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ABSTRACT
In sequential decision making – whether it’s realized with or with-

out the benefit of a model – objectives are often underspecified

or incomplete. This gives discretion to the acting agent to realize

the stated objective in ways that may result in undesirable out-

comes, including inadvertently creating an unsafe environment or

indirectly impacting the agency of humans or other agents that

typically operate in the environment. In this paper, we explore how

to build a reinforcement learning (RL) agent that contemplates the

impact of its actions on the wellbeing and agency of others in the

environment, most notably humans. We endow RL agents with the

ability to contemplate such impact by augmenting their reward

based on expectation of future return by others in the environment,

providing different criteria for characterizing impact. We further

endow these agents with the ability to differentially factor this im-

pact into their decision making, manifesting behaviour that ranges

from self-centred to self-less, as demonstrated by experiments in

gridworld environments.
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1 INTRODUCTION
Sequential decision making, whether it is realized via reinforcement

learning (RL), supervised learning, or some form of probabilistic or

otherwise symbolic planning using models – relies on the specifica-

tion of an objective – a reward function to be optimized in the case

of RL, or a goal to achieve in the case of symbolic planning. Recent

work in AI safety has raised the concern that objective specifica-

tions are often underspecified or incomplete, neglecting to take into

account potential undesirable (negative) side effects of achievement

of the specified objective. As Amodei et al. [1] explain, “[F]or an

agent operating in a large, multifaceted environment, an objective

function that focuses on only one aspect of the environment may

implicitly express indifference over other aspects of the environ-

ment.” Stuart Russell gave the example of tasking a robot to get

coffee from a coffee shop and the robot, in its singular commitment

to achieving the stated objective, killing all those in the coffee shop

that stood between it and the purchase of coffee [12]. A somewhat

more benign example by Amodei et al. [1] is that of a robot breaking

a vase that is on the optimal path between two points. A range of re-

cent works have presented computational techniques for avoiding

or learning to avoid negative side effects [e.g., 10, 11, 14, 23, 27].

Our concern in this paper is with how an RL agent can learn to

act safely in the face of a potentially incomplete specification of

the objective. Is avoiding negative side effects the answer? Amodei

et al. observe that

“avoiding side effects can be seen as a proxy for the

things we really care about: avoiding negative exter-

nalities. If everyone likes a side effect, there’s no need

to avoid it."

In the spirit of this observation, we contend that to act safely an
agent should contemplate the impact of its actions on the wellbeing and
agency of others in the environment. Indeed, what may be construed

as a positive effect for one agent may be a negative effect for another.

Here we consider negative side effects to be those that impede the

future wellbeing or agency of other agents.

The setup in this paper is not a multi-agent RL or cooperative

AI setup, and this is done by design. We take the pragmatic stance
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that in many real world settings, an RL agent will not be able to

compel humans to consistently and rationally cooperate, if they

deign to cooperate at all. As such, the problem we address is in a

single RL-agent setting in which the other agents — which may be

the humans that operate in the environment — are just part of the

environment, operating with fixed policies, and it is the acting RL

agent that is constructing a policy that minimizes its impact on the

future agency of these other (human) agents. The acting agent is

being considerate of others.

Here, we endow RL agents with the ability to consider in their

learning the future welfare and continued agency of others in the

environment. We do so by augmenting the RL agent’s reward with

an auxiliary reward that reflects different functions of expected

future return of other agents. We contrast this with recent work

on side effects that takes into account only how the agent’s actions

will affect its own future abilities [10, 11, 23]. Considering other

agents’ abilities when avoiding side effects was informally discussed

by Turner [21], and we have also investigated it in the context of

symbolic planning [8, 9].

In its most general case, we make no assumptions about the num-

ber of agents that exist in the environment, their actions, or details

of their transition functions. However we show how individuals or

groups of agents can be distinguished and differentially considered.

We further endow these agents with the ability to control the degree

to which impact on self versus others factors into their learning,

resulting in behaviour that ranges from self-centred to self-less.

Experiments in gridworld environments illustrate qualitative and

quantitative properties of the proposed approach.

2 PRELIMINARIES
In this section, we review relevant definitions and notation. RL

agents learn policies from experience. When the problem is fully-

observable, it’s standard to model the environment as a Markov

Decision Process (MDP) [19]. We describe an MDP as a tuple

⟨𝑆,𝐴,𝑇 , 𝑟, 𝛾⟩ where 𝑆 is a finite set of states, 𝐴 is a finite set of

actions, 𝑇 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) gives the probability of transitioning to state

𝑠𝑡+1 when taking action 𝑎𝑡 in state 𝑠𝑡 , 𝑟 : 𝑆 × 𝐴 × 𝑆 → R is the

reward function, and 𝛾 is the discount factor. Sometimes an MDP

can also include a designated initial state 𝑠0 ∈ 𝑆 . When the agent

takes an action 𝑎𝑡 ∈ 𝐴 in a state 𝑠𝑡 ∈ 𝑆 , as result it ends up in a

new state 𝑠𝑡+1 drawn from the distribution 𝑇 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ), and re-

ceives the reward 𝑟𝑡+1 = 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1). A terminal state in an MDP

is a state 𝑠 which can never be exited – i.e., 𝑇 (𝑠 |𝑠, 𝑎) = 1 for every

action 𝑎 – and from which no further reward can be gained – i.e.,

𝑟 (𝑠, 𝑎, 𝑠) = 0 for every action 𝑎.

A policy is a (possibly stochastic) mapping from states to actions.

Given a policy 𝜋 , the value of a state 𝑠 is the expected return of

that state, that is, the expected sum of (discounted) rewards that

the agent will get by following the policy 𝜋 starting in 𝑠 . That

can be expressed using the value function 𝑉 𝜋 , defined as 𝑉 𝜋 (𝑠) =
E𝜋

[∑∞
𝑘=0

𝛾𝑘 · 𝑟𝑡+𝑘+1 | 𝑠𝑡 = 𝑠

]
where the E𝜋 notation means that

in the expectation, the action in each state 𝑠𝑡 , 𝑠𝑡+1, . . . is selected
according to the policy 𝜋 . The discount factor 𝛾 determines how

much less valuable it is to receive rewards in the future instead of

the present. An optimal policy will maximize the value of each state.

The optimal value function 𝑉 ∗
is the value function of an optimal

policy. Similarly, a value (called a Q-value) can be associated with a

state-action pair: 𝑄𝜋 (𝑠, 𝑎) = E𝜋
[∑∞

𝑘=0
𝛾𝑘 · 𝑟𝑡+𝑘+1 | 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎

]
.

Note that the first action selected is necessarily 𝑎, but the policy 𝜋

is followed afterwards. The optimal Q-function is the Q-function

𝑄∗
corresponding to an optimal policy.

