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Abstract

Continuous Action-space Interactive Reinforcement learning
(CAIR) is the first continuous action-space interactive reinforce-
ment learning algorithm that can out-preform state-of-the-art rein-
forcement learning algorithms early on in training. We test CAIR
in two simulated robotics environments with intuitive and easy to
design heuristic teachers.
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1 Introduction

Interactive Reinforcement Learning (IntRL) is an extension of
Reinforcement Learning (RL) that allows human or Al teachers
to provide learning agents with feedback on their actions. This
feedback allows the learning agent to both learn its task quicker
and adapt its behavior to the preferences of the teacher. We pro-
pose Continuous Action-space Interactive Reinforcement learning
(CAIR), the first continuous action-space IntRL algorithm that can
outperform state-of-the-art RL algorithms on high-dimensional
robot tasks. CAIR does this by learning both from a teacher and
environmental reward, allowing a teacher to generally guide the
agent towards the desired behavior, while the environmental re-
ward helps stabilize learning from potentially noisy binary feedback
on a high-dimensional action space. We present promising results
in two simulated robotics environments using intuitively designed
heuristic teachers that reflect easily understood aspects of the task.
In this way, we can approximate strategies that a human teacher
may have in mind when teaching a CAIR agent.

IntRL frameworks, such as TAMER [2, 10, 13] and COACH [3, 11],
have successfully accelerated agent learning, but their success has
largely been limited to tasks with discrete action spaces. This limi-
tation restricts both the type of tasks an IntRL agent can learn and
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Figure 1: Left: BipedalWalker-v3, Right: Robot Push Multi

the level of precision their behavior can achieve within those tasks
[7, 14]. Meanwhile, traditional RL has been increasingly focused on
continuous action-space environments with the development of al-
gorithms such as SAC, TD3 and HER [1, 6, 9]. While there has been
some work done on IntRL in continuous action-spaces, none of the
proposed approaches have been shown to compete with or surpass
current RL algorithms in non-trivial tasks [5, 12]. CAIR seeks to
bridge the gap between RL and IntRL, empowering people to teach
agents through feedback in continuous action-space settings.

2 Method

CAIR learns in continuous observation and action-space envi-
ronments. We model the environment as a standard MDP with:
transition T : (S,A) — S, reward R: S — r, and policy 7 : S — A.
CAIR builds off of two prior learning paradigms Policy Shaping (PS)
and Soft Actor-Critic (SAC), to enable IntRL in continuous action
spaces. Policy Shaping, an IntRL algorithm, (PS) treats learning from
a teacher providing binary feedback (in the form of +1/-1, good/bad
signals) as separate from learning from the environmental reward
and maintains a parameter C that reflects how consistent the agent
believes the teacher’s feedback to be [8]. SAC is an off-policy model-
free actor-critic based RL algorithm that can learn in continuous
action spaces and finds optimal policies by leveraging a maximum
entropy approach. CAIR maintains two SAC networks, Teach and
Env, which learn from teacher feedback and environmental reward
respectively. CAIR then outputs the agents policy via sampling
from a weighted average from Teach and Env’s policy distributions
defined by:

Az = maximum(tanh(KL({fizeachs Oenv)s (Henwvs Oenv))), 0)
Ag = min(Ay, k)
HCAIR = D * Preach + (1= Ax) * pleno
OCAIR = Oenv
acair ~ Normal(pcarr, OCAIR)
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Figure 2: Comparison between CAIR, Deep TAMER, and state-of-the-art RL algorithms.

Where « is a hyper-parameter between 0 and 1 that reflects the
maximum amount of trust the agent will put into the teachers policy
at any given time (similar to C in PS [8]).

We test CAIR in two simulated robotics environments (Figure. 1).
Robot Push Multi (RPM) is a sparse reward environment wherein
the robot will receive a reward of 0 whilst the ball is at one of the
four goals in the corners and a reward of -1 otherwise. Bipedal
Walker (BW) is a dense reward environment, reward given to the
agent is based on distance traveled, if the agent has crashed, and a
slight negative reward for applying torque to its joints.

