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ABSTRACT
In this paper we propose to rethink the development of intelligent
agents based on cognitive architectures as a developmental learning
process, inspired by theories of learning in children and cognitive
development. The idea is targeted to explore architectures, methods
and tools to systematically develop intelligent agents capable of
integrating both practical knowledge and skills designed by devel-
opers and knowledge and skills acquired by interacting in properly
designed learning environments.
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1 INTRODUCTION
In the context of agent programming and intelligent agent design
based on cognitive architectures, learning has been explored so
far mainly as an e�ective AI technique to tackle speci�c problems,
improving agent and MAS (Multi-Agent Systems) adaptability and
performance at runtime [2, 57]. In this paper we consider a broader
role of learning, impacting on the full spectrum of agent program-
ming and engineering—from design to runtime.

In particular, we introduce a perspective in which agent devel-
opment is conceived as a developmental learning process of the
agent itself. We will refer to this approach as DevL (Developmental
Learning). In that view, a software agent “is born” with some core
domain-independent learning capabilities at the architectural level
and is grown up in a proper learning environment to acquire the
skills to be able then to achieve its designed objectives once it will
be deployed.

This idea relies on – on the one hand – existing literature about
how learning has been injected in agent architectures such as BDI
(Belief-Desire-Intention) [44] as well as in cognitive architectures
originated from cognitive science (e.g. SOAR [27, 29]). On the other
hand, the idea draws inspiration from human science, in particular
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the literature investigating the role of learning in human develop-
ment, children in particular, and the impact of learning capabilities
on human autonomy and practical reasoning.

From a software engineering point of view, this idea is meant to
be a conceptual baseline to explore general-purpose architectures
and methodologies – eventually extending existing ones – that
are e�ective to seamlessly and systematically integrate both parts
engineered by developers (e.g. plans in the BDI case) and parts
learnt by the agent itself, eventually adopting di�erent learning
strategies. This is meant to be a contribution useful to devise new
perspectives about agent programming in the cognitive era [10],
in which learning is explored as a core capability, shedding a new
light on programming, languages and software development tools.

In the remainder of the paper,� rst we provide a background
about related works in literature (Section 2), then we describe the
key points of the DevL idea (Section 3) and how agent development
can be rethought accordingly (Section 4). Finally, we provide an
overview of some main research directions useful to develop the
idea (Section 5).

2 BACKGROUND: THE ROLE OF LEARNING
IN AGENT DEVELOPMENT BASED ON
COGNITIVE ARCHITECTURES

Learning is a main topic in agent and MAS research [2]. The idea
proposed in this paper is related in particular to research works
exploring the integration of learning capabilities to support the
development of intelligent agents, based on cognitive architectures.
This integration is already occurring in speci�c application domains.
A main one is the development of self-driving vehicles, which in-
volves a large amount of learning in carefully engineered simulated
environments [15]. Another main one is in the development of
human-like virtual agents and avatars by means of an “experiential
learning” approach (e.g. [32]), in which the agent learns through
direct experience and playing with people and the world around.

In the context of agent programming and MAS development,
various research works have explored the extension of the BDI
(Belief-Desire-Intention) architecture with learning [1, 20, 21, 37,
47, 48, 52, 54], mainly to improve plan/action selection capability
at runtime.

A deeper integration of learning at the architectural level can be
found in cognitive architectures [28, 30, 36], as developed in cogni-
tive science but also applied to the design of autonomous agents
featuring general arti�cial intelligence capabilities [31, 59]. Main
examples are SOAR [27], ACT-R [4], SIGMA [45], LIDA [49] (see
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[24] for a recent survey). In agents based on cognitive architec-
tures, programs and data are ultimately intended to be acquired
automatically from experience — that is, learned – rather than
programmed [28]. Cognitive architectures thus induce languages
that are geared toward yielding learnable intelligent behavior, in
the form of knowledge and skills, and integrate general learning
mechanisms at the architectural level. A main example is chunking,
adopted e.g. in SOAR since its origin [26]. Chunking is focused in
particular to improve performances by acquiring dynamically rules
from goal-based experience. SOAR has been further extended in
the last two decades to include also a native support for other forms
of learning [25, 27], namely semantic learning (interacting with
semantic long term memory), episodic learning (for episodic long-
term memory) and reinforcement learning (acting on procedural
memory, like chunking).

