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ABSTRACT
Training agents in cooperative settings offers the promise of AI
agents able to interact effectively with humans (and other agents)
in the real world. Multi-agent reinforcement learning (MARL) has
the potential to achieve this goal, demonstrating success in a se-
ries of challenging problems. However, whilst these advances are
significant, the vast majority of focus has been on the self-play para-
digm. This often results in a coordination problem, caused by agents
learning to make use of arbitrary conventions when playing with
themselves. This means that even the strongest self-play agents
may have very low cross-play with other agents, including other
initializations of the same algorithm. In this paper we propose to
solve this problem by adapting agent strategies on the fly, using
a posterior belief over the other agents’ strategy. Concretely, we
consider the problem of selecting a strategy from a finite set of previ-
ously trained agents, to play with an unknown partner. We propose
an extension of the classic statistical technique, Gibbs sampling,
to update beliefs about other agents and obtain close to optimal
ad-hoc performance. Despite its simplicity, our method is able to
achieve strong cross-play with unseen partners in the challenging
card game of Hanabi, achieving successful ad-hoc coordination
without knowledge of the partner’s strategy a priori.
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1 INTRODUCTION
Many of the most prominent successes in MARL have come in the
self-play paradigm [13]. It is shown that in a two-player game, a
self-play strategy could converge to a Nash equilibrium [10] and
could even lead to super-human performance in certain domains
[1, 4, 5, 15]. However the self-play framework seemsmore beneficial
in an adversarial MARL setting compared to a cooperative one.
In this work we consider the ad-hoc coordination problem [12],
whereby an agent has to coordinate with an unknown partner in
either an ad-hoc paradigm or with just a few successive trials.
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2 ON-THE-FLY STRATEGY ADAPTATION
In line with the theory of mind, one possible approach for coordina-
tion in multi-agent ad-hoc problems is the formation of beliefs re-
garding strategies that are played by the other agents in the system.
We consider fully-cooperative Markov games and we model this
setting with a Decentralized Partially-Observable Markov Decision
Process (Dec-POMDP [3, 9]). Further in our setting theMarkov state
𝑠𝑡 , consists of discrete features, 𝑓 𝑠𝑡 , which are themselves composed
of public features, 𝑓 pub,𝑠𝑡 , and private features, 𝑓 pri,𝑠𝑡 . In addition,
we assume two types of agents in the system; simple agents, 𝐴𝑆 ,
that play a fixed policy, 𝜋𝑆 , and complex agents, 𝐴𝐶 , which coordi-
nate with the set of simple agents and further have access to the set
of policies, Π = {𝜋1, ..., 𝜋𝑛}. In our ad-hoc coordination settings,
the complex agents, 𝐴𝐶 , need to estimate the joint probability dis-
tribution 𝑃 (𝜋𝑆 , 𝑓 𝑆,𝑠𝑡 | 𝑢𝑆𝑡 , 𝑠𝑡 ) at every step of the game, where 𝜋𝑆 is
the simple agent policy, and 𝑓 𝑆,𝑠𝑡 ∈ 𝐹𝑆,𝑠𝑡 = {𝑓 1,𝑠𝑡 , ..., 𝑓 𝑛,𝑠𝑡 }. Here,
𝐹𝑆,𝑠𝑡 denotes a set of features that 𝐴𝑆 could be privy to but are
hidden from 𝐴𝐶 in state 𝑠𝑡 .

In order to estimate this joint distribution we utilize an extension
of the Gibbs sampling algorithm [6], on-the-fly Strategy Adaptation
(OSA). The full OSA procedure is shown in Algorithm 1.
Algorithm 1 OSA algorithm

1: Initialize:
𝜋𝑆0 ← 𝜋𝑖 , 𝜋𝑖 ∈ Π = {𝜋1, ..., 𝜋𝑛}

2: while the game is ongoing do
3: if it is 𝐴𝐶 turn to play then
4: 𝑓

𝑆,𝑠𝑡
𝑡+1 ∼ 𝑃 (𝑓 𝑆,𝑠𝑡 | 𝜋𝑆𝑡 , 𝑢𝑆𝑡 , 𝑠𝑡 )

