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ABSTRACT
As data becomes increasingly available, individuals, organisations
and companies are increasingly applying machine learning algo-
rithms to make decisions. In many cases, those decisions have a
direct effect on those who provided the data to the decision maker.
In other words, data providers often have a vested interest in the
decisions made based on the data provided. Therefore, decision
makers should anticipate that data providers may alter or change
the data they provide in order to achieve a preferential outcome.
Such strategic behaviour is not adequately modelled by classical
machine learning settings in the literature. As a result, newmachine
learning algorithms are required, which take into the account the
incentives and capabilities of data providers whenmaking decisions.
This paper summarises a PhD project which attempts to address
this problem in a number of contexts.
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1 INTRODUCTION
When supplying data, data providers are often implicitly invested
in how said data will be used. A canonical example often cited in
literature is the problem of email spam classification [6], in which
an email service provider is tasked with identifying and removing
spam emails. In this case, a significant portion of the data is provided
by spammers, who hope to bypass the spam filter. Therefore, email
service providers must be aware that the spam they receive in the
future may not resemble the spam emails they used to design their
spam filters. Spammers will inevitably alter their spam emails to
bypass the filter in the near future.

Note that email spammers are adversarial in nature. That is, their
goal is to submit data with the intention of fooling the algorithm.
More generally, the field of adversarial machine learning focuses on
defending machine learning algorithms against adversaries whose
aim is to hinder performance. Observe that adversarial machine
learning makes a worst-case assumption regarding the incentives
of data providers. In many cases, such as spam classification, this
worst-case approach is sensible, as email spammers are antagonistic
by nature. However, in many real world settings, the incentives of
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data providers can be significantly more nuanced. In other words,
the goals of a data provider may neither completely align with the
goals of the decision maker, nor directly oppose them, but often
lies somewhere in between.

One example of this is the fashion company Zara, who use re-
gression to distribute a limited number of designer goods amongst
their retail stores [7]. During this process, Zara queries their store
managers and asks them how many goods they think they can sell.
The salary of a store manager is directly tied to the revenue their
store generates. That is, a store manager can increase their salary
by increasing the revenue generated by their store. As supply is
limited, Zara found that store managers often over-reported the
number of goods they could sell, in order to increase their chances
of securing the goods they knew they could sell. In this case, each
store manager is motivated to maximise the revenue of their store,
whilst Zara aims to distribute their goods in order to maximise
their total revenue across all stores. Whilst store managers are not
intending to harm Zara’s overall revenue, their self-interested and
strategic behaviour inevitably does.

Such examples illustrate that, in many cases, assuming data
providers are adversarial is often unrealistic. By relaxing this as-
sumption, it stands to reason that we can devise machine learning
algorithms which have better performance. In what follows, we
will examine a number of settings in which the incentives of data
providers are modelled in a more nuanced manner. The first setting
we will consider is an extension of the traditional linear regression
setting in which data providers disagree with a decision maker on
the correct labelling of data points. Meanwhile, the second setting
we investigate is a repeated matching setting, in which assigned
resources are blocked when in use.

2 STACKELBERG PREDICTION GAMES FOR
LINEAR REGRESSION

Consider the following regression setting. A learner is tasked with
selecting a linear predictor 𝑤 ∈ R𝑛 to assign labels to input data.
Data is drawn from some underlying distribution by data providers
in the form (𝑥,𝑦, 𝑧) ∈ R𝑛+2. Here, 𝑥 ∈ R𝑛 represents the input
vector sampled from the underlying distribution, 𝑦 ∈ R indicates
the label of interest to the learner, and 𝑧 ∈ R indicates the label
preferred by the data provider.

Before 𝑥 is passed onto the learner, the data provider has the
opportunity to modify the input data. More precisely, the data
provider may submit a different input vector 𝑥 ∈ R𝑛 to the learner
in place of 𝑥 . We assume that the data provider has full knowledge
of the linear predictor chosen by the learner when making this
modification. For changing 𝑥 to 𝑥 , the data provider incurs a cost
𝑐 (𝑥, 𝑥). The learner observes 𝑥 and makes the prediction 𝑦 = 𝑤⊤𝑥 .
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The learner incurs loss ℓ1 (𝑦,𝑦), whilst the data provider incurs
loss ℓ2 (𝑦, 𝑧). The goal of the learner is to select the linear predictor
which minimises their expected loss according to the underlying
distribution from which the data provider gathers their samples.
Similarly, the data provider aims to minimise their loss for each data
point, whilst trading off against the cost they pay for modification.
More precisely, the learner seeks to minimise E[ℓ1 (𝑦,𝑦)]. On the
other hand, given 𝑤 and a data point (𝑥,𝑦, 𝑧), the data provider
chooses an 𝑥 which minimises ℓ2 (𝑦,𝑦) + 𝑐 (𝑥, 𝑥).

Note that this setting is incredibly expressive when it comes to
modelling the preferences of data providers. We place no assump-
tion on the labels 𝑧 assigned to each data point. As a result, this
setting is very flexible and can model a wide range of strategic
incentives. In fact, this setting is an instance of the Stackelberg
prediction game model introduced by [4].

