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ABSTRACT
We develop a learning-based algorithm for the distributed forma-
tion control of networked multi-agent systems governed by un-
known, nonlinear dynamics. The proposed algorithm integrates
neural network-based learning with adaptive control in a two-step
procedure. In the first step, each agent learns a controller, repre-
sented as a neural network, using training data that correspond to a
collection of formation tasks and agent parameters. These parame-
ters and tasks are derived by varying the nominal agent parameters
and the formation specifications of the task in hand, respectively.
In the second step of the algorithm, each agent incorporates the
trained neural network into an online and adaptive control policy in
such a way that the behavior of the multi-agent closed-loop system
satisfies a user-defined formation task. Both the learning phase and
the adaptive control policy are distributed, in the sense that each
agent computes its own actions using only local information from
its neighboring agents.
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1 INTRODUCTION
During the last decades, decentralized control of networked multi-
agent systems has attracted significant attention due to the great
variety of its applications, including multi-robot systems, trans-
portation, multi-point surveillance as well as biological systems
[1–9]. In such systems, each agent calculates its own actions based
on local information, as modeled by a connectivity graph, without
relying on any central control unit.

Although many works on distributed cooperative control con-
sider known and simple dynamic models, there exist many practical
engineering systems that cannot be modeled accurately and are
affected by unknown exogenous disturbances. Thus, the design
of control algorithms that are robust and adaptable to such uncer-
tainties and disturbances is important. For multi-agent systems,
ensuring robustness is particularly challenging due to the lack of
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global information and the interacting dynamics of the individ-
ual agents. A promising step towards the control of systems with
uncertain dynamics is the use of data obtained a priori from sys-
tem runs. However, engineering systems often undergo purposeful
modifications (e.g., substitution of a motor or link in a robotic arm
or exposure to new working environments) or suffer gradual faults
(e.g., mechanical degradation), which might change the systems’
dynamics or operating conditions. Therefore, one cannot rely on
the aforementioned data to provably guarantee the successful con-
trol of the system. On the other hand, the exact incorporation of
these changes in the dynamic model, and consequently, the design
of new model-based algorithms, can be a challenging procedure.
Hence, the goal in such cases is to exploit the data obtained a priori
and construct intelligent online policies that achieve a user-defined
task while adapting to the aforementioned changes.

This paper addresses the distributed coordination of networked
multi-agent systems governed by unknown nonlinear dynamics.We
design a control algorithm that draws a novel connection between
distributed learning with neural-network-based representations
and adaptive feedback control, and consists of the following steps.
Firstly, it trains a number of neural networks, one for each agent,
to approximate controllers for the agents that accomplish the given
formation task. The data used to train the neural networks consist
of pairs of states and control actions of the agents that are gathered
from runs of the multi-agent system. Secondly, it uses an online
adaptive feedback control policy that guarantees accomplishment of
the given formation task. Both steps can be executed in a distributed
manner in a sense that each agent uses only local information, as
modeled by a connectivity graph.

2 CONTROL ALGORITHM
Consider a networked multi-agent group comprised of a leader,
indexed by 𝑖 = 0, and 𝑁 followers, with N B {1, . . . , 𝑁 }. The lead-
ing agent acts as an exosystem that generates a desired reference
trajectory for the multi-agent group. The followers, which have to
be controlled, evolve according to the 2nd-order dynamics

¤𝑥𝑖,1 (𝑡) = 𝑥𝑖,2 (𝑡) (1a)
¤𝑥𝑖,2 (𝑡) = 𝑓𝑖 (𝑥𝑖 (𝑡), 𝑡) + 𝑔𝑖 (𝑥𝑖 (𝑡), 𝑡)𝑢𝑖 (𝑡) (1b)

where 𝑥𝑖 B [𝑥⊤
𝑖,1, 𝑥

⊤
𝑖,2]

⊤ ∈ R2𝑛 is the 𝑖th agent’s state, assumed
available for measurement by agent 𝑖 , 𝑓𝑖 : R2𝑛 × [0,∞) → R𝑛 ,
𝑔𝑖 : R2𝑛 × [0,∞) → R𝑛 are unknown functions modeling the
agent’s dynamics, and 𝑢𝑖 is the 𝑖th agent’s control input. The vector
fields 𝑓𝑖 (·) and 𝑔𝑖 (·) are assumed to be locally Lipschitz in 𝑥𝑖 over
R2𝑛 for each fixed 𝑡 ≥ 0, and uniformly bounded in 𝑡 over [𝑡0,∞)
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for each fixed 𝑥𝑖 ∈ R2𝑛 , for all 𝑖 ∈ N . Further, we assume that the
matrices 𝑔𝑖 are positive definite, for all 𝑖 ∈ N .