5: for 𝜋𝑖 ∈ {𝜋1, . . . , 𝜋𝑛} do
6: if 𝑃 (𝑢𝑆𝑡 | 𝜋𝑖 , 𝑠𝑡 ) ≈ 0 then
7: Π = Π \ {𝜋𝑖 } ⊲ Remove redundant policies
8: end if
9: end for
10: 𝜋𝑆

𝑡+1 ∼ 𝑃 (𝜋𝑆 | 𝑓 𝑆,𝑠𝑡
𝑡+1 , 𝑢𝑆𝑡 , 𝑠𝑡 )

11: 𝜋𝑆
𝑡+1 = Mode(𝜋𝑆1 , ..., 𝜋

𝑆
𝑡+1) ⊲ 𝜋

𝑆
𝑡 is the most frequent 𝜋𝑆𝑡

12: 𝜋𝐶
𝑡+1 = 𝐵(𝜋𝑆

𝑡+1) ⊲ 𝐵: optimal response policy function
13: end if
14: end while
Noting that all agents observe 𝑢𝑆𝑡 at every step, we may use

Bayes’ theorem to estimate the distributions in steps 4 and 10 of
Algorithm 1 as follows:

𝑃 (𝑓 𝑆,𝑠𝑡 |𝜋𝑆𝑡 , 𝑢𝑆𝑡 , 𝑠𝑡 ) =
𝑃 (𝑢𝑆𝑡 |𝑓 𝑆,𝑠𝑡 , 𝜋𝑆𝑡 , 𝑠𝑡 )𝑃 (𝑓 𝑆,𝑠𝑡 | 𝜋𝑆𝑡 , 𝑠𝑡 )∑
𝑓 𝑖,𝑠𝑡 𝑃 (𝑢𝑆𝑡 |𝑓 𝑖,𝑠𝑡 , 𝜋𝑆𝑡 , 𝑠𝑡 )𝑃 (𝑓 𝑖,𝑠𝑡 | 𝜋𝑆𝑡 , 𝑠𝑡 )

(1)

𝑃 (𝜋𝑆 |𝑓 𝑆,𝑠𝑡
𝑡+1 , 𝑢𝑆𝑡 , 𝑠𝑡 ) =

𝑃 (𝑢𝑆𝑡 |𝜋𝑆 , 𝑓
𝑆,𝑠𝑡
𝑡+1 , 𝑠𝑡 )𝑃 (𝜋𝑆 | 𝑓 𝑆,𝑠𝑡𝑡+1 , 𝑠𝑡 )∑

𝜋𝑖 𝑃 (𝑢𝑆𝑡 |𝜋𝑖 , 𝑓
𝑆,𝑠𝑡
𝑡+1 , 𝑠𝑡 )𝑃 (𝜋𝑖 | 𝑓 𝑆,𝑠𝑡𝑡+1 , 𝑠𝑡 )

(2)
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Table 1: Mean ± standard error of rewards for 𝐴𝐶 playing each of the 7 policies in the two Hanabi experiments.

MAPPO-1 MAPPO-2 Holmesbot Iggi Piers Rainbow Valuebot

𝜋S ∈ Π :
E𝜏𝑅(𝜏) no OSA 8.98 ± 0.12 10.15 ± 0.12 5.13 ± 0.10 7.48 ± 0.09 8.10 ± 0.10 8.87 ± 0.11 6.01 ± 0.10
E𝜏𝑅(𝜏) with OSA 22.96 ± 0.05 21.74 ± 0.06 13.79 ± 0.10 16.09 ± 0.04 16.35 ± 0.04 19.98 ± 0.07 16.10 ± 0.07

𝜋S ∉ Π :
E𝜏𝑅(𝜏) no OSA 6.47 ± 0.11 7.94 ± 0.12 3.36 ± 0.09 5.90 ± 0.09 6.59 ± 0.10 6.69 ± 0.10 3.93 ± 0.09
E𝜏𝑅(𝜏) with OSA 10.44 ± 0.12 11.90 ± 0.13 13.31 ± 0.10 10.03 ± 0.10 9.92 ± 0.11 11.36 ± 0.11 14.28 ± 0.09

Figure 1: Distribution of 𝜋𝐶
𝑇
for each 𝜋𝑆 in the first Hanabi experiment (left) and the second Hanabi experiment (right).