To aid the learner, we assume that they posses a clean, unmod-
ified sample, {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 }𝑚𝑖=1from the distribution of interest which
they can use for the purposs of training. In practice, such a train-
ing set may be obtained by querying data providers. An intuitive
approach for the learner is to select the linear predictor which
minimises their empirical risk. That is, the linear predictor which
solves the following minimisation problem:

min
𝑤

𝑚∑︁
𝑖=1

ℓ1 (𝑤⊤𝑥𝑖 , 𝑦𝑖 )

s.t. 𝑥𝑖 = argmin
�̃�

ℓ2 (𝑤⊤𝑥𝑖 , 𝑧𝑖 ) + 𝑐 (𝑥𝑖 , 𝑥𝑖 )

However, this approach poses many issues from an optimisation
perspective. Thus, it is worth asking: is empirical risk minimisation
even computationally tractable in this setting? In [3], we answer in
the affirmative, and show that there exists an efficient polynomial
time algorithm based on semidefinite programming. In short, this
algorithm consists of bisection search, where each iteration requires
solving a semidefinite program (SDP). [10] improve further on this
result and shows that, using matrix congruence, only one SDP
needs to be solved.

However, a significant number of open questions remain, Are
there similar algorithms for similar settings? For example, does
an efficient algorithm exist for a similar setting, where linear re-
gression is replaced by the task of support vector regression, or by
logistic regression? Additionally, what statistical guarantees can we
make regarding the empirical risk minimisation approach outlined
above? For the traditional supervised learning setting, empirical
risk minimisation is justified using results from statistical learn-
ing theory. Do similar theoretical results hold for strategic setting
above? Statistical guarantees for empirical risk minimisation based
approaches in similar settings have been found [9, 11], so it seems
likely the answer to this question is yes.

As we have already mentioned, this setting is fairly general. Can
we do better when we know more information regarding the strate-
gic incentives of the data providers? For example, when 𝑧 = 𝑦, this
setting resembles the performative prediction setting studied by
[8]. One may expect to find faster algorithms in this case. Similarly,
the learner may know that the incentives of data providers have
some additional structure which could be exploited. What assump-
tions on the preferences of data providers leads to more tractable
algorithms?

3 MATCHINGWITH BLOCKING
In the previous section, we extended a traditional machine learning
setting (linear regression) to incorporate strategic data providers.
In this section, we study a problem with roots in mechanism design.
Namely we study the problem of repeated one-sided matching.

Consider a sequential matching problem which takes place over
𝑇 time steps. At each time step a central mechanism must match a
set of agents to a set of services. Each agent holds cardinal prefer-
ences over the services. That is, when an agent 𝑖 is assigned service
𝑗 , it receives a utility of 𝑢𝑖 𝑗 ∈ R. Additionally, when an agent 𝑖 is
assigned a service 𝑗 , the service is blocked for the next 𝑑𝑖, 𝑗 time
steps and cannot be matched to any agent. Blocking is useful for
modelling settings with scarce or depleted resources that may be-
come unavailable after use. For example, consider the problem of
matching freelnace contractors to companies. When a contractor is
assigned to a company on a given date, they are unavailable for the
duration of the contract. Blocking was first studied in the context
of multi-armed bandits by [1].

The goal of the central mechanism is to construct a feasible
sequence of matchings which maximises the social welfare. That
is, to find a matching which maximises

∑𝑇
𝑡=1

∑
𝑖 𝑢𝑖,𝑖 (𝑡 ) , where 𝑖 (𝑡)

denotes the service assigned to agent 𝑖 at time step 𝑡 .
To aid the central mechanism, each agent is required to submit

a list of ordinal preferences over the available services. We assume
each agent submits a list of ordinal preferences with the aim of
maximising their own utility (i.e. the sum of their payoffs across
all time steps). Our goal is to find a matching mechanism which is
truthful and attains the highest social welfare possible. By truthful
we simply mean that each agent is incentivised to report the ordinal
preferences induced by its underlying cardinal preferences.

One may expect a simple algorithm to work in this setting. For
example, consider an algorithm which takes any truthful and ef-
ficient algorithm for one-shot one-sided ordinal matching, such
as random serial dictatorship (RSD), and applies it on every time
step. Without blocking, such an algorithm is optimal and truthful.
However, blocking creates dependencies between time steps, and as
such, a simple algorithm such as the one described above is neither
truthful or efficient in the presence of blocking.

In [2], we propose an alternate method for constructing a se-
quential matching mechanism from one-shot ordinal matching
mechanisms. We show that this approach approximates the opti-
mal sequence of matchings, and satisfies a notion of approximate
truthfulness, in the sense that it has a bounded incentive ratio [5].

This work raises a number of interesting questions. First of all,
is this the best we can do? Is there a mechanism which is truthful
and achieves a meaningful approximation of the optimal matching
sequence? Additionally, observe that blocking is just one of many
ways of specifying the evolution of each agent’s preferences over
the time horizon in a way that depends on the actions of the cen-
tral mechanism. More generally, can we find effective sequential
mechanisms for preferences that evolve depending on the action
taken by the central mechanism?
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