We developed heuristic teachers to provide feedback to CAIR
that are meant both to be easy to design and reflect human percep-
tible/understandable properties of the task. For brevity, we present
only the best performing heuristic teachers here. For RPM, we used
a "push" heuristic teacher, which gives good feedback for pushing
the ball and negative feedback otherwise. This heuristic is both intu-
itive and could be a teaching strategy adopted by a human teacher.
For BW we used a "seeable" teacher. "Seeable" refers to fact that a
human observer may not be able to tell when the walker is going
forward or falling in very short time-scales. The seeable teacher
provides positive feedback when the agent is moving forward at
a human perceptible speed, has not fallen, and has one leg off the
ground. Again, this heuristic teacher uses a strategy that a human
could similarly approximate.

3 Experiments

We compared CAIR to both current RL algorithms and the IntRL
algorithm DQN-TAMER. Results can be found in Figure. 2. For
RPM, we compared CAIR against both single agent RL algorithms,
as well as a multi-agent parallelized version of HER which has 6
concurrent learners (Figure. 2, b). Nevertheless, CAIR preforms
much better than other approaches (reaching a 50% success rate
in about 25 minutes). To compare with DQN-TAMER we had to
discretize the environment’s action space (Figure. 2, a). We also
trained a "perfect oracle," a fully trained RL agent with an optimal
policy that provides positive feedback if the learner’s actions match
its own. While perfect oracles do not reflect how humans actually
teach robots [4], it provides the best possible scenario for the DQN-
TAMER agent. "TAMER Superhuman" is a perfect oracle which
provides feedback at every time step (note: this involves critiquing
each individual robot action which is not possible for a person
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without significantly slowing down the robot). We can see that
DQN-TAMER, even in the best case, gets out-preformed by CAIR as
time goes on since CAIR acting in a continuous action-space does
not have precision limitations. Also, note that DQN-TAMER when
using an intuitive heuristic teacher "P+G," which is the same as the
push heuristic but also provides positive feedback when the ball is
at the goal, struggles to learn a policy much better than random.

In BW (Figure. 2, c), CAIR shows great learning improvement
particularly early on in training, but is eventually out-preformed
by some algorithms. We suspect that this is because the seeable
teacher’s feedback strategy is very effective in getting the agent
to start walking, however since it does not adapt over time it will
eventually give almost exclusively positive feedback once the agent
is consistently moving forward. Though a primary drawback of
using easy to define heuristic teachers is that they do not adapt
over time as a human teacher would, the early gains of using CAIR
are still very promising. And since CAIR learns from the teacher
and the environment separately, CAIR can learn an optimal policy
if a teacher stops engaging with the agent.

4 Discussion and Conclusion

While CAIR demonstrates great improvements in simulation,
CAIR must be tested on a real robot. Furthermore, though the
development of heuristic teachers as a way of evaluating IntRL
algorithms is itself a contribution, CAIR must be tested with hu-
man teachers. When testing with human teachers, we plan on also
introducing a new method for providing binary feedback called
toggle feedback. Toggle feedback provides positive feedback until
told otherwise and similarly for negative feedback. This allows a
human teacher to provide dense feedback without the strain of
having to constantly press a button or repeat an utterance.

In conclusion, we proposed CAIR, the first IntRL algorithm that
can achieve state of the art performance in continuous action-space
tasks. We presented results in two robotics environments using easy
to define heuristic teachers. We plan on continuing to work with
CAIR and investigate continuous action-space IntRL algorithms to
keep people in the learning loop.

Acknowledgements

This work was funded in part by the National Science Foundation
(1S 2132887).



Extended Abstract

References

(1]

(2]

Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba.
2018. Hindsight Experience Replay. arXiv:1707.01495 [cs] (Feb. 2018). http:
//arxiv.org/abs/1707.01495

Riku Arakawa, Sosuke Kobayashi, Yuya Unno, Yuta Tsuboi, and Shin-ichi Maeda.
2018. DQN-TAMER: Human-in-the-Loop Reinforcement Learning with In-
tractable Feedback. arXiv:1810.11748 [cs] (Oct. 2018). http://arxiv.org/abs/1810.
11748