Table 2: Mean ± standard error of rewards in 𝑘-shot games. 𝐴𝐶 plays each of the 7 policies using OSA and 𝜋𝑆 ∉ Π.

MAPPO-1 MAPPO-2 Holmesbot Iggi Piers Rainbow Valuebot

E𝜏 (𝑅(𝜏) | 𝑘) :
𝑘 = 0 10.44 ± 0.12 11.90 ± 0.13 13.31 ± 0.10 10.03 ± 0.10 9.92 ± 0.11 11.36 ± 0.11 14.28 ± 0.09
𝑘 = 1 12.84 ± 0.12 13.76 ± 0.12 16.45 ± 0.08 10.76 ± 0.10 10.86 ± 0.11 13.45 ± 0.11 16.72 ± 0.08
𝑘 = 4 14.52 ± 0.11 14.86 ± 0.11 17.33 ± 0.07 11.05 ± 0.10 11.43 ± 0.10 14.21 ± 0.10 17.24 ± 0.07

𝑛max
𝑖=0 (E𝜏𝑅𝑖 ) 16.41 ± 0.11 15.66 ± 0.11 17.49 ± 0.07 13.24 ± 0.09 12.75 ± 0.09 16.30 ± 0.10 17.44 ± 0.07

3 EXPERIMENTS
We examine ad-hoc coordination in the challengingHanabi learning
environment [2]. We consider a wide range of agents: Rainbow [8],
hand coded bots from the Hanabi Open Agent Dataset (HOAD,
[11]), Valuebot, Holmesbot, Iggi and Piers, and Multi Agent PPO
(MAPPO, [14]). Notably, this includes both on policy (MAPPO) and
off policy (Rainbow) deep RL approaches, as well as scripted bots,
providing a diverse range of agents. For the MAPPO model, we use
two separate trained policies with different seeds.

We focus on a 2-player version of Hanabi, consisting of agents
𝐴𝐶 and𝐴𝑆 , and conduct two sets of experiments.We further assume
that self-play is the optimal response policy in our experiments,
given that in a two-player non zero-sum-game setting where regret
is minimised, a self-play strategy could still converge to a Nash
equilibrium and perform very well [7]. In the first Hanabi experi-
ment agent 𝐴𝑆 ’s policy is included in the 𝐴𝐶 ’s policy set, therefore
𝜋𝑆 ∈ Π. In this experiment, OSA is able to recover performance
close to self-play. In the second experiment, we consider a more
challenging setting, where 𝐴𝐶 does not have 𝐴𝑆 ’s policy, 𝜋𝑆 ∉ Π.
Despite not containing the optimal policy, 𝐴𝐶 still successfully
plays with𝐴𝑆 using the policy in its set that is most correlated with
𝜋𝑆 for majority of the games. The results are shown in Table 1.

𝑇

In order to better understand the strength and weakness of the
method, we assess the distribution of the policies that 𝐴𝐶 plays in
coordination with 𝐴𝑆 for each Hanabi experiment. Figure 1 depicts
the distribution for 𝜋𝐶 in the first Hanabi experiment (𝜋𝑆 ∈ Π) and
the second Hanabi experiment (𝜋𝑆 ∉ Π), in which 𝜋𝐶

𝑇
is agent 𝐴𝐶 ’s

policy at the end of each game. The plots show that in the first
Hanabi experiment, 𝜋𝑆 is the dominant policy selected by 𝐴𝐶 to
play 𝐴𝑆 , and in the second Hanabi experiment, where 𝜋𝑆 ∉ Π, the
policy with the highest cross-play score with 𝜋𝑆 is the dominant
strategy for 𝐴𝐶 to play with 𝐴𝑆 .

Next we define a 𝑘-shot ad-hoc game whereby 𝐴𝐶 plays with
𝐴𝑆 a total of 𝑘 times in the second Hanabi game (𝜋𝑆 ∉ Π). Table
2 shows the results for 𝑘-shot games. These results are compared
with the maximum cross-play scores of 𝐴𝐶 policies against 𝜋𝑆 .

4 CONCLUSION
On-the-fly Strategy Adaptation (OSA), a novel approach for co-
ordination between ad-hoc agents across a set of diverse models,
achieves impressive performance yet scales gracefully. Average re-
wards for both ad-hoc and 𝑘-shot ad-hoc games show performance
improves in 𝑘-shot games.
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