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ABSTRACT
Multi-agent reinforcement learning (MARL) provides a framework

for problems involving multiple interacting agents. Despite sim-

ilarity to the single-agent case, multi-agent problems are often

harder to train and analyze theoretically. In this work, we propose

MA-Trace, a new on-policy actor-critic algorithm, which extends

V-Trace to the MARL setting. The key advantage of our algorithm is

its high scalability in a multi-worker setting. To this end, MA-Trace

utilizes importance sampling as an off-policy correction method,

which allows distributing the computations with negligible impact

on the quality of training. Furthermore, our algorithm is theoreti-

cally grounded – we provide a fixed-point theorem that guarantees

convergence. We evaluate the algorithm extensively on the Star-

Craft Multi-Agent Challenge, a standard benchmark for multi-agent

algorithms. MA-Trace achieves high performance on all its tasks

and exceeds state-of-the-art results on some of them.
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1 INTRODUCTION
In this work, we propose MA-Trace, a new on-policy actor-critic

algorithm, which adheres to the centralized training and decentral-

ized execution paradigm [3–5]. The key component of MA-Trace

is the usage of importance sampling. This mechanism, based on

V-Trace [2], provides off-policy correction for training data. As we

demonstrate empirically, it allows distributing the computations

efficiently in a multi-worker setup. Another advantage of MA-Trace

is the fact that it is theoretically grounded. We provide a fixed-point

theorem that guarantees convergence.

The on-policy algorithms directly optimize the objective; thus,

they tend to be more stable and robust to hyperparameter choices

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

than off-policy methods [1, 9, 10]. However, it is often impractical to

use an on-policy algorithm in the distributed setting. When data col-

lection is performed by many workers, the communication latency,

asynchronicity, and other factors make the behavioral policies lag

behind the target one. This results in a shift of the collected data

towards off-policy distribution, which hurts the training. V-Trace

reduces this shift by utilizing importance weights, thus permitting

highly scalable training. Similarly, MA-Trace can be distributed to

many workers to significantly reduce the wall-time of training with

no negative impact on the results.

We evaluate MA-Trace on the StarCraft Multi-Agent Challenge

[7]. Our approach achieves competitive performance on all tasks

and exceeds the state-of-the-art results on some of them.

For an extended version of this paper, we refer to [12]. The

videos and further analysis can be found on the project webpage

https://sites.google.com/view/ma-trace. The source code of our

experiments is available at https://github.com/awarelab/seed_rl.

Our main contributions are the following:

(1) We introduce MA-Trace – a simple, scalable, and effective

multi-agent reinforcement learning algorithm with theoreti-

cal guarantees.

(2) We confirm that the training using MA-Trace can be easily

distributed to multiple workers with a nearly perfect speed-

up and no negative impact on the quality.

(3) We provide extensive experimental validation of the MA-

Trace algorithm on the StarCraft Multi-Agent Challenge.

2 MA-TRACE ALGORITHM
MA-Trace follows the paradigm of centralized training, decentral-

ized execution. Each actor-agent chooses its action taking into

account its local observation. On the other hand, the critic net-

work, which provides estimates of the value function, operates

only during training, so it does not need to obey decentralization

requirements. We study two versions of the algorithm, differing

in the input to the critic: MA-Trace (state) uses the environment

states, while MA-Trace (obs) employs the joint observation of all

agents.

The value function𝑉 𝜋
corresponding to policy 𝜋 can be obtained

by repeated application of the Bellman operator. This requires on-

policy data. The central innovation of V-Trace in the single-agent

setting and MA-Trace in the multi-agent setting is to allow for

slightly off-policy data by utilizing importance sampling. To this

Extended Abstract AAMAS 2022, May 9–13, 2022, Online

1774

https://sites.google.com/view/ma-trace
https://github.com/awarelab/seed_rl


end, we use the V-Trace-inspired policy evaluation operator R,
defined as

R𝑉 (𝑠) := 𝑉 (𝑠)+

E𝜇

[+∞∑
𝑡=0

𝛾𝑡 (𝑐0 · · · 𝑐𝑡−1)𝜌𝑡 (𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡 )) |𝑠0 = 𝑠

]
,

(1)

where 𝑐𝑡 = 𝑐 (𝑠𝑡 , 𝑎𝑡 ), 𝜌𝑡 := 𝜌 (𝑠𝑡 , 𝑎𝑡 ) are importance sampling cor-

rections given by

𝑐𝑡 := min

(
𝑐,
𝜋 (𝑎𝑡 |𝑠𝑡 )
𝜇 (𝑎𝑡 |𝑠𝑡 )

)
, 𝜌𝑡 := min

(
𝜌,

𝜋 (𝑎𝑡 |𝑠𝑡 )
𝜇 (𝑎𝑡 |𝑠𝑡 )