Dilip Arumugam, Jun Ki Lee, Sophie Saskin, and Michael L. Littman. 2019.
Deep Reinforcement Learning from Policy-Dependent Human Feedback.
arXiv:1902.04257 [cs, stat] (Feb. 2019). http://arxiv.org/abs/1902.04257
Christian Arzate Cruz and Takeo Igarashi. 2020. A Survey on Interactive Re-
inforcement Learning: Design Principles and Open Challenges. In Proceedings
of the 2020 ACM Designing Interactive Systems Conference. ACM, Eindhoven
Netherlands, 1195-1209. https://doi.org/10.1145/3357236.3395525

Carlos Celemin and Javier Ruiz-del Solar. 2019. An Interactive Framework for
Learning Continuous Actions Policies Based on Corrective Feedback. Journal of
Intelligent & Robotic Systems 95, 1 (July 2019), 77-97. https://doi.org/10.1007/
510846-018-0839-z

Scott Fujimoto, Herke van Hoof, and David Meger. 2018. Addressing Function
Approximation Error in Actor-Critic Methods. arXiv:1802.09477 [cs, stat] (Oct.
2018). http://arxiv.org/abs/1802.09477

Chris Gaskett, David Wettergreen, and Alexander Zelinsky. 1999. Q-Learning
in Continuous State and Action Spaces. In Advanced Topics in Artificial Intelli-
gence (Lecture Notes in Computer Science), Norman Foo (Ed.). Springer, Berlin,

1728

[11

[12

[13

[14

]

]

AAMAS 2022, May 9-13, 2022, Online

Heidelberg, 417-428. https://doi.org/10.1007/3-540-46695-9_35

Shane Griffith, Kaushik Subramanian, Jonathan Scholz, Charles L Isbell, and
Andrea L Thomaz. 2013. Policy Shaping: Integrating Human Feedback with
Reinforcement Learning. In Advances in Neural Information Processing Systems
26, C.]. C. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K. Q. Weinberger
(Eds.). Curran Associates, Inc., 2625-2633.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with
a Stochastic Actor. arXiv:1801.01290 [cs, stat] (Aug. 2018). http://arxiv.org/abs/
1801.01290

W. Bradley Knox and Peter Stone. 2009. Interactively shaping agents via human
reinforcement: the TAMER framework. In Proceedings of the fifth international
conference on Knowledge capture - K-CAP °09. ACM Press, Redondo Beach, Cali-
fornia, USA, 9. https://doi.org/10.1145/1597735.1597738

James MacGlashan, Mark K. Ho, Robert Loftin, Bei Peng, David Roberts,
Matthew E. Taylor, and Michael L. Littman. 2017. Interactive Learning from
Policy-Dependent Human Feedback. arXiv:1701.06049 [cs] (Jan. 2017). http:
//arxiv.org/abs/1701.06049

Ngo Anh Vien, Wolfgang Ertel, and Tae Choong Chung. 2013. Learning via
human feedback in continuous state and action spaces. Applied Intelligence 39, 2
(Sept. 2013), 267-278. https://doi.org/10.1007/s10489-012-0412-6

Garrett Warnell, Nicholas Waytowich, Vernon Lawhern, and Peter Stone. 2018.
Deep TAMER: Interactive Agent Shaping in High-Dimensional State Spaces.
arXiv:1709.10163 [cs] (Jan. 2018). http://arxiv.org/abs/1709.10163

Ching-An Wu. 2019. Investigation of Different Observation and Action Spaces for
Reinforcement Learning on Reaching Tasks. http://urnkb.se/resolve?urn=urn:
nbn:se:kth:diva-271182


http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1707.01495
http://arxiv.org/abs/1810.11748
http://arxiv.org/abs/1810.11748
http://arxiv.org/abs/1902.04257
https://doi.org/10.1145/3357236.3395525
https://doi.org/10.1007/s10846-018-0839-z
https://doi.org/10.1007/s10846-018-0839-z
http://arxiv.org/abs/1802.09477
https://doi.org/10.1007/3-540-46695-9_35
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
https://doi.org/10.1145/1597735.1597738
http://arxiv.org/abs/1701.06049
http://arxiv.org/abs/1701.06049
https://doi.org/10.1007/s10489-012-0412-6
http://arxiv.org/abs/1709.10163
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-271182
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-271182

	Abstract
	1 Introduction
	2 Method
	3 Experiments
	4 Discussion and Conclusion
	References