We use an undirected graph G B (N , E) to model the com-
munication among the agents, with N being the index set of the
agents. The set of neighbors of agent 𝑖 is denoted by N𝑖 B { 𝑗 ∈
N : (𝑖, 𝑗) ∈ E}. We assume that G is connected, i.e., there exists a
communication path between any two agents.

The state/command variables of the leading agent (indexed by
0) are denoted by 𝑥0,1, 𝑥0,2 ∈ R𝑛 and obey the 2nd-order dynamics
¤𝑥0,1 (𝑡) = 𝑥0,2 (𝑡), ¤𝑥0,2 (𝑡) = 𝑢0 (𝑡) for a smooth and bounded 𝑢0 :
[0,∞) → R𝑛 . However, the state of the leader is only provided to a
subgroup of the 𝑁 agents. In particular, the access of the follower
agents to the leader’s state is modeled by a diagonal matrix B B
diag{𝑏1, . . . , 𝑏𝑁 } ∈ R𝑁×𝑁 ; if 𝑏𝑖 = 1, then the 𝑖th agent has access
to the leader’s state, whereas it does not if 𝑏𝑖 = 0, for 𝑖 ∈ N . Thus,
we may also define the augmented graph as Ḡ B (N ∪ {0}, Ē),
where Ē B E ∪ {(𝑖, 0) : 𝑏𝑖 = 1}. The goal of this work is to design
a distributed control algorithm, where each agent has access only
to its neighbors’ information, to achieve a pre-specified geometric
formation of the agents in R𝑛 . More specifically, consider for each
agent 𝑖 ∈ N the constants 𝑐𝑖 𝑗 , 𝑗 ∈ {0} ∪ N𝑖 prescribing a desired
offset that agent 𝑖 desires to achieve with respect to the leader
( 𝑗 = 0), and its neighbors ( 𝑗 ∈ N𝑖 ). That is, each agent 𝑖 ∈ N𝑖

aims at achieving 𝑥𝑖,1 = 𝑥 𝑗,1 − 𝑐𝑖 𝑗 , for all 𝑗 ∈ N𝑖 , and if 𝑏𝑖 = 1,
𝑥𝑖,1 = 𝑥0,1 − 𝑐𝑖0. In other words, we aim to minimize the errors,

𝑒𝑖,1 B
∑
𝑗 ∈N𝑖

(𝑥𝑖,1 − 𝑥 𝑗,1 + 𝑐𝑖 𝑗 ) + 𝑏𝑖 (𝑥𝑖,1 − 𝑥0,1 + 𝑐𝑖0), 𝑖 ∈ N .

We describe now the control algorithm. We assume the existence
of data gathered from a finite set of 𝑇 trajectories J generated
by a priori runs of the multi-agent system. More specifically, we
consider that J is decomposed as J = (J1, . . . ,J𝑁 ), where J𝑖 is
the set of trajectories

J𝑖 =
{
𝑥𝑘𝑖 (𝑡), {𝑥

𝑗 }
𝑗 ∈N𝑘

𝑖
, 𝑢𝑘𝑖

(
𝑥𝑘𝑖 (𝑡), {𝑥

𝑗 }
𝑗 ∈N𝑘

𝑖
, 𝑡

)}
𝑡 ∈T𝑖

of agent 𝑖 , where T𝑖 is a finite set of time instants, 𝑥𝑘
𝑖
∈ R2𝑛 is the

state trajectory of agent 𝑖 for trajectory 𝑘 , N𝑘
𝑖
are the neighbors of

agent 𝑖 in trajectory 𝑘 , with {𝑥 𝑗 }
𝑗 ∈N𝑘

𝑖
being their respective state

trajectories, and 𝑢𝑘
𝑖
(𝑥𝑘

𝑖
(𝑡), {𝑥 𝑗 }

𝑗 ∈N𝑘
𝑖
, 𝑡) ∈ R𝑛 is the control input

trajectory of agent 𝑖 .
Each agent 𝑖 ∈ N uses the data to train a neural network in order

to approximate a controller that accomplishes the formation task.
More specifically, each agent uses the tuples {𝑥𝑘

