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ABSTRACT
Exploration in multi-agent reinforcement learning is a challenging
problem, especially with a large number of agents. Parameter shar-
ing between agents is often used since it significantly decreases
the number of trainable parameters, shortening training times to
tractable levels and improving exploration efficiency. We present
two algorithms that aim to be a middle ground between not sharing
parameters and fully sharing parameters. These proposed algo-
rithms show advantages of the baselines at the two ends of the
spectrum and minimise their drawbacks. First, Shared Experience
Actor-Critic [3], applies the basic idea of off-policy correction via
importance weighting and combines the experiences generated
by different agents into more informative and effective learning
gradients. Then, Selective Parameter Sharing [2], based on rigorous
empirical analysis of the impact of parameter sharing proposes a
novel parameter sharing method that can be coupled with existing
multi-agent reinforcement learning algorithms.

KEYWORDS
Reinforcement Learning, Multi-Agent Systems, Parameter Sharing
ACM Reference Format:
Filippos Christianos. 2022. Collaborative Training of Multiple Autonomous
Agents: Doctoral Consortium. In Proc. of the 21st International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2022), Online, May
9–13, 2022, IFAAMAS, 3 pages.

1 INTRODUCTION
Multi-agent reinforcement learning (MARL) necessitates explo-
ration of the environment dynamics and of the joint action space
between agents. This is a difficult problem due to non-stationarity
caused by concurrently learning agents [7] and the fact that the
joint action space typically grows exponentially in the number of
agents. The problem is exacerbated in environments with sparse re-
wards in which most transitions will not yield informative rewards.

One common implementation technique to facilitate training
with a larger number of agents is parameter sharing (e.g. Gupta
et al. [5]) whereby agents share some or all parameters in their
policy networks. In the literature, parameter sharing is typically
applied indiscriminately across all agents, which we call naive.
Naive parameter sharing (FuPS) has been effective primarily due
to the similar (if not identical) observation and reward functions
between agents found in many multi-agent environments. This
similarity allows agents to share representations in intermediate
neural network layers. Despite the occasional effectiveness of naive
parameter sharing [4, 5, 8, 10], it is not supported by theoretical
work and has not received much attention beyond being mentioned

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

No Parameter 
Sharing

Shared Experience
Actor Critic

Parameter Sharing

Selective Parameter 
Sharing

Figure 1: The two baselines (No Parameter Sharing and Pa-
rameter Sharing) are in the two ends of the spectrum. Shared
Experience Actor Critic [3] is between the two and Selective
Parameter Sharing [2] is closer to the Parameter Sharing
baseline.

as an implementation detail. Indeed, naive parameter sharing can
decrease training time, but we show that it can be detrimental to
final convergence in many environments, even when paired with
implementation details that generally accompany it.

In many multi-agent problems, however, distinct behaviours are
expected from the agents. In those problems, parameter sharing
poses significant issues in the training procedure since overlapping
gradients often destabilise neural network training. Hence, not shar-
ing parameters (NoPS) is also used when such distinct behaviours
need to be learned.

In our work, we consider the two baselines above as two ends
of a spectrum (Figure 1). Our first work, Shared Experience Actor
(SEAC) [3] does not share parameters between agents, but applies
the basic idea of off-policy correction via importance weighting
and combines the experiences generated by different agents into
more informative learning gradients. Therefore, sample efficiency
increases significantly by having agents make use of the experience
collected by other agents. With SEAC all agents have their own
set of parameters and manage to learn distinct behaviours which
greatly increases the returns after the policies converge.

Selective Parameter Sharing (SePS) [2] takes a slightly different
approach. It makes use of parameter sharing and generates clusters
of agents that should share parameters. This is achieved with the
use of an encoder-decoder model. The architecture of that model
has been designed to encode the agent identities into an embedding
space. Depending on the reward and observation functions of the
individual agents, the model separates the embeddings into clusters
that can then be defined with an unsupervised clustering method.

SEAC and SePS each have their own advantages and should
be used in different settings. We have experimental evidence that
SEAC achieves state-of-the-art performance in many sparse reward
environments. SEAC learns considerably better policies than the
other algorithms but does so at the cost of larger batch sizes and
the number of parameters (equal to the NoPS baseline). Also, while
SEAC learns distinct behaviours, it struggles if the policies should
differ significantly. On the other hand, SePS is very computationally
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Figure 2: Examples of environments used in our work.

cheap and has been shown to scale to hundreds of agents (we have
tested up to 200), even if the agents are not homogeneous. As such,
SePS combines the benefits of FuPS with the ability to learn distinct
policies as in NoPS.

2 EXPERIMENTAL EVALUATION
Throughout our work, we use a collection of multi-agent environ-
ments that includes Multi-Robot Warehouse (RWARE) [3], Level-
based Foraging (LBF) [1], the Multi-agent Particle Environments
(MPE) [6] and StarCraft Multi-agent Challenge (SMAC) [9] (exam-
ple visualisations in figure 2).

SEAC and SePS have slightly different assumptions and work
better in different settings (e.g. SePS scales to a large number of
agents), therefore the environment tasks differ, but the overall do-
mains remain the same.

Our SEAC results show similar patterns for the different algo-
rithms across all tested environments. It is not surprising that NoPS
requires considerablymore environment samples to converge, given
that the algorithm is less efficient in using them; NoPS agents only
train on their own experience. Also, it is not surprising that FuPS
does not achieve as high returns after convergence: sharing a sin-
gle policy across all agents impedes their ability to coordinate or
develop distinct behaviours that lead to higher returns.

