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ABSTRACT
As more and more single-use robots are introduced to private and
public spaces, it will become essential to mediate the interaction
between robots. In particular, we consider the problem of resource
sharing in non-cooperative multi-robot systems. We discuss the
motivation for different types of shared resources and share howwe
used auctions to address the non-cooperative multi-agent pathfind-
ing problem. We summarize those result, which are presented in
full in a separate paper. Finally, we discuss some avenues for future
work, including the application of auctions to allocate multi-unit
chance-constrained resources under the presence of uncertainty.

CCS CONCEPTS
• Computing methodologies→Multi-agent planning; • The-
ory of computation → Algorithmic mechanism design.
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1 INTRODUCTION
As robots are deployed in ever more areas, it is inevitable that
systems owned and operated by competing organisations will be
required to interact in the same space. Interactions in such settings
will be inherently non-cooperative: robots from different organ-
isations will have different goals, and must be assumed to act in
pursuit of their goals, with no concern for the goals of robots from
other organisations. Just as humans have laws and norms to guide
them through daily life, it is important that we, as a society, begin to
develop rules to guide how robots interact with each other. Because
robots and other automated agents will act rationally, it makes
sense to design systems that are inspired by game theory. Rosen-
schein and Zlotkin [8] termed these systems rules of encounter for
automated agents. Such systems have long existed for automated
online agents. The Contract Net Protocol, designed by Smith [9], is
arguably the first such market-based model for automated agents.
Today, more sophisticated agents participate in auctions to buy
advertising space [4, 6] and markets to relay information through
wireless networks [7].
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But there are a few unique challenges that occur in robotic sys-
tems over current online non-cooperative systems. Because these
systems are physical, competitive robots will always share at least
one resource, space. Consider a superstore, with aisles of groceries,
clothing, and electronics. The store does not have the technology
to build a fleet of robots, so they contract out individual tasks. One
company might be hired to deploy a robot to move around the store
examining shelves to track inventory. Another company might
be hired to deploy cleaning robots. These robots have misaligned
incentives; while they both have to interact in the space, they only
care about their own contract with the store, and so their only goal
is to complete their own task. They may be penalised for failing
to complete their tasks either with a built-in monetary penalty
or the eventual loss of their contract. As a result, this system is
non-cooperative. This situation is ill-suited to centralisation, be-
cause agents need autonomy over their own decision making and
path planning. In other cases, robots share physical resources like
electricity, human controllers, or use of physical objects. One of
the main challenges that occurs in this setting is the presence of
uncertainty. In order to allocate resources optimally, it is important
to distribute and manage scarce resources offline and ahead of time.
But often, the environment and the results of robots’ actions are
uncertain. For example, an indoor package delivery robot may not
know if a door is open, a chair is in its path, or which room its re-
cipient is in. All those factors may affect the WiFi networks it needs
to use, the amount of times it needs guidance from a teleoperator,
the time it takes to complete a delivery, or the amount of battery it
uses up in its operations. So while agents may need a certain set
of resources at allocation time, this may change at execution time,
and it is important for any model to consider this. By combining
tools from mechanism design and multi-robot planning, we can
design sensible rules of interaction for non-cooperative multi-robot
resource allocation problems, like the two presented above.

2 MECHANISMS FOR MULTI-AGENT PATH
FINDING

The first vector of research that we have explored focused on a
specific shared resource: floor space shared by mobile robots. When
multiple independently operated robots interact in the same space,
their mobility can be significantly hindered by congestion, particu-
larly in terrains with bottlenecks [10]. A warehouse setting displays
this clearly. If two robots create optimised long term plans that take
them into the same narrow isle at the same time, they waste time
proceeding all the way out of the aisle and replanning. In settings
with three or more robots, it is possible to ‘trap’ other robots. An-
other setting that illustrates this point is retail stores, which often
contract different companies to provided autonomous robots for
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Figure 1: Success probabilities for Dragon Age: Originsmaps
lak108d (left) lak110d (right).

different tasks. Some robots, like cleaning robots, would be given
tasks on short notice. Other robots, owned and operated by a differ-
ent company, may have tasks which requires long term planning,
like tracking inventory. If the robots do not communicate with each
other, inefficiencies are inevitable. This type of non-cooperative
scenario can be modelled as a multi-agent pathfinding (MAPF) prob-
lem. Agents have unique start locatations and unique goals, and the
system objective is to find a series of paths through the map that
are never in the same location at the same time. The cooperative
analog is well studied, and the non-cooperative problem can be
solved through combinatorial auctions as shown in [1]. But this
approach can be prohibitively time consuming when off-the-shelf
auction tools are used, particularly in large open spaces.

Instead, we developed an offline non-cooperative planning mech-
anism to deconflict agents paths [5]. Our Privileged Knowledge
Auction (PKA) consists of a modified combinatorial Vickrey-Clarke-
Groves auction. Each agents submits a set of bids, where each bid
contains a timed path through the map and the respective cost
of that path. Our approach limits the initial number of bids in the
Vickrey-Clarke-Groves auction, then uses the privileged knowledge
of the auctioneer to identify and solve path conflicts that may occur
in the submitted paths. In order to maintain agent autonomy in
the non-cooperative system, individual agents are provided with
final say over paths. The mechanism provides a heuristic method to
maximise social welfare whilst remaining computationally efficient.
Prices based on the traditional Vickrey-Clarke-Groves auction deter
agents from manipulating the system and lying about their path
costs. We also consider the problem of single-agent bid generation
and propose a similarity metric to use in dissimilar shortest path
generation, with the goal of providing a diverse set of path options
to the auctioneer to mitigate conflicts.

Our experiments with synthetic data outperform existing work
on the non-cooperative problem. One simulation we conducted
was on maps from Dragon Age: Origins, lak108d and lak110d. Re-
sults in Figure 1 show how our algorithm (PKA) performs against
iBundle, which is the solution proposed in [1]. Our algorithm con-
sistently found more successful solutions than iBundle, when given
a timeout of 5 minutes. We also demonstrate that our dissimilar
path generation mitigates conflicts in the first stage of the auction