given value zero.

• We explore combinatorial assignment generalizations with

externalities (i.e., cross-bundle value dependencies) that we
analyze and develop exponential-time algorithms for.

• We investigate the balanced (also called mixed) egalitarian

and utilitarian combinatorial assignment problem.

2 RELATEDWORK
We first turn to the winner determination problem (WDP) for com-

binatorial auctions—a canonical combinatorial assignment prob-

lem in which the goal is to maximize an auctioneer’s profit. For

the WDP, [24] provided several complexity bounds for various

application-focused restrictions. [14] analyzed how the WDP’s

complexity is affected by using bidding languages, and [11] stud-

ied restrictions to hypergraphs describing the bids. [9] studied the

WDP’s complexity when the goal is instead to find an equilibrium.

For coalition structure generation (CSG) [26]—in which agents are

partitioned into subsets called coalitions—[1, 2] considered different
compactly representable problems. [31] analyzed CSG over graphs,

and [17] investigated rule-based representations.

Related to our work on cross-bundle dependencies is CSG with

externalities, which adds cross-coalitional effects to the coalitional

values [23]. For this problem, only a few concise representations

have so far been considered, such as the tree-based one by [32].

Our work on externalities can also be applied to such problems.

Another important combinatorial assignment problem is the gen-
eralized assignment problem (GAP) [10], which [5] surveyed. In the

GAP, all items are given weights unique to the different alternatives,

and the alternatives have capacities that denote the maximum total

weight of items that can be assigned to them. The corresponding

value function is additive, so there are no synergies, making the

problem approximable [29] and more similar to knapsack problems.
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Table 1: Results for the 𝑘-bounded case. Here 𝑙 = max(𝑛,𝑚).

𝑘 = 1 𝑘 ≥ 2 𝑚 ≥ 2 𝑚 and 𝑘 fixed

UCA O(𝑙3𝑚) NP-hard NP-hard (3𝑛)𝑘𝑚O(𝑚)
ECA O

(
𝑚
√
𝑙5 log(𝑙)

)
NP-hard NP-hard (3𝑛)𝑘𝑚O(𝑘𝑚2)

Similar to our 𝑘-bounded combinatorial assignment—in which

bundles of size larger than 𝑘 are given value zero—are 𝑘-additive
domains [7]. Specifically,𝑘-additive problems are the UCA instances

that can be represented by hypergraphs with hyperedges of size

at most 𝑘 + 1. Moreover, [28] proved several complexity results for

quadratic value functions, which is equivalent to 2-bounded UCA.

For ECA and mixed welfare, [30] outlines corresponding egali-

tarian and balanced versions of CSG, and [6] presents maximizing

egalitarian welfare as a way to offer a level of fairness in a system.

Finally, [18] studied a course assignment problem in which the

goal is to find an equilibrium, and [3] provided complexity results

for a related fair division resource allocation problem.

3 COMBINATORIAL ASSIGNMENT
In this paper we consider combinatorial assignment—i.e., the class

of problems in which a set 𝑁 = {1, . . . , 𝑛} of indivisible items (e.g.,

goods/agents) have to be distributed in bundles (i.e., partitioned)

among a set 𝑀 = {1, . . . ,𝑚} of alternatives (e.g., buyers/jobs) to
maximize social welfare. The resulting ordered size-𝑚 partition of

such a problem is called a combinatorial assignment.

Definition 3.1. The tuple (𝐵1, . . . , 𝐵𝑚) is a combinatorial as-

signment over 𝑁 if 𝐵𝑖 ∩ 𝐵 𝑗 = ∅ for all 𝑖 ≠ 𝑗 , and
⋃𝑚

𝑖=1 𝐵𝑖 = 𝑁 .

We use Π𝑁 to denote the set of all combinatorial assignments

over 𝑁 , and define Π𝑘
𝑁

= {𝐶 ∈ Π𝑁 : |𝐶 | = 𝑘} for 𝑘 ∈ {1, ...,𝑚}. The
combinatorial assignment problem can now be defined as follows.