We conjecture that SEAC converges to higher final returns due
to agents improving at similar rates when sharing experiences,
combined with the flexibility to develop differences in policies
to improve coordination. We observe that SEAC is able to learn
similarly quickly to SNAC because the combined local gradients
provide a very strong learning direction. However, while SNAC
levels off at some point due to the use of identical policies, which
limit the agents’ ability to coordinate, SEAC can continue to explore
and improve because agents are able to develop different policies
to further improve coordination.

SePS shows significant improvements in converged returns across
our environments. Specifically, SePS works on environments with

a large number of agents when there are agent groups that behave
similarly (e.g. in the SMAC task pictured in figure 2d there are
types of agents such as seven marines). We showed that SePS can
make use of the homogeneity between some agents and correctly
separate agents that should have distinct policies. In our results,
SePS outperforms all baselines in terms of converged returns and
is computationally cheaper than the NoPS baseline.

3 FUTUREWORK
In our future work, we are looking into extending the experimental
results and analysis of SePS. In SePS, partitioning the agents us-
ing samples collected before agents are allowed to learn a policy
does come with a disadvantage. In situations where agents share
dynamics and reward functions early in the policies’ training but
diverge later (e.g. agents are required to do the same task and then
a different task in the same episode), learning the encoder-decoder
with the initially collected samples may fail to properly partition
agents. While in that case SePS will operate similarly to the full
parameter sharing baselines, it could be further improved by regu-
larly retraining the encoder-decoder model with newer experience
and redistributing agents to clusters if they have diverged.

We also aim to extend the experimental results to include SePS
combined with current MARL paradigms such as state-based crit-
ics [6], value-decomposition (e.g. [8]) and independent learning.
Such experiments will further note the usefulness of SePS and how
it can be applied to a variety of different settings.

REFERENCES
[1] Stefano V. Albrecht and Subramanian Ramamoorthy. 2013. A Game-Theoretic

Model and Best-Response Learning Method for Ad Hoc Coordination in Mul-
tiagent Systems. In Proceedings of the International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS ’13). Richland, SC, 1155–1156.

[2] Filippos Christianos, Georgios Papoudakis, Arrasy Rahman, and Stefano Albrecht.
2021. Scaling Multi-Agent Reinforcement Learning with Selective Parameter
Sharing. In Proceedings of the 38th International Conference on Machine Learning.

[3] Filippos Christianos, Lukas Schäfer, and Stefano Albrecht. 2020. Shared Experi-
ence Actor-Critic for Multi-Agent Reinforcement Learning. In Advances in Neural

Doctoral Consortium AAMAS 2022, May 9–13, 2022, Online

1837



Information Processing Systems, Vol. 33. Curran Associates, Inc., 10707–10717.
[4] Jakob N Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and

Shimon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Thirty-
Second AAAI Conference on Artificial Intelligence.

[5] Jayesh K. Gupta, Maxim Egorov, and Mykel Kochenderfer. 2017. Cooperative
Multi-agent Control Using Deep Reinforcement Learning. In Autonomous Agents
andMultiagent Systems (Lecture Notes in Computer Science). Springer International
Publishing, Cham, 66–83. https://doi.org/10.1007/978-3-319-71682-4_5

[6] Ryan Lowe, YiWu, Aviv Tamar, Jean Harb, Pieter Abbeel, and IgorMordatch. 2017.
Multi-Agent Actor-Critic for Mixed Cooperative-Competitive Environments.
Neural Information Processing Systems (NIPS) (2017).

[7] Georgios Papoudakis, Filippos Christianos, Arrasy Rahman, and Stefano V Al-
brecht. 2019. Dealing with Non-Stationarity in Multi-Agent Deep Reinforcement
Learning. arXiv preprint arXiv:1906.04737 (2019).

[8] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. QMIX: Monotonic Value Function Factori-
sation for Deep Multi-Agent Reinforcement Learning. In International Confer-
ence on Machine Learning. PMLR, 4295–4304. http://proceedings.mlr.press/v80/
rashid18a.html

[9] Mikayel Samvelyan, Tabish Rashid, Christian Schroeder De Witt, Gregory Far-
quhar, Nantas Nardelli, Tim G. J. Rudner, Chia Man Hung, Philip H. S. Torr, Jakob
Foerster, and Shimon Whiteson. 2019. The StarCraft Multi-Agent Challenge. In
International Joint Conference on Autonomous Agents and Multi-Agent Systems,
Vol. 4. 2186–2188. https://youtu.be/VZ7zmQ_obZ0.

[10] Yaodong Yang, Rui Luo,Minne Li, Ming Zhou,Weinan Zhang, and JunWang. 2018.
Mean Field Multi-Agent Reinforcement Learning. In International Conference on
Machine Learning. PMLR, 5571–5580. http://proceedings.mlr.press/v80/yang18d.
html

Doctoral Consortium AAMAS 2022, May 9–13, 2022, Online

1838

https://doi.org/10.1007/978-3-319-71682-4_5
http://proceedings.mlr.press/v80/rashid18a.html
http://proceedings.mlr.press/v80/rashid18a.html
https://youtu.be/VZ7zmQ_obZ0.
http://proceedings.mlr.press/v80/yang18d.html
http://proceedings.mlr.press/v80/yang18d.html

	Abstract
	1 Introduction
	2 Experimental Evaluation
	3 Future Work
	References