)
, (2)

where 𝜇 is a policy that collected the data and 𝑐, 𝜌 are hyperparam-

eters. The operator R leads to a 𝑛-step Monte-Carlo target

𝑣𝑡 := 𝑉 (𝑠𝑡 ) +
𝑡+𝑛+1∑
𝑢=𝑡

𝛾𝑢−𝑡
(
𝑢−1∏
𝑖=𝑡

𝑐𝑖

)
𝜌𝑢

(
𝑟𝑢 + 𝛾𝑉 (𝑠𝑢+1) −𝑉 (𝑠𝑢 )

)
. (3)

For updating the networks parameters 𝜔𝑖 of the 𝑖-th actor we

use policy gradient updates. We also need importance sampling to

correct for using the off-policy behavioral policy 𝜇:

𝑔𝑖,𝑡 = 𝜌𝑡 (∇𝜔𝑖
log(𝜋𝜔𝑖

(𝑎𝑡 |𝑠𝑡 ))) (𝑟𝑡 + 𝛾𝑉 (𝑠𝑡+1) −𝑉 (𝑠𝑡 )) . (4)

In case of MA-Trace (obs) we need to use respective local observa-

tions instead of states when estimating 𝑔𝑖,𝑡 .

The operator R enjoys the fixed point property. We present a

proof of the following Theorem in [12].

Theorem 1. Let 𝑐𝑡 , 𝜌𝑡 be importance sampling weights (2) and
0 ≤ 𝑐 ≤ 𝜌 . Assume also that E𝜇 𝜌0 ≥ 𝛽 ∈ (0, 1]. Then the operator
R is a C∞ contraction with a unique fixed point 𝑉 𝜋̃ which is a value
function of a policy 𝜋̃ given by

𝜋̃ (𝑎 |𝑠) := min (𝜌𝜇 (𝑎 |𝑠), 𝜋 (𝑎 |𝑠))∑
𝑏∈A min (𝜌𝜇 (𝑏 |𝑠), 𝜋 (𝑏 |𝑠)) .

The contraction constant is smaller than 1 − (1 − 𝛾)𝛽 < 1.

3 EXPERIMENTS
3.1 Environment
We evaluate MA-Trace on the StarCraft Multi-Agent Challenge

(SMAC) [8], which is based on a popular real-time strategy game

StarCraft II. It provides 14 micromanagement tasks of varying diffi-

culty and structure. The aim is to win a battle against a built-in AI

engine by using a team of agents. Each unit has a limited sight range,

which makes the environment partially observable. To facilitate the

training, SMAC provides dense rewards. The team receives points

for inflicting damage and defeating units. This scheme sometimes

might reinforce undesired behaviors, which is the case e.g. in the

3s_vs_5z task (see Figure 1 and discussion of the environment on

the project webpage).

3.2 Main result
MA-Trace (obs) reaches competitive results and in some cases ex-

ceeds the state-of-the-art. We compare with a selection of the state-

of-the-art algorithms on SMAC following [11] and [6]. More de-

tailed comparison can be found in [12].

Figure 1:Medianwin rate ofMA-Trace comparedwith state-of-the-
arts algorithms on SMAC. In 3s_vs_5z, our agent learns to keep the
enemies alive and let them regenerate, to inflict more damage. This
way the agent maximizes the rewards but scores no win.

3.3 Discussion and further experiments
Advantage of using importance sampling. Using the impor-

tance weights is the key algorithmic innovation of MA-Trace (and

V-Trace), responsible for the strong performance we report. Indeed,

already for 30 actor workers, using the weights is essential. Other-

wise, the algorithm is unstable and suffers from poor asymptotic

performance: on 7 out of 14 environments its final score is not

better than 50% of MA-Trace.

Training scaling. The importance sampling enables V-Trace

to be truly scalable in multi-node setups. MA-Trace enjoys the

same property. Importantly, we do not observe any significant

degradation in the training performance when trained in the multi-

node setup.

Input for the critic network. We found that MA-Trace (state)

performs slightly better than MA-Trace (obs) in many tasks, though

the differences are small. However, in two harder tasks (6h_vs_8z
and corridor), MA-Trace (state) learns much slower and often fails,

unlike the (obs) variant. This is perhaps surprising, as the full state

contains additional information (e.g., about invisible opponents).

Sharing actors networks. We follow a common approach of

sharing the policy network between agents.MA-Tracewith separate

policies failed to learn on the 5 hardest tasks. In some works that

use a shared network, e.g. [6], the observations are enriched with

the agent ID to preserve individuality. This might be beneficial if

agents should be assigned different roles within the team. However,

we find these benefits rather minor and opt for the input provided

by the environment (i.e., without ID).

4 CONCLUSIONS
In our work, we introduced MA-Trace, a new multi-agent rein-

forcement learning algorithm with theoretical guarantees. Despite

its on-policy nature, the computations can be distributed to many

workers with nearly perfect speed-up and no significant impact

on the training quality. This was achieved by using importance

sampling weights.

We believe that such a scheme could be used to strengthen other

on-policy algorithms, which are typically considered stable and

robust though less time-efficient in practice.
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