The Combinatorial Assignment Problem

Input: A set of 𝑛 items 𝑁 , a set of 𝑚 alternatives 𝑀 , and a

function (called the social welfare function) Φ : Π𝑚
𝑁

→ R.
Output: A combinatorial assignment (𝐵1, . . . , 𝐵𝑚) that maxi-

mizes the value (or social welfare) Φ((𝐵1, . . . , 𝐵𝑚)).

For UCA—the most central problem that we explore—the social

welfare function is defined as

Φ((𝐵1, . . . , 𝐵𝑚)) =
𝑚∑
𝑖=1

𝑣 (𝐵𝑖 , 𝑖),

where 𝑣 is a function 𝑣 : 2
𝑁 ×𝑀 → R (called the value function).

Due to this welfare function, UCA is equivalent to simultaneous
coalition structure generation and assignment [21] when the items

are viewed as agents. It also generalizes other notable problems

in a straightforward fashion, such as many of the aforementioned

combinatorial assignment problems. UCA is NP-hard [20], and can

be solved with dynamic programming (DP) in O∗ (3𝑛) [22] (the
notation O∗ (·) hides polynomial factors).

For ECA (which can also be solved with DP), with the same

function 𝑣 , the social welfare function is defined with

Φ((𝐵1, . . . , 𝐵𝑚)) =
𝑚
min

𝑖=1
𝑣 (𝐵𝑖 , 𝑖) .

4 RESULTS AND CONCLUSIONS
We analyzed restrictions and concise representations for several

combinatorial assignment problems—the problems in which the

goal is to partition 𝑛 items into bundles among𝑚 alternatives to

maximize social welfare. We considered both utilitarian (i.e., maxi-

mize the total output) and egalitarian (i.e., maximize the worst-case

allocation) welfare functions. For various concise representations,

generalizations and hypergraph characterizations of them, we pro-

vided novel algorithms and new complexity results.

In our hypergraph characterization, the value function is repre-

sented using a hypergraph called the synergy hypergraph, and we

denoted the corresponding problem UCA
★
. For UCA

★
, the value of

a bundle equals the sum of all of the (non-negative) synergies for

every subset of the items in the bundle. We found that the case with

two alternatives admits a polynomial-time algorithm by comput-

ing a cut of minimum cost in the hypergraph using an algorithm

by [13]. However, more alternatives lead to intractability.

Theorem 4.1. UCA★ with𝑚 = 2 is solvable in polynomial time,
while UCA★ with𝑚 ≥ 3 is NP-hard.

Using this result, we were able to construct improved (faster than

DP’s O∗ (3𝑛)) exp-time algorithms for some of the hard cases.

Theorem 4.2. UCA★ with𝑚 = 3,𝑚 = 4 and𝑚 = 5 is solvable in
O∗ (1.89𝑛), O∗ (2𝑛) and O∗ (2.89𝑛) time, respectively.

Under the aforementioned 𝑘-bounded restriction, we found that

the problem remains NP-hard to approximate to some constant

in polynomial time. On the positive side, 𝑘-bounded non-negative

UCA can be approximatedwithin
𝑘+2
2

of the optimum in polynomial

time. Table 1 summarizes our other results for this representation.

Finally, we explored complexity bounds for generalizations with

balanced utilitarian and egalitarian welfare functions (BCA), and

externalities (XCA), for which a bundle’s value can depend on other

bundles’ values. For BCA, we presented an exact O∗ (4𝑛) time al-

gorithm. For a relaxation of XCA—denoted XCA
★
—we found that

externalities makes the problem significantly harder, providing a

lower bound under the exponential time hypothesis [12].

Theorem 4.3. XCA★ cannot be solved in 2
𝑜 (𝑛 log𝑚) time unless

the exponential time hypothesis is false.

While, in general, combinatorial assignment problems are com-

putationally hard, we found that certain restrictions lead to tractabil-

ity, allowing either polynomial-time exact and approximate algo-

rithms, or non-trivial exponential-time algorithms. Thus, investi-

gating structural restrictions is an interesting future direction. One

possibility is to study synergy hypergraphs whose associated pri-

mal, dual, and incidence graphs have bounded treewitdh; even more

general parameters like primal and dual hypertree-width are also in-

teresting. A combination of parameters can also be considered, e.g.,

the cases with bounded bundle-size and bounded hypertree-width.
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