3 PROBLEM AND APPROACH
In Section 1, we suggested that to act safely an acting agent should

contemplate the impact of its actions on the welfare and continued

agency of those that act or react in the environment. In this section,

we present several formulations that address this aspiration. For the

purposes of this study, we consider an environment with a single

acting agent that learns how to act via RL. Other agents exist within

the environment, operating via fixed policies, and only acting after

the acting agent has reached a terminating state. We assume that we

can neither incentivize nor control these other agents. An evocative

example may be to consider university students who share a kitchen

environment, and we wish our RL agent – the acting agent, with

some conception of what others may typically do in the kitchen —

to learn how to act in the kitchen in a manner that is considerate

of others who may use the kitchen after the acting agent is done.

3.1 Using Information about Value Functions
To incentivize the acting agent to consider the future wellbeing and

agency of others, we augment its reward with an auxiliary reward

that reflects the impact of its choice of actions on future agency

and wellbeing of others in the environment. To reflect the acting

agent’s uncertainty about what is good for others, we make use of

a distribution over value functions. In particular, suppose that we

have a finite set V of possible value functions 𝑉 : 𝑆 → R, and a

probability distribution P(𝑉 ) over that set. Note that we don’t have
to commit to how many agents there are (or what exactly their

actions are). It could be that each 𝑉 ∈ V corresponds to a different

agent, that the set reflects all possible value functions of a unique

agent, or anything in between. Also, each𝑉 ∈ V could reflect some

aggregation of the value functions of all or some of the agents.

We define the augmented reward function as

𝑟value (𝑠, 𝑎, 𝑠 ′) ={
𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) if 𝑠 ′ is not terminal

𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) + 𝛾 · 𝛼2 · 𝐹 (V, P, 𝑠 ′) if 𝑠 ′ is terminal

(1)

where 𝑟1 is the acting agent’s individual reward function, and 𝐹

is some function. The hyperparameters 𝛼1 and 𝛼2, which we call

“caring coefficents”, are real numbers that determine the degrees to

which the individual reward 𝑟1 and the auxiliary reward 𝐹 (V, P, 𝑠 ′)
contribute to the overall reward. As we will see in Section 4, if

𝛼1 = 1 and 𝛼2 = 0, we just get the original reward function where

the acting agent only values its own reward. The agent is oblivious

to its impact on others in its environment. If 𝛼1 = 0, then the

acting agent entirely ignores any reward it garners directly from its

actions. Note that future activity does not have to start in exactly

the same state at which the acting agent ended.𝑉 can be defined so

that 𝑉 (𝑠 ′) gives the expected return of future activity considered

over a known distribution of starting states, given that the acting

agent ended in 𝑠 ′.
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We consider three possible different definitions of 𝐹 (V, P, 𝑠 ′):∑
𝑉 ∈V P(𝑉 ) ·𝑉 (𝑠 ′) expected future return (2)

min

𝑉 ∈V:P(𝑉 )>0
𝑉 (𝑠 ′) worst-case future return (3)∑

𝑉 ∈V P(𝑉 ) ·min(𝑉 (𝑠 ′),𝑉 (𝑠0)) penalize negative change (4)

In Eq. (2), 𝐹 (V, P, 𝑠 ′) is the expected value of 𝑠 ′, given the distri-

bution on value functions. Under some conditions, this is a gener-

alization of the auxiliary reward defined by Krakovna et al. [11],

which assumed that the future value functions were ones of the

acting agent (and so depended on the acting agent’s own abilities).

See subsection 5.1 for more details. Meanwhile, Eq. (3) considers

the value of 𝑠 ′ if the “worst-case” value function from V (that still

has positive probability) is used.

Note that those two reward augmentations may incentivize the

acting agent to not only avoid negative side effects, but also to cause

“positive side effects” – to help other agents (assuming 𝛼2 > 0). To

focus on avoiding negative side effects, Krakovna et al. [11] pro-

posed comparing the state the agent ends up in against a reference
state (see subsubsection 5.1.1 for more details), and that is applica-

ble to our approach as well. In Eq. (4), we use one of the simplest

possible reference states, the initial state: the auxiliary reward is

the lower of 𝑉 (𝑠 ′) and 𝑉 (𝑠0), where 𝑠0 is the initial state. The idea
is to decrease the acting agent’s reward when it decreases the ex-

pected future return, but to not increase the acting agent’s reward

for increasing that same expected return.

We have also explored associating different caring coefficients

with different agents, and trying to preserve agents’ ability to exe-

cute options [20] (see subsection 3.3).

A complication with our approach is that for some possible

reward functions for the acting agent and future value functions, the

acting agent may have an incentive to avoid terminating states, to

avoid or delay the penalty for negative future return. This incentive

would typically be undesirable. However, it can be shown that

under some circumstances, the acting agent’s optimal policy will

be terminating. The proposition below and its proof are similar to

a result of Illanes et al. [7, Theorem 1].

Proposition 1. Let 𝑀 = ⟨𝑆,𝐴,𝑇 , 𝑟1, 𝛾⟩ be an MDP where 𝛾 = 1,
the reward function 𝑟1 is negative everywhere, and there exists a
terminating policy. Suppose 𝑟value is the reward function constructed
from 𝑟1 according to Equation 2, using some distribution P(𝑉 ). Then
any optimal policy for the MDP 𝑀 ′ = ⟨𝑆,𝐴,𝑇 , 𝑟value, 𝛾⟩ with the
modified reward will terminate with probability 1.

Proof. Suppose for contradiction that there is an optimal policy

𝜋∗ for𝑀 ′
that is non-terminating. Then there is some state 𝑠 ∈ 𝑆 so

that the probability of reaching a terminal state from 𝑠 by following

𝜋∗ is some value 𝑐 < 1. Since rewards are negative everywhere,

that means that 𝑉 𝜋
∗ (𝑠) = −∞. On the other hand, any terminating

policy gives a finite value to each state. Since there is a terminating

policy for𝑀 there is one for𝑀 ′
, and so 𝜋∗ cannot be optimal. □

3.2 Treating Agents Differently
To this point, we’ve utilized a distribution over value functions

to capture the expected return on future behaviour within the

environment. The distribution has made no commitments to the

existence of individual agents. To differentiate individual agents

and to have the ability to treat them differently, we augment our

formulation with indices, 𝑖 = 1, . . . , 𝑛, corresponding to different

agents (we will assume the acting agent is agent 1). Furthermore,

for each agent 𝑖 , suppose we have a finite set of possible value

functions {𝑉 (𝑖)
1

,𝑉
(𝑖)
2

, . . . }, and P(𝑉𝑖 𝑗 ) is the probability that𝑉
(𝑖)
𝑗

is

the real value function for agent 𝑖 . We could then have a separate

caring coefficient 𝛼𝑖 for each agent 𝑖 , and define the following

reward function for the acting agent:

𝑟 ′value (𝑠, 𝑎, 𝑠
′) =

𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) if 𝑠 ′ is not terminal

𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) + 𝛾
∑
𝑖 𝛼𝑖

∑
𝑗 P(𝑉𝑖 𝑗 ) ·𝑉

(𝑖)
𝑗

(𝑠 ′)
if 𝑠 ′ is terminal

(5)

Considering individual agents raises the possibility of giving the

acting agent reward based not on the expected sum of returns of

the other agents (as in Eq. (5)), but by incorporating some notion of

“fairness”. For example, we could consider the expected return of the

agent who would be worst-off. This is inspired by the maximin (or

“Rawlsian”) social welfare function, which measures social welfare

in terms of the utility of the worst-off agent [see, e.g., 15].