The idea proposed in this paper has been strongly inspired by
the integration perspective of learning at the architectural level
as found in cognitive architectures such as SOAR. Two key values
are: (i) the aim of integrating learning with the other cognitive
capabilities – reasoning and planning – as a whole, that was a
landmark of Newell’s approach to understand cognition as well as to
design cognitive agents [36]; (ii) the aim of understanding learning
at the knowledge level [12, 35], which accounts for embracing a
proper level of abstractions in modelling and designing autonomous
systems, useful to support the explainability of their behaviour as
well as their robust engineering.

Then, the main aspect interesting for this paper that apparently
has not fully explored so far in the state of the art is about explor-
ing and exploiting learning as fundamental feature to support the
development process of intelligent agents.

3 DEVELOPMENTAL LEARNING FOR
INTELLIGENT AGENTS

The central idea proposed in this paper is that the development
of an intelligent agent could be framed as a process that has the
objective of seamlessly integrating practical knowledge provided
by designers/programmers with knowledge and skills acquired
i.e. learnt by the agent, by interacting or growing up in a learning
environment, properly designed and con�gured for that purpose.

In that view, current approaches used to develop e.g. classic
reinforcement learning (RL) [51] and Deep RL agents [5] could
be thought as one extreme case, in which the behaviour of the
agent is fully learnt, following the reward is enough hypothesis [46].
Instead, current approaches used to develop e.g. BDI agents could be
thought as the other extreme, in which the behaviour of the agent
is fully speci�ed by an agent program, including plans embedding
the practical knowledge to performs the tasks.

Like in the case of cognitive architectures, the idea calls for
framing a support at the architectural level, in order to work in spite
of any speci�c application domains or speci�c tasks that intelligent
agents are meant to accomplish. More generally, the idea calls for a
proper conceptual framework, in order to understand the�rst-class
aspects related to learning impacting on the design of the agent
architecture, as well as of the languages and tools used to support
the development process.

To this purpose, the main source of inspiration and insights
adopted in this paper comes from theories and research studies
about learning in children, as developed in psychology. In partic-
ular, we consider research studies about developmental learning,
investigating learning taking place as a normal part of cognitive
development [17, 18, 55]. Such research studies appear strongly
interesting here because children are an e�ective and impressive
case of agents capable of somehow combining both a bottom-up
and top-down approaches in learning, that come to be integrated
in their continuous cognitive development process. In particular,
according to the “Theory Theory” [16, 17], a reference cognitive de-
velopment theory in psychology, children grow up by constructing
intuitive theories of the world and alter and revise those theories as
the result of new evidence, like theory change in science [18]. This
view moves from the original constructivist theory by Piaget [56]
towards a modern rational constructivism, featuring formalisations
and computational descriptions based on probabilistic models and
Bayesian learning [18].

Analogously to the children case, it appears interesting here to
frame the development process of an intelligent agent – based on
proper cognitive architecture – as a cognitive development process
in which an agent incrementally constructs theories about the task
environment for which the agent is being developed and revises
them through a learning process in which the agent is situated and
interacts with a proper learning environment. In this paper we refer
to this approach as DevL (Developmental Learning) for intelligent
agents.

3.1 The Role of Causal Learning and Reasoning
Amain research question in this view is which coremechanisms and
structures should be embedded directly into the agent architecture
in order to e�ectively support the developmental learning process,
in spite of the speci�c application domain, eventually supporting
di�erent learning methods during the development stage. That is:
what kind of primitive learning system the agent could be equipped
with, general and expressive enough to e�ectively support “learning
to learn”, as well as practical reasoning.

