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ABSTRACT
The Autonomous Flight Arcade (AFA) is a novel suite of single-
and multi-agent learning environments for control of aerial vehi-
cles. These environments incorporate realistic physics using the
Unity game engine with diverse objectives and levels of decision-
making sophistication. In addition to the environments themselves,
we introduce an interface for interacting with them, including the
ability to vary key parameters, thereby both changing the difficulty
and the core challenges. We also introduce a pipeline for collect-
ing human gameplay within the environments. We demonstrate
the performance of artificial agents in these environments trained
using deep reinforcement learning, and also motivate these environ-
ments as a benchmark for designing non-learned classical control
policies and agents trained using imitation learning from human
demonstrations. Finally, we motivate the use of AFA environments
as a testbed for training artificial agents capable of cooperative
human-AI decision making, including parallel autonomy.
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1 INTRODUCTION
Developing artificial agents capable of successfully solving prob-
lems that are of interest to humans requires designing environments
for the agents to learn in. Training AIs directly in the real world
can be prohibitively expensive and unsafe, and does not allow for
systematic experiments with rare events or unexpected surprises.
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Figure 1: The Autonomous Flight Arcade enables learning
control for both humans and machines in a diverse set of
challenging and flexible aerial environments.

One representative domain where real-world experimentation first
requires carefully-designed simulations for training AIs is learned
control of aerial vehicles.

In this paper, we introduce the Autonomous Flight Arcade (AFA)
built around the game engine Unity [7], for learning control of aerial
vehicles. The control challenges in the AFA are novel and distinct
from those found in other settings. Mastering the tasks requires
successfully learning both the low-level details of controlling the
aerial vehicles and the high-level planning necessary for achieving
complex goals.

Contributions. Our contributions with the AFA are as follows:
(1) a suite of challenging and novel flight-domain learning envi-
ronments; (2) scenarios explicitly designed for both RL and human
playability, including a pipeline for human data collection, with
tunable environmental and control parameters, allowing for con-
figurations with varying complexity and that emphasize different
parts of aerial mission profiles; and (3) the public AFA Challenge.
Our framework is integrated with RLLib [10], allowing for scalable
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training of RL agents. We also pose the AFA as a challenge problem
with a public leaderboard, encouraging submissions of agents in
the form of trained models or non-learned control policies.

Related Work. Our work combines the key aspects of both re-
inforcement learning and simulation environments, namely the
challenges of finding a high-quality policy as in other RL environ-
ments and the realistic details, including physics and raw control,
from simulation environments. Reinforcement learning environ-
ments include the Arcade Learning Environment [3, 11], SURREAL
[5], Gym Retro [12], dm_control [17], NetHack Learning Environ-
ment [9], and Playroom [19] (focusing on natural language tasks),
and environments for learning to play zero-sum [4, 13] and cooper-
ative board games [2]. Simulation environments include MuJoCo
[18] for rigid-body physics, AirSim [15] for cars and quadcopters,
Flightmare [16] for quadcopters, and Gazebo [8] for various vehi-
cles including cars, quadcopters, and fixed-wing aircraft. Beyond
model-based simulators, there has been prior work on end-to-end
data-driven simulation environments [1, 6].

2 AFA TASKS AND ENVIRONMENTS
Canyon Run is a single-player environment where the agent’s
goal is to fly a fixed-wing aircraft through a narrow canyon, below
the canyon rim, while hitting waypoints that appear at different
heights above the canyon floor.
Aerial Refueling is a single-player environment where the agent
is tasked with bringing a jet plane into the vicinity of a tanker plane
for a refueling maneuver, prior to running out of fuel.
Drone Dodgeball is a single-player environment where an agent
controlling a quadcopter is tasked with station-keeping (i.e., re-
maining as close as possible to a fixed waypoint) while avoiding
oncoming obstacles in the form of dodgeballs.
Timed Waypoints is a single-player environment in which an
agent controlling a quadcopter with limited fuel flies above a moun-
tainous terrain with certain “no-fly” (exclusion) zones, where the
goal is to reach as many waypoints in 3D space as possible.
Drone Duel is a two-player environment in which two opposing
agents try to tag the other agent with a laser.
Drone Tag is a two-player environment in which two opposing
agents need to navigate a terrain with obstacles to reach the other
drone, and then try to tag it with a laser.
Fire and Ice is a two-player environment in which two opposing
agents, the Fire Drone and the Ice Drone, need to navigate a forest.
The Fire Drone has the ability to increase the temperature of trees
by hitting them with its laser beam, until they catch on fire. The
Ice Drone has the ability to decrease the temperature of trees by
hitting them with its laser beam, until they are frozen.

3 BENCHMARK RESULTS
We use realistic but still somewhat stylized models for both the jet
and quadcopter. For the jet, we use a custom controller based on
the AeroplaneController in Unity’s Standard Assets that models
lift, velocity-dependent drag, angular drag, and a simple auto-level
functionality. For the quadcopter, we use a custom controller that
models dynamics including roll, pitch, thrust, and yaw moments,
and a restoring torque.

Each environment provides both visual and vector observations.
Visual observations are generated through a unified sensor, com-
mon to both the jet and quadcopter, consisting of a rectangular
array of raycast sensors. The vector observations consist of mea-
surements of vehicle state. We use the proximal policy optimization
(PPO) algorithm [14] implemented in RLlib [10] to train bench-
mark policies. The purpose of these initial benchmarks is not to
present agents demonstrating very high performance, but rather to
indicate that with a reasonably simple network architecture and
using PPO, it is possible for RL agents to learn something in these
environments. Given the multiple variations of the environments,
we believe that they present a sufficiently high skill ceiling to make
for interesting future learning.

4 PUBLIC CHALLENGE PROBLEM
The Autonomous Flight Arcade will have two separate public chal-
lenges. In the first challenge, teams will compete to develop the
best agent, whether learned, controlled via a planning algorithm,
or another approach, such as an ad-hoc heuristic. Teams will have
access to compiled executables of the AFA environments for de-
veloping their agents. In the second challenge, teams will either
compete with or against AI agents in a browser-based format to
collect human trajectories. The human trajectories will inform the
development of more performant agents for human-machine teams,
and will also provide new human baselines.

5 CONCLUSION
We have introduced Autonomous Flight Arcade, a novel suite of
challenging learning environments for control of aerial vehicles.
By varying environmental parameters, the AFA environments al-
low for varied levels of difficulty and challenge. While we have
introduced some performance baselines in this work, we have also
demonstrated the potential for future trained agents to be compared
directly with human performance, and thereby serve as a setting for
studying human-AI collaboration and competition. We anticipate
that these environments will provide fruitful avenues for future
research on artificial agents in challenging, realistic situations.
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