3.3 Using Information about Options
In Eq. (1), we used a distribution over value functions to provide

some sense of what agents might do in the future and the expected

return achievable from different states. Here we consider those

agents to instead be endowed with a set of options [20] that could
reflect particular skills or tasks they are capable of realizing, and we

use a distribution over such options to characterize what might be

executed by future agents. This easily allows us to identify individ-

ual skills and could give the acting agent the ability to contemplate

preservation of skills or tasks, if desirable.

An option is a tuple ⟨I, 𝜋, 𝛽⟩ where I ⊆ 𝑆 is the initiation

set, 𝜋 is a policy, and 𝛽 is a termination condition (formally, a

function associating each state with a termination probability) [20].

The idea is that an agent can follow an option by starting from

a state in its initiation set I and following the policy 𝜋 until it

terminates. Options provide a form of macro action that can be

used as a temporally abstracted building block in the construction

of policies. Options are often used in Hierarchical RL: an agent can

learn a policy to choose options to execute instead of actions. Here

we will use options to represent skills or tasks that other agents in

the environment may wish to perform.

Suppose we have a set O of initiation sets of options, and a prob-

ability function P(I) giving the probability that I is the initiation

set of the option whose execution will be attempted after the acting

agent reaches a terminating state. To try to make the acting agent

act so as to allow the execution of that option, we can modify the

acting agent’s reward function 𝑟1, yielding the new reward function

𝑟option below.

𝑟option (𝑠, 𝑎, 𝑠 ′) =
𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) if 𝑠 ′ is not terminal

𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) + 𝛾 · 𝛼2
∑︁
I∈O

P(I) · II (𝑠 ′) if 𝑠 ′ is terminal

(6)
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where II : 𝑆 → {0, 1} is the indicator function for I as a subset of

𝑆 , i.e., II (𝑠) =
{
1 if 𝑠 ∈ I
0 otherwise

.

Note that if O is finite and P is a uniform distribution, then

the auxiliary reward given by 𝑟option will be proportional to how

many options in O can be started in the terminal state. Also note

that if O represents a set of options that could have been initiated

in the start state of the acting agent, we can interpret 𝑟option as

encouraging preservation of the capabilities of other agents, which

is more related to the idea of side effects.

The hyperparameters 𝛼1 and 𝛼2 determine how much weight is

given to the original reward function and to the ability to initiate the

option. Given a fixed value of 𝛼1 (and ignoring the discount factor),

the parameter 𝛼2 could be understood as a “budget”, indicating how

much negative reward the acting agent is willing to endure in order

to let the option get executed.

We could consider variants of this approach that further distin-

guish options with respect to the agent(s) that can realize them,

or by specific properties of the options, such as what skill they

realize, and we could use such properties to determine how each 𝛼

is weighted. For example, the acting agent could negatively weight

options which terminate in states that the acting agent doesn’t like.

To illustrate, imagine that the option’s execution involves a deer

eating the plants in the vegetable garden. The acting agent might

want to prevent option execution by building a fence.

Finally, if we had a distribution over pairs ⟨I,𝑉 ⟩ – consisting of

an option’s initiation set and a value function associated with that

– then this can be captured by the following augmentation:

𝑟 ′option (𝑠, 𝑎, 𝑠
′) =

𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) if 𝑠 ′ is not terminal

𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) + 𝛼2
∑

⟨I,𝑉 ⟩∈O P(⟨I,𝑉 ⟩) · II (𝑠 ′) ·𝑉 (𝑠 ′)
if 𝑠 ′ is terminal

(7)

This is much like 𝑟option but has an extra factor of𝑉 (𝑠 ′) in the sum

in the second case.

4 EXPERIMENTS
In the previous section we presented different formulations of re-

ward functions that allow RL agents to contemplate the impact of

their actions on the welfare and agency of others. Here, we present

quantitative and qualitative results relating to these formulations.

In all the experiments, policies are learned using Q-learning [25].

To aid exposition, we consider simple distributions over future

value functions, in which the acting agent is certain of what the

future value function is (or, in Figure 3, only considers a small

number of possibilities). Experimental details can be found in the

supplementary material. Code is available at https://github.com/

praal/beconsiderate.

4.1 Quantitative Experiments
In our first set of experiments, we compare one of our formulations

(Eq. (2)) of a considerate RL agent against two baselines. We illus-

trate that by considering others, the acting agent avoids causing

negative side effects for them, and in some scenarios, yields positive

side effects. Second, we illustrate the effect of the caring coefficient

on the agent’s behaviour and on other agents’ reward.

4.1.1 The Impact of Considering Others. Weexplore how our choice

of reward augmentation method affects the acting agent and the

agent that goes next. We use a kitchen environment where agents

aim to collect different ingredients from the fridge or shelves, and

prepare a meal. Each agent, when it performs any action, gets -1

reward. We designed four different scenarios to illustrate properties

of our approach. The results are shown in Table 1. We use a step
difference metric – the difference between the number of steps each

agent required to execute their policy as compared to what they

would have required if they had tried to complete their task from

the initial state without considering other agents.

Baselines: We compare our method, which is defined in Eq. (2)

(with 𝛼1 = 𝛼2 = 1), with two reward augmentation baselines: not

augmenting the reward, and a method based on Krakovna et al.

[11]’s approach. The Krakovna-style baseline uses the same Eq. (2)

to augment the rewards, except that the future value functions

considered are always possible future value functions of the acting
agent itself (as if it were trying to accomplish the tasks of other

agents). So if other agents have differing abilities, those abilities are

ignored in the Krakovna-style model. (Note that this method does

not incorporate Krakovna et al. [11]’s notion of a “reference state”

and may incentivize positive side effects in some cases, as our own

method does.)

The first experiment (Salad) shows a scenario where the acting

agent and next agent have the same abilities, and as such our ap-

proach and the Krakovna-style baseline both avoid negative side

effects and behave identically. The next experiments (Peanut and

Salt) show that our approach, taking into account differing agent

abilities, is sometimes more effective at avoiding negative side ef-

fects than either baseline. The last experiment (Cookies) shows how

our approach (and the Krakovna-style baseline) can cause positive

side effects for the next agent. Each of the experiments is described

in more detail below.

In Salad, the acting agent needs to collect the ingredients from

the fridge. If it doesn’t consider side effects, it doesn’t close the

fridge and ruins all the remaining ingredients, preventing the next

agent from completing its task. By considering future tasks (whether

another agent’s or its own), the acting agent learns to take an extra

step to close the fridge. In Peanut, preparing food contaminates

the environment, and for the next agent to cook requires that the

environment first be cleaned (taking one step), or disinfected (taking

two steps) if the next agent has allergies. Only our approach takes

the two extra steps to disinfect the kitchen because it considers

that the other agent (unlike itself) has allergies. In Salt, if the acting

agent does not put the salt shaker back on the shelves, the next

agent can’t complete its task. By considering future agents (in

the Krakovna-style baseline and our approach) this side effect is

avoided. However, the acting agent is tall and may put the salt on

the top shelf (making it take longer for the next, shorter, agent to

get it) if it considers that the next agent will be itself, as in the

Krakovna-style baseline. Finally, in Cookies, the next agent’s task

is to bake cookies in the oven. Two steps are required to preheat

the oven (turning on the oven and waiting). By considering the

future task of the next agent, the acting agent (who was not using
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Table 1: Comparison of reward augmentation methods for acting and subsequent agents. Each row reflects a different method.
Each column depicts results for a different experimental scenario. Each entry pair depicts a “step difference” required by the
acting agent and the subsequent acting agent (next). The “step difference” is the difference between the number of steps the
agent required to execute their policy as compared to what they would have required if they had tried to complete their task
from the initial state without considering other agents. ∞ indicates the task was unachievable.

Salad Peanut Salt Cookies

Method acting agent, next acting, next acting, next acting, next

Non-augmented reward 0, ∞ 0, ∞ 0, ∞ 0, 0

Based on Krakovna et al. 1, 0 1, ∞ 1, 1 1, -2

Our approach [Eq. 2] 1, 0 2, 0 1, 0 1, -2

the oven) can turn on the oven to start preheating it, and save the

next agent two steps.

4.1.2 Varying the Caring Coefficient. In this experiment, we inves-

tigate the effect of choosing different caring coefficients (𝛼1 and 𝛼2)

in Eq. (2) by monitoring the average reward collected by each of

the agents in the Craft-World Environment.

Craft-World Environment We consider a Minecraft
TM

in-

spired gridworld environment depicted in Figure 1.

K

K

Door

Key Storage

Factory

Toolshed

Materials shop

Key

Symbol Meaning

K

Figure 1: Craft-World Environment

Agents in this environment use tools and materials to construct

artifacts such as boxes. Tools are stored in a toolshed in the upper

right corner of the grid environment. Agents enter and exit the

environment through doors in the upper left and lower right. They

must collect materials and bring them to the factory for assembly.

The factory requires a key for entry, and there is only one key,

which can only be stored in one of two locations (denoted by K).

When considering other agents, the acting agent may elect to place

the key in a position that is convenient for others, or may help

other agents by anticipating their need for tools or resources and

collect them on their behalf.

In the experiment we ran, agents enter at the top left door, tasked

with making a box. The first (caring) agent learns a policy following

Eq. (2). The second, subsequent acting agent, follows a fixed policy

designed to optimize its own reward.

Figure 2 shows the reward that each agent gets (after training)

as we vary the caring coefficient 𝛼2. It also shows their average.

When 𝛼2 = 0, the first agent is oblivious to others and exits the

environment without returning the key, precluding the second

agent from making a box. When 𝛼2 > 0, the agent becomes more

considerate and returns the key on its way to the exit. Aswe increase

Caring Coefficient 

A
ve

ra
ge

 R
ew

ar
d

Figure 2: Effect of caring coefficients in the Craft-World en-
vironment. Increasing 𝛼2 above 0, at first the agent changes
its behaviour with little or no cost and this is significantly
beneficial to the second agent. However, by increasing 𝛼2
further, the first agent incurs high cost, yielding only a small
benefit to the second agent.

the value of 𝛼2, the first agent is incentivized to help the second

agent, eventually (to its detriment) carrying extra materials to the

factory for the second agent, garnering negative reward for this

hard work and also, interestingly, lowering the average reward of

the two agents. Too much caring does not yield maximal reward

for the collective!

4.2 Qualitative Experiments
In this section we share the results of qualitative experiments that

serve to illustrate how different reward function augmentations

and settings of the caring coefficients lead to different behaviours.

We consider reward augmentations using different definitions of

𝐹 (V, P, 𝑠 ′), the agent-distinguishing variant from subsection 3.2,

and the options-based formulation from subsection 3.3.

4.2.1 Optimal Behaviours under Different Reward Augmentations.
Figure 3 illustrates the difference between Equations (2), (3) and

(4) and the Krakovna-style baseline. In this experiment, the goal

of the agents is to play with the doll and leave it somewhere in
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the environment for the next agent, and then exit the environment

from their entry point; the agents get -1 reward for each step. There

are six agents (circles 1-6 in Figure 3) in the environment with

the same goal. They are shown at their individual entry points.

Agents enter the environment separately; the acting agent is agent

1. In this scenario, 𝛼1 = 1, and 𝛼2 = 10. If we augment the acting

agent’s reward according to Eq. (2) (where the distribution of value

functions is a uniform distribution over the optimal value function

for each agent w.r.t. the goal of playing with the doll), the optimal

policy is to place the doll as close as possible to the majority of the

agents. If we use Eq. (3) the optimal policy is to place the doll so

as to minimize the distance to the furthest agent. Finally, if we use

Eq. (4) the optimal policy is to leave the doll where it is, because

moving it causes negative side effects for agent 6. However if we

use the approach based on Krakovna et al., the optimal policy is to

leave the doll at agent 1’s exit/entry point, so that the doll would be

conveniently located for agent 1 if it were to re-enter. Finally, if we

use non-augmented reward the agent does not have an incentive

to place the doll in the environment and leaves with the doll (not

shown in figure).

2 3

4

5

6

1

Eq. 2

Eq. 3

Eq. 4

Krakovna-style 

Figure 3: Example behaviour that illustrates different aug-
mentations of the reward function according to Equations (2),
(3), (4) and the Krakovna-style baseline. Six agents (circles
1-6) are shown at their individual entry points. Agent 1 is the
acting agent (𝛼1 = 1 and 𝛼2 = 10). All agents wish to play with
the doll, subsequently exiting from their entry points. Agent
1 learns a policy to play with the doll and leave it for others.
Each arrow points to where an optimal policy could leave
the doll when Agent 1 receives auxiliary reward according
to the approach labelling the arrow.

4.2.2 Using Different Caring Coefficients for Different Agents. A
second experiment, depicted in Figure 4, illustrates the difference in

treatment of agents through the choice of caring coefficients when

using the modified reward in Eq. (5). There are 3 agents that want

to get to the exit from the starting point which is at the bottom left;

they get -1 reward in each time step. Agents enter the environment

separately, and the acting agent is agent 1. Agent 2 has a garden

on the shortest path and gets very upset (-20 reward) if someone

passes through the garden. The acting agent cares about agent 3

and itself in an equal amount (𝛼1 = 𝛼3 = 1). In the first case we

consider, agent 1 is oblivious to agent 2 (𝛼2 = 0) and follows the

Figure 4: Different caring coefficients lead to different paths.
This experiment shows how an inconsiderate agent will walk
over another agent’s garden (solid red line). With a little
consideration, it will walk around (dotted blue line) and with
significant consideration it will go to the expense of building
a fence to keep it and others out of the garden (dashed green
line in the right figure).

shortest path to the exit, passing through the garden (the solid red

path in the left figure). In the second case, agent 1 cares about agent

2 a little (𝛼2 = 1) and takes the longer path (dotted blue path in the

left figure) to avoid passing through the garden. In the third case,

agent 1 cares about agent 2 a lot (𝛼2 = 10) and even though there is

a reward of -50, agent 1 builds a fence to protect agent 2’s garden

(dashed green path in the right figure), which also makes agent 3

take the longer path with extra steps.

K

K

Room 1

Room 2Common Area

A B

D

E

K

C

Figure 5: Example behaviour that illustrates the effect of 𝛼2
with options, following Eq. (6).

4.2.3 Using Options. Here, we give an illustration of the options-

based reward function in Eq. (6) and investigate the behaviour of

the acting agent by fixing 𝛼1 and changing 𝛼2. Figure 5 depicts

a grid-world environment composed of a small mail room in the

lower right corner (depicted by the pile of packages), two designated

rooms (Room 1 and Room 2), and a Common Area. The mail room

requires a key to open it. The key has to be stored at a ‘K’ location.

In addition to the acting agent, there are 5 other agents (A, B,

C, D, E) that may use the environment in the future. The acting

agent has access to all areas of the grid, but the other agents’ access

is restricted. Room 1 is only accessible to agents C and D, while
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Room 2 is accessible to agents A, B, C, and D, but not E. All agents

can access the Common Area. Agents A, B, C, D, and E each have

an option that enables them to collect a package from the mail

room, but because the key can only be stored in one of the three

designated ‘K’ locations, the initiation sets for agents’ options differ,

based on their personal room access.

The acting agent (not depicted) aims to pick up the key, collect a

package, and place the key at one of the ‘K’ locations. It realizes a

reward of -1 at each time step. Since agents A, B, C, D, and E all need

the key to execute their option, but are restricted in their access

to certain rooms where the key could be stored, the acting agent

will differ in its behaviour depending on how much it is willing to

inconvenience itself (incur -1 for each step) to leave the key in a

location that is accessible to other agents.

The coloured and patterned lines in Figure 5 depict the different

policies learned by the acting agent under different settings of 𝛼2
with fixed 𝛼1 = 1. The distribution over initiation sets of options,

P(I), is set to a uniform distribution (the acting agent is uncertain

which of agents A, B, C, D, and E will attempt to execute its option).

All of the policies start with the acting agent getting the key and

then going to the package (following the solid grey line in the figure),

but they differ in what happens after that. By setting 𝛼1 = 𝛼2 = 1

the acting agent puts the key in Room 1 (following the dotted red

line) as this is the closest place to leave the key. Recall that Room

1 is only accessible to agents C and D (40% of the agents). When

𝛼2 is changed such that 𝛼2 = 5, the acting agent cares more about

the other agents and puts the key at the ‘K’ location in Room 2

(following the dashed blue line) where 80% of the possible future

agents can execute their option, and by setting 𝛼2 = 25 the acting

agent incurs some personal hardship and puts the key at the far-

away ‘K’ location in the Common Area (following the dot-dash-

patterned green line), so that all the agent can execute their options.

5 RELATEDWORK
The work presented here is related to several bodies of work, in-

cluding work on AI safety and (negative) side effects, and work on

empathetic planning. In subsection 5.1, we discuss the relation of

our approach to Krakovna et al. [11], the most closely related work.

This is followed by discussion of other related work.

5.1 Relation to the Future Task Approach [11]
We consider the relation of some of our formulations to the “future

task” approach to avoiding side effects from Krakovna et al. [11].

We’ll see that under some conditions, their approach can be seen

as a special case of ours (using either Eq. (2) or Eq. (5)), and also

how our Eq. (4) incorporates their notion of a reference state.
Krakovna et al. proposed modifying the agent’s reward function

to add an auxiliary reward based on its own ability to complete

possible future tasks. A “task” corresponds to a reward function

which gives reward of 1 for reaching a certain goal state, and 0

otherwise. In their simplest definition (not incorporating a baseline),

the modified reward function was

𝑟𝐾 (𝑠, 𝑎, 𝑠 ′) ={
𝑟1 (𝑠, 𝑎, 𝑠 ′) + 𝛽 (1 − 𝛾)∑𝑖 𝐹 (𝑖)𝑉 ∗

𝑖
(𝑠 ′) if 𝑠 ′ is not terminal

𝑟1 (𝑠, 𝑎, 𝑠 ′) + 𝛽
∑
𝑖 𝐹 (𝑖)𝑉 ∗

𝑖
(𝑠 ′) if 𝑠 ′ is terminal

where 𝑟1 is the original reward function, 𝐹 is a distribution over

tasks,𝑉 ∗
𝑖
is the optimal value function for task 𝑖 (when completed by

the single agent itself), and 𝛽 is a hyperparameter which determines

the how much weight is given to future tasks. They interpret 1 − 𝛾

(where 𝛾 is the discount factor) as the probability the agent will

terminate its current task and switch to working on the future task,

which leads to the (1−𝛾) factor in the case where 𝑠 ′ is not terminal.

This is similar to (and inspired) our approach, though for 𝑟𝐾 the

value functions are restricted to be possible value functions for the

agent itself (and so depend on what actions the agent itself can

perform). In contrast, in our approach, we consider value functions

that may belong to different agents with different abilities. Addi-

tionally, they assume the value functions are optimal. Below we

show how under some conditions, our approach generalizes theirs.

In the case where 𝛾 (the discount factor) is 1, 𝑟𝐾 simplifies so

that 𝑟𝐾 (𝑠, 𝑎, 𝑠 ′) = 𝑟1 (𝑠, 𝑎, 𝑠 ′) if 𝑠 ′ is not terminal. Meanwhile, our

Eq. (2) (substituted into Eq. (1)), in the case where 𝛾 = 1, can be

rewritten as

𝑟value (𝑠, 𝑎, 𝑠 ′) ={
𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) if 𝑠 ′ is not terminal

𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) + 𝛼2
∑
𝑉 ∈V P(𝑉 ) ·𝑉 (𝑠 ′) if 𝑠 ′ is terminal

Observe that if 𝛾 = 1, 𝛼1 = 1, 𝛼2 = 𝛽 , and P(𝑉 ) = ∑{𝐹 (𝑖) | 𝑉 ∗
𝑖
= 𝑉 }

then 𝑟𝐾 = 𝑟value. So in the undiscounted setting 𝑟𝐾 is a special case

of 𝑟value.

5.1.1 Relationship to Use of Reference States. In Krakovna et al.

[11]’s more complicated version of the augmented reward function,

the auxiliary reward (𝑟aux) that is added to 𝑟1 depends on a reference
state 𝑠 ′𝑡 (sometimes also called a “baseline state”):

𝑟aux (𝑠 ′, 𝑠 ′𝑡 ) =
{
𝛽 (1 − 𝛾)∑𝑖 𝐹 (𝑖)𝑉 ∗

𝑖
(𝑠 ′, 𝑠 ′𝑡 ) if 𝑠 ′ is not terminal

𝛽
∑
𝑖 𝐹 (𝑖)𝑉 ∗

𝑖
(𝑠 ′, 𝑠 ′𝑡 ) if 𝑠 ′ is terminal

Their definition of 𝑉 ∗
𝑖
(𝑠 ′, 𝑠 ′𝑡 ) is somewhat complicated, but (as

they note) when the environment is deterministic it is equal to

min(𝑉 ∗
𝑖
(𝑠 ′),𝑉 ∗

𝑖
(𝑠 ′𝑡 )).

Recall that our Eq. (4) (substituted into Eq. (1)) is

𝑟value (𝑠, 𝑎, 𝑠 ′) =
𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) if 𝑠 ′ is not terminal

𝛼1 · 𝑟1 (𝑠, 𝑎, 𝑠 ′) + 𝛾 · 𝛼2 ·
∑
𝑉 ∈V P(𝑉 ) ·min(𝑉 (𝑠 ′),𝑉 (𝑠0))

if 𝑠 ′ is terminal

So, if 𝛾 = 1, 𝛼1 = 1, 𝛼2 = 𝛽 , P(𝑉 ) =
∑{𝐹 (𝑖) | 𝑉 ∗

𝑖
= 𝑉 }, and the

environment is deterministic, that’s equal to Krakovna et al. [11]’s

modified reward function with the initial state as a reference state.

Krakovna et al. [11] actually used a more complicated reference

state. We leave it to future work to incorporate other reference

states into our approach.

5.1.2 Considering Different Agents. Recall that in Eq. (5) we intro-

duced 𝑟 ′value, an augmented reward function which considered the

possible value functions of different agents. 𝑟 ′value can be compared

to the reward 𝑟𝐾 from Krakovna et al. in a different way.

Consider the case where 𝛾 = 1, 𝛼1 = 1, and 𝛼𝑖 = 0 for 𝑖 > 1 (so

only the first agent’s future reward is considered – all other agents
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are ignored). We can then simplify Eq. (5) to

𝑟 ′value (𝑠, 𝑎, 𝑠
′) ={

𝑟1 (𝑠, 𝑎, 𝑠 ′) if 𝑠 ′ is not terminal

𝑟1 (𝑠, 𝑎, 𝑠 ′) +
∑
𝑗 P(𝑉1𝑗 ) ·𝑉

(1)
𝑗

(𝑠 ′) if 𝑠 ′ is terminal

Observe that this is equal to 𝑟𝐾 (𝑠, 𝑎, 𝑠 ′) where 𝛽 = 1 (and 𝛾 = 1

again) with an appropriate choice of the distributions 𝐹 and P (e.g.,

one where 𝑉
(1)
𝑖

= 𝑉 ∗
𝑖
and 𝐹 (𝑖) = P(𝑉1𝑖 ) for each 𝑖).

5.2 Other Related Work
Prior to Krakovna et al. [11], Krakovna et al. [10] considered a

number of approaches to avoiding side effects in which the agent’s

reward function 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1) is modified to include a penalty for

impacting the environment, so that the new reward function is of

the form 𝑟 (𝑠𝑡 , 𝑎𝑡 , 𝑠𝑡+1)−𝛽 ·𝑑 (𝑠𝑡+1, 𝑠 ′𝑡+1) where 𝛽 is a hyperparameter

(indicating how important the penalty is), 𝑑 (·, ·) is a “deviation”

measure, and 𝑠 ′
𝑡+1 is a reference state to compare against. They

considered several possible reference states: the initial state, the

state resulting from performing no-op actions from the initial state,

or the state resulting from performing a no-op action in 𝑠𝑡 .While the

abstract notion of a deviation measure is broad enough to support

consideration of other agents, all the explicit deviation measures

Krakovna et al. suggested were defined in terms of how the agent’s

own ability to reach states is affected.

Attainable Utility Preservation (AUP) [22, 23] is another similar

approach to side effects. The agent’s reward is modified, given a

set R of other reward functions, to penalize actions that change the

agent’s own ability to optimize for the functions in R. By using a set

R of randomly selected reward functions, Turner et al. [23] were

able to have an agent avoid side effects in some simple problems.

Later, Turner et al. [22] considered using AUP with just a single

reward function (computed using an autoencoder), and showed

that that worked well in avoiding side effects in the more compli-

cated SafeLife environment [24]. It would be interesting to explore

consideration of other agents in such complicated environments.

Also related to our work is recent work that aspires to build

agents that act empathetically in the environment to explain, rec-

ognize the goals of, or act to assist others [e.g., 6, 16–18], but this

body of work assumes the existence of a model. In the context of

RL, Bussmann et al. [3] proposed “Empathetic Q-learning”, an RL

algorithm which learns not just the agent’s Q-function, but an addi-

tional Q-function,𝑄emp , which gives a weighted sum of the agent’s

value from taking an action, and the value that another agent will

get. By taking actions to maximize the 𝑄emp-value, the first agent

may be able to avoid some side effects that involve harming the

other agent. The value the other agent will get is approximated by

considering what reward the first agent would get, if their positions

were swapped. Note that the approach assumes that the agent being

“empathized” with gets at least some of the same rewards (while

our approach makes no assumption about agents being similar).

Du et al. [5] considered the problem of having an AI assist a

human in achieving a goal. They proposed an auxiliary reward

based on (an estimate of) the human’s empowerment in a state.

Empowerment in an information-theoretic quantity that measures

ability to control the state. In some cases having an agent try to

maximize (approximate) empowerment outperformed methods that

tried to infer what the human’s goal was and help with that. How-

ever, an abstract measure like empowerment might be influenced

by the presence of irrelevant features that humans aren’t actually

interested in controlling.

Finally, multi-agent reinforcement learning (MARL), in which

multiple artificial agents learn how to act together (see, e.g., the

surveys [2, 26]) broadly shares motivation with our work. A critical

distinction is that while we are doing RL in the presence of mul-

tiple agents, only the acting agent is engaged in RL, while other

agents are assumed to be following existing fixed policies. A similar

observation can be made to contrast our work with cooperative

multi-agent systems (e.g., Dafoe et al. [4]).

6 CONCLUDING REMARKS
Incompletely specified objectives will endure for at least as long

as humans have a hand in objective specifications, continuing to

present threats to AI acting safely [e.g., 1]. In this paper we have

put forward that acting safely should include contemplation of the

impact of an agent’s actions on the wellbeing and agency of others.

Providing agents with a means to be considerate is important, and

it can be done without the need for coordination. We have studied

how an agent can learn to be considerate of others via RL, given

some non-specific general knowledge of (potentially hypothetical)

agents that operate fixed policies in an environment.

The work presented here provides a pragmatic stance to building

systems that have the potential to be benevolent without requir-

ing multiple agents to agree to cooperate. However, like so many

AI advances, there are potential malicious or unintended uses of

the ideas presented here. In particular, in the same way that the

caring coefficient can be set to attend to and to help others, it could

be set to attempt to effect change that purposefully diminishes

others’ wellbeing and/or agency. The caring coefficient also raises

the possibility for differential treatment of agents, which presents

opportunities to systematize notions of fair (and unfair) decision

making, as briefly noted in Section 3.

Limitations. We identify several limitations of our work. If the dis-

tribution over value functions (or options) used by our approach

is inaccurate, that may incentivize behavior that fails to accom-

modate others or is actually harmful. A further limitation of our

approach is that, as previously noted, in some cases our augmented

reward functions can introduce a (probably undesirable) incentive

for the acting agent to never reach a terminal state, to avoid being

penalized for what effect its actions have had on others. Finally, a

general problem when dealing with the utilities of different agents

is that different agents may gain rewards at very different scales.

This is a classic philosophical problem, which has also been noted

in the context of AI safety [13]. One might try to normalize the

values by setting the caring coefficients, but in general it may be

difficult to determine appropriate values for them.

ACKNOWLEDGMENTS
We gratefully acknowledge funding from the Natural Sciences and

Engineering Research Council of Canada (NSERC), the Canada

CIFARAI Chairs Program, andMicrosoft Research. The third author

acknowledges funding from ANID (Becas Chile). This work was

done while he was a graduate student at the University of Toronto.

Main Track AAMAS 2022, May 9–13, 2022, Online

25



REFERENCES
[1] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul F. Christiano, John Schulman,

and Dan Mané. 2016. Concrete Problems in AI Safety. (2016). arXiv:1606.06565

[2] Lucian Busoniu, Robert Babuska, and Bart De Schutter. 2008. A comprehensive

survey of multiagent reinforcement learning. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews) 38, 2 (2008), 156–172.

[3] Bart Bussmann, Jacqueline Heinerman, and Joel Lehman. 2019. Towards Empathic

Deep Q-Learning. In Proceedings of the Workshop on Artificial Intelligence Safety
2019 co-located with the 28th International Joint Conference on Artificial Intelligence,
AISafety@IJCAI (CEUR Workshop Proceedings, Vol. 2419). CEUR-WS.org, Aachen.

http://ceur-ws.org/Vol-2419/paper_19.pdf

[4] Allan Dafoe, Yoram Bachrach, Gillian Hadfield, Eric Horvitz, Kate Larson, and

Thore Graepel. 2021. Cooperative AI: machines must learn to find common

ground. Nature 593 (2021), 33–36. https://doi.org/10.1038/d41586-021-01170-0

[5] Yuqing Du, Stas Tiomkin, Emre Kiciman, Daniel Polani, Pieter Abbeel, and Anca

Dragan. 2020. AvE: Assistance via Empowerment. In Advances in Neural Infor-
mation Processing Systems, Vol. 33. Curran Associates, Inc.

[6] Richard G. Freedman, Steven J. Levine, Brian C. Williams, and Shlomo Zilberstein.

2020. Helpfulness as a Key Metric of Human-Robot Collaboration. (2020).

arXiv:2010.04914

[7] León Illanes, Xi Yan, Rodrigo Toro Icarte, and Sheila A. McIlraith. 2020. Symbolic

Plans as High-Level Instructions for Reinforcement Learning. In Proceedings of
the Thirtieth International Conference on Automated Planning and Scheduling.
AAAI Press, 540–550.

[8] Toryn Q. Klassen and Sheila A. McIlraith. 2021. Planning to Avoid Side Effects

(Preliminary Report). In IJCAI Workshop on Robust and Reliable Autonomy in the
Wild (R2AW). http://rbr.cs.umass.edu/r2aw/papers/R2AW_paper_15.pdf

[9] Toryn Q. Klassen, Sheila A. McIlraith, Christian Muise, and Jarvis Xu. 2022.

Planning to Avoid Side Effects. In Proceedings of the Thirty-Sixth AAAI Conference
on Artificial Intelligence (AAAI-22). To appear.

[10] Victoria Krakovna, Laurent Orseau, Miljan Martic, and Shane Legg. 2019. Pe-

nalizing Side Effects using Stepwise Relative Reachability. In Proceedings of the
Workshop on Artificial Intelligence Safety 2019 co-located with the 28th Interna-
tional Joint Conference on Artificial Intelligence, AISafety@IJCAI 2019 (CEUR
Workshop Proceedings, Vol. 2419). CEUR-WS.org, Aachen. http://ceur-ws.org/Vol-

2419/paper_1.pdf

[11] Victoria Krakovna, Laurent Orseau, Richard Ngo, Miljan Martic, and Shane Legg.

2020. Avoiding Side Effects By Considering Future Tasks. In Advances in Neural
Information Processing Systems, Vol. 33. Curran Associates, Inc.

[12] Jim Lebans. 2020. The threat from AI is not that it will revolt, it’s that it’ll do

exactly as it’s told. CBC Radio. URL https://www.cbc.ca/radio/quirks/apr-25-

deepwater-horizon-10-years-later-covid-19-and-understanding-immunity-

and-more-1.5541299/the-threat-from-ai-is-not-that-it-will-revolt-it-s-that-it-

ll-do-exactly-as-it-s-told-1.5541304.

[13] Stuart Russell. 2019. Human Compatible: Artificial Intelligence and the Problem of
Control. Penguin Publishing Group, New York.