To that purpose, the rational constructivism and the “Theory
Theory” provide interesting insights. In the case of children, causal
learning plays a key role. Children – and adults as well – are remark-
able causal learners [17]. Young children have both sophisticated
domain-speci�c and domain-general causal reasoning abilities, and
these abilities appear to be fundamental to enable their cognitive
development. Children’s abilities to integrate their existing substan-
tive knowledge with formal mechanisms for causal learning have
led researchers to propose that children are learning abstract causal
models, represented by causal maps [18].

Causal maps are nonegocentric, abstract, learned representations
of causal relations among events, and these representations allow
children to make causal predictions and anticipate the e�ects of
interventions [17, 18]. Nonegocentric means that maps are inde-
pendent from the speci�c relation between the learner and the
environment where he/she is situated (e.g., children spatial posi-
tion with respect to the position of objects in the environment).
They are similar to cognitive maps [13], but specialised for causal
knowledge, constituting a halfway point between domain-speci�c
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and domain-general representations. In literature, Causal Graphics
Model and Causal Bayesian Net/Reasoning have been adopted to
formalise from a computational point of view the idea [41, 50].

Two key features of this modelling that are particularly relevant
here are: (i) the capability to describe structured models that rep-
resent hypothesis about how the world works; (ii) the capability
of describing probabilistic relations between these models and pat-
terns of evidence in rigorous ways. As a consequence, this approach
is capable of representing conceptual, knowledge-level structures
that allow both for prediction and learning, in an integrated way.

Indeed in AI literature, causal reasoning and probabilistic mod-
els have been largely explored and successfully adopted as refer-
ence computational framework to design and implement intelligent
agents capable of dealing with the complexities of real-world envi-
ronments [40, 42]. In the DevL perspective proposed in this paper,
it is interesting to explore causal learning and reasoning as the core
mechanism of the domain-independent learning system in agent
cognitive architectures (and models as well). More in particular, the
insights from developmental learning could be useful to devise a
learning causal system at the architectural level in which probabilis-
tic models are used to describe the structured models that represent
hypothesis about how the world works (causal maps) and proba-
bilistic relations between these models and patterns of evidence.
These mental models can be used by the cognitive agent to generate
predictions, and, at the same time, can be constructed and revised
as part of the learning process, from evidence and observations.

4 RETHINKING AGENT PROGRAMMING
AND AGENT ENGINEERING PROCESS

The DevL perspective leads to rethink quite radically the concept
of agent program and agent programming, and, more generally, the
full spectrum of agent development/engineering process. From an
agent developer, agent programming becomes more similar to a
teaching/instructing activity, occurring in a learning environment
properly designed by the developer—possibly involving both direct
communication between the agent and the programmer (playing
the role of instructor, teacher) as well as other agents (peer-to-
peer/transfer learning), and environment-mediated interaction. In
that view, agent programming languages are conceptually reframed
as communication languages explicitly designed to e�ectively sup-
porting learning from the agent perspective, or teaching/training
from the developer perspective.

Current BDI agent programming languages [8, 9] can be consid-
ered a kind of extreme case, in which learning is reduced to dumb
acquisition by the learner of a set of scripts/plans embedding a
procedural knowledge that the learner is meant to strictly follow,
without reasoning asking why. Actually, the same holds if we con-
sider the typical training process in the case of RL agents, in that
the agent would update its e.g. policies after receiving a reward,
without reasoning or asking why about that reward. In the DevL
perspective, the language and the learning environment supporting
the development process should be e�ective in allowing the learner
agent to incrementally construct and revise its theories about the
world (its task environment), understanding why by exploiting its
causal learning system [43].