𝑖
(𝑡), {𝑥 𝑗 }

𝑗 ∈N𝑘
𝑖
}𝑡 ∈T𝑖

as input to a neural network, and 𝑢𝑘
𝑖

(
𝑥𝑘
𝑖
(𝑡), {𝑥 𝑗 }

𝑗 ∈N𝑘
𝑖
, 𝑡
)
𝑡 ∈T𝑖 as

the respective output targets, for all 𝑇 trajectories. For the inputs
corresponding to agents that are not neighbors of agent 𝑖 in a
trajectory 𝑘 , we disable the respective neurons. For a given 𝑥 ∈ R2𝑛 ,
we denote by 𝑢𝑖,𝑛𝑛 (𝑥) the output of the neural network of agent
𝑖 ∈ N .

We now design a distributed, adaptive feedback control policy to
accomplish the formation task. Consider the adaptation variables
𝑑𝑖,1 and 𝑑𝑖,2 for each agent 𝑖 ∈ N , corresponding to upper bounds
of the unknown dynamic terms 𝑓𝑖 and 𝑔𝑖 . Consider the augmented
errors for each agent 𝑒𝑖,2 B ¤𝑒𝑖,1 + 𝑘𝑖,1𝑒𝑖,1, where 𝑘𝑖,1 are positive
constants, for all 𝑖 ∈ N . We design the distributed control policy as
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Figure 1: Evolution of the error signals ∥𝑒𝑖,1 (𝑡)∥ + ∥ ¤𝑒𝑖,1 (𝑡)∥ for
𝑖 ∈ {1, . . . , 5}, and 𝑡 ∈ [0, 55], for the numerical experiments.

Figure 2: The convergence of the followers to the desired for-
mation around the leader, which follows a pre-specified tra-
jectory (continuous blue line), in the 𝑥-𝑦 plane.

𝑢𝑖 (𝑥, 𝑑𝑖,1, 𝑑𝑖,2) = 𝑢𝑖,𝑛𝑛 (𝑥) − (𝑘𝑖,2 + 𝑑𝑖,1)𝑒𝑖,2 − 𝑑𝑖,2𝑒𝑖,2 (2a)

where 𝑘𝑖,2 are positive constants, and 𝑒𝑖,2 are defined as 𝑒𝑖,2 B
𝑒𝑖,2

∥𝑒𝑖,2 ∥2 if 𝑒𝑖,2 ≠ 0 and 𝑒𝑖,2 B 0 otherwise, for all 𝑖 ∈ N . The adapta-

tion variables 𝑑𝑖,1, 𝑑𝑖,2 are updated as

¤̂
𝑑𝑖,1 B 𝜇𝑖,1∥𝑒𝑖,2∥2, ¤̂

𝑑𝑖,2 B 𝜇𝑖,2∥𝑒𝑖,2∥,

where 𝜇𝑖,1, 𝜇𝑖,2 are positive constants, for all 𝑖 ∈ N .

3 NUMERICAL EXPERIMENTS
We consider 𝑁 = 5 follower aerial vehicles in R3 with dynamics of
the form (1), with communication graph modeled by the edge set Ē
= { (1, 2), (2, 3), (3, 4), (4, 5), (1, 0), (3, 0), (5, 0) }. The leader’s task
is to track a reference time-varying trajectory profile 𝑥0 (𝑡). The
formation constants 𝑐𝑖 𝑗 are chosen randomly in (−1, 1), (𝑖, 𝑗) ∈ Ē.
We generate data from 100 trajectories that correspond to different
𝑓𝑖 , 𝑔𝑖 , and initial conditions, and we train 5 neural networks, one
for each agent. We test the control policy (2) and obtain the results
depicted in Fig 1, which shows the evolution of the error signals
∥𝑒𝑖,1 (𝑡)∥ + ∥ ¤𝑒𝑖,1 (𝑡)∥ for 𝑖 ∈ {1, . . . , 5}. One concludes that the multi-
agent system converges successfully to the pre-specified formation
since the error signals converge to zero.
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