[14] Sandhya Saisubramanian, Ece Kamar, and Shlomo Zilberstein. 2020. A Multi-

Objective Approach toMitigate Negative Side Effects. In Proceedings of the Twenty-
Ninth International Joint Conference on Artificial Intelligence, IJCAI 2020. 354–361.
https://doi.org/10.24963/ijcai.2020/50

[15] Amartya Sen. 1974. Rawls Versus Bentham: An Axiomatic Examination of the

Pure Distribution Problem. Theory and Decision 4, 3-4 (1974), 301–309. https:

//doi.org/10.1007/BF00136651

[16] Maayan Shvo. 2019. Towards Empathetic Planning and Plan Recognition. In

Proceedings of the 2019 AAAI/ACM Conference on AI, Ethics, and Society. 525–526.
[17] Maayan Shvo, Toryn Q. Klassen, and Sheila A. McIlraith. 2020. Towards the

Role of Theory of Mind in Explanation. In Explainable, Transparent Autonomous
Agents and Multi-Agent Systems: Second International Workshop, EXTRAAMAS
2020. Springer-Verlag, Berlin, Heidelberg, 75–93. https://doi.org/10.1007/978-3-

030-51924-7_5

[18] Maayan Shvo and Sheila A McIlraith. 2019. Towards empathetic planning. (2019).

arXiv:1906.06436

[19] Richard S. Sutton and Andrew G. Barto. 2018. Reinforcement Learning: An Intro-
duction (second ed.). MIT Press, Cambridge, MA. http://incompleteideas.net/

book/the-book.html

[20] Richard S. Sutton, Doina Precup, and Satinder P. Singh. 1999. Between MDPs and

Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.

Artificial Intelligence 112, 1-2 (1999), 181–211. https://doi.org/10.1016/S0004-

3702(99)00052-1

[21] Alex Turner. 2019. Reframing Impact. Blog post, https://www.lesswrong.com/s/

7CdoznhJaLEKHwvJW.

[22] Alex Turner, Neale Ratzlaff, and Prasad Tadepalli. 2020. Avoiding Side Effects in

Complex Environments. In Advances in Neural Information Processing Systems,
Vol. 33. Curran Associates, Inc.

[23] Alexander Matt Turner, Dylan Hadfield-Menell, and Prasad Tadepalli. 2020.

Conservative Agency via Attainable Utility Preservation. In Proceedings of
the AAAI/ACM Conference on AI, Ethics, and Society (AIES ’20). Association
for Computing Machinery, New York, NY, United States, 385–391. https:

//doi.org/10.1145/3375627.3375851

[24] Carroll Wainwright and Peter Eckersley. 2020. SafeLife 1.0: Exploring Side Effects

in Complex Environments. In Proceedings of the Workshop on Artificial Intelligence
Safety (SafeAI 2020) co-located with 34th AAAI Conference on Artificial Intelligence
(AAAI 2020). 117–127. http://ceur-ws.org/Vol-2560/paper46.pdf

[25] Christopher J. C. H. Watkins and Peter Dayan. 1992. Q-Learning. Machine
Learning 8 (1992), 279–292. https://doi.org/10.1007/BF00992698

[26] Kaiqing Zhang, Zhuoran Yang, and Tamer Basar. 2021. Multi-Agent Reinforce-

ment Learning: A Selective Overview of Theories and Algorithms. (2021).

arXiv:1911.10635

[27] Shun Zhang, Edmund H. Durfee, and Satinder P. Singh. 2018. Minimax-Regret

Querying on Side Effects for Safe Optimality in Factored Markov Decision Pro-

cesses. In Proceedings of the Twenty-Seventh International Joint Conference on Ar-
tificial Intelligence, IJCAI 2018. 4867–4873. https://doi.org/10.24963/ijcai.2018/676

Main Track AAMAS 2022, May 9–13, 2022, Online

26

https://arxiv.org/abs/1606.06565
http://ceur-ws.org/Vol-2419/paper_19.pdf
https://doi.org/10.1038/d41586-021-01170-0
https://arxiv.org/abs/2010.04914
http://rbr.cs.umass.edu/r2aw/papers/R2AW_paper_15.pdf
http://ceur-ws.org/Vol-2419/paper_1.pdf
http://ceur-ws.org/Vol-2419/paper_1.pdf
https://www.cbc.ca/radio/quirks/apr-25-deepwater-horizon-10-years-later-covid-19-and-understanding-immunity-and-more-1.5541299/the-threat-from-ai-is-not-that-it-will-revolt-it-s-that-it-ll-do-exactly-as-it-s-told-1.5541304
https://www.cbc.ca/radio/quirks/apr-25-deepwater-horizon-10-years-later-covid-19-and-understanding-immunity-and-more-1.5541299/the-threat-from-ai-is-not-that-it-will-revolt-it-s-that-it-ll-do-exactly-as-it-s-told-1.5541304
https://www.cbc.ca/radio/quirks/apr-25-deepwater-horizon-10-years-later-covid-19-and-understanding-immunity-and-more-1.5541299/the-threat-from-ai-is-not-that-it-will-revolt-it-s-that-it-ll-do-exactly-as-it-s-told-1.5541304
https://www.cbc.ca/radio/quirks/apr-25-deepwater-horizon-10-years-later-covid-19-and-understanding-immunity-and-more-1.5541299/the-threat-from-ai-is-not-that-it-will-revolt-it-s-that-it-ll-do-exactly-as-it-s-told-1.5541304
https://doi.org/10.24963/ijcai.2020/50
https://doi.org/10.1007/BF00136651
https://doi.org/10.1007/BF00136651
https://doi.org/10.1007/978-3-030-51924-7_5
https://doi.org/10.1007/978-3-030-51924-7_5
https://arxiv.org/abs/1906.06436
http://incompleteideas.net/book/the-book.html
http://incompleteideas.net/book/the-book.html
https://doi.org/10.1016/S0004-3702(99)00052-1
https://doi.org/10.1016/S0004-3702(99)00052-1
https://www.lesswrong.com/s/7CdoznhJaLEKHwvJW
https://www.lesswrong.com/s/7CdoznhJaLEKHwvJW
https://doi.org/10.1145/3375627.3375851
https://doi.org/10.1145/3375627.3375851
http://ceur-ws.org/Vol-2560/paper46.pdf
https://doi.org/10.1007/BF00992698
https://arxiv.org/abs/1911.10635
https://doi.org/10.24963/ijcai.2018/676

	Abstract
	1 Introduction
	2 Preliminaries
	3 Problem and Approach
	3.1 Using Information about Value Functions
	3.2 Treating Agents Differently
	3.3 Using Information about Options

	4 Experiments
	4.1 Quantitative Experiments
	4.2 Qualitative Experiments

	5 Related Work
	5.1 Relation to the Future Task Approach Krakovna2020avoiding
	5.2 Other Related Work

	6 Concluding Remarks
	Acknowledgments
	References