Besides the programming stage, the DevL view leads to revisit
also the full traditional engineering process, involving multiple
stages, such as analysis, design, implementation, testing and vali-
dation. By assuming a learning process perspective, then:

• the analysis would include focusing the learning objective,
i.e. what the agent is meant to learn—expected skill and
knowledge;

• the designwould include the design of the learning environment—
learning methods, tools to be adopted;

• testing and validation would occur through di�erent kinds
of assessments, during the learning process.

As soon as the learning process as well as the assessment are com-
pleted, the agent is ready to be deployed in the real-word. In the
operational stage (runtime), monitoring is important to have feed-
backs about agent performances, identifying possible problems
also related to possible di�erences between the actual operational
�eld and the learning environment used to train the agent. This
information could be valuable to update and re�ne the learning
environment itself. Besides, at runtime a major role could be played
by agent self-assessment, and the capability to go on learning to
eventually improve performances.

4.1 The Learning Path
The agent development process accounts for setting up a proper
learning path for the agent, from the design time to runtime, sup-
porting an incremental progress “from novice to expert”. In the
human case, the careful design of this path is fundamental for a
successful learning, and typically involves multiple stages, from an
instructor-dependent learning stage to a more self-directed learning
stage.

In the instructor-led learning stage, the developer’s role is to pro-
vide strategic guidance to the learner agent in identifying “zones
of development”, so that the learning objective would be proxi-
mal, within reach. In psychology, these zones are called zones of
proximal development (ZPDs), a key construct introduced by Lev
Vygotsky [55]. Self-regulated learners agents generate outcomes by
engaging intentionally and deliberately in productive learning ac-
tivity – like in the case of sapient agents [21, 54] – that is, using tools,
resources, artifacts [38] that are part of the learning environment,
to mediate learning.

When it comes to achieving long-term goals, the developer must
consider how to create successive learning experiences, each build-
ing on the prior, to move the learner agent closer to achieving the
distal goal. In the human case, these successive experiences are
cumulative zones of proximal development [55], and, as a whole,
comprise a zone of distal development (ZDD). The ZDD requires
the learner and educator to be metacognitive – that is: aware of
how they are planning, engaging and contemplating the acquisition
of tools for teaching and learning, involving the strategic choice of
methods of instruction and learning. In the design of the intelligent
agents, the concept of ZPDs and ZDD appear interesting from a
methodological point of view, allowing for shaping the development
process in an incremental way, integrating both the design time
and runtime, towards the engineering of lifelong learner agents.
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5 RESEARCH DIRECTIONS
We complete the paper by identifying and discussing some main
research directions that appear relevant to develop the DevL idea.

Cognitive Architectures. The idea calls for devising cognitive ar-
chitectures for intelligent agents eventually integrating, on the one
hand, the core abstractions and capabilities about practical reason-
ing and problem solving as displayed by existingmodel/architectures
(e.g. BDI, SOAR), and, on the other hand, a proper learning causal
systems, essential to support developmental learning. In the BDI
case, for instance, this calls for extending the model to integrate at
the foundational level practical reasoning and practical learning.
Following the insights proposed in this paper, a main point in this di-
rection is about exploring extensions of the BDI model/architecture
in which causal maps and causal learning are� rst-class concepts,
to be proper understood and related to the other BDI key concepts
such as beliefs, goals, intentions. To this purpose, existing works
proposing an integration of Bayesian networks and Probabilistic
Graphic Models in BDI [11, 14] could provide relevant insights, as
well as work on probabilistic programming [19].

Developmental Learning and Friends. The research investigation
about concrete computational models for DevL can bene�t from
results in literature about other kinds of learning that have strong
a�nities with the idea discussed in this paper. A main one is con-
tinual or lifelong learning [39, 53], which is about the ability to
continually learn over time by accommodating new knowledge
while retaining previously learned experiences. Another one is cur-
riculum learning [34], which can be useful to shape the learning
path discussed in Section 4.1, de�ning curricula of progressively
harder tasks. DevL calls for exploring and understanding their value
from an engineering perspective, as a way to systematically support
the agent development process.

Learning environments. The design of proper learning environ-
ments is a key aspect of the idea, playing an essential role in the
agent development process. Accordingly, a main issue is about the
de�nition of methods and tools to ease the design and development
of proper learning environments, as well as for de�ning a well-
de�ned metamodel for them, capturing key conceptual aspects.

Generally speaking a learning environment could be a rich sys-
tem, including e.g. domain-speci�c simulated (task) environments
and assessment test-beds. Actually, to support the learning path
devised in Section 4.1, the design process of an intelligent agent
(the learning process) may call for developing multiple learning
environments, featuring di�erent levels of complexity and abstrac-
tions. Furthermore, a learning environment could concern contexts
involving di�erent forms of social interactions and communication,
as well as social/institutional contexts characterised by di�erent
kinds of social laws and norms. Accordingly, DevL research may
bene�t from existing literature about learning e.g. in normative
and institutional environments [6], to be reframed here in an agent
development perspective, as part of the agent learning path.

From Individual Agents to MAS and Organisations. The focus of
this paper has been on the design and development of individual
intelligent agents. Nevertheless, from an engineering point of view,
it is interesting to consider a broader MAS perspective [23], in

which the agent dimension can be fruitfully integrated with other
orthogonal dimensions, including agent organisations and environ-
ments [7]. As mentioned in previous section, social interaction and
communication are� rst-class dimensions in MAS, and are crucial
elements in developmental learning of children too.

This triggers investigation about the meaning and value of devel-
opmental learning at the MAS level, that is: conceiving the design
and development of e.g. organisation of agents as a collective learn-
ing process, whichmay concern not only a set of individual unrelated
learning processes, but group-level strategies, that may take place
in shared learning environments.

Platforms and Tools. Current agent-based platforms and IDEs (In-
tegrated Development Environment) provide features that are quite
similar to those found in platforms for mainstream programming
paradigms—related to editing compiling code, running, debugging.
The DevL idea calls for deeply rethinking the concept of IDEs,
towards environments that foster a deeper integration between
the design time and runtime, like in the case of live programming
environments [33]. A recent work in that direction is [3].

Besides the integration between design and runtime, it is inter-
esting here to explore IDEs proving a� rst-class support for the
development process shaped as learning process, possibly involving
the design and deployment of learning environments, in a learning
path, and the design and execution of proper assessment stages,
that correspond to testing and validation. This would have an im-
pact also on the approaches to be used for important aspects such
as agent debugging: in that perspective, debugging based on why
questions [58] appears a natural approach to be considered here.

Besides IDEs, an important role is played also by the tools part
of the runtime platform useful for monitoring agent (and MAS)
performances, once deployed in the real-world, out of the learning
environment. Besides the classic monitoring capabilities provided
by tools in the mainstream (e.g. for microservices [22]), the monitor-
ing tools at the DevL level could analyse the feedbacks coming from
the real-world about agent performances, along with the histori-
cal data about the learning process engaged by the agent and the
learning environments used. This could be interesting, for instance,
to predict and intercept problems that could be raised in situations
not properly considered in the learning environment, during the
learning process.

6 CONCLUDING REMARKS
Psychology has been a source of inspiration for several impor-
tant concepts that became a reference in the research community
interested to agent/MAS programming and engineering. A main ex-
ample is given by the BDI model and architecture. In this paper we
propose to “go to the children”, meaning to be inspired by studies in
psychology about theory of learning and cognitive development, to
envision a developmental learning approach (DevL) for developing
intelligent agents.

In that approach, agent development is rethought as a learning
process in which agents incrementally acquire practical knowledge
and skills, by interacting in a proper learning environment. Causal
learning and reasoning is discussed an essential core at the agent
architecture level, to support developmental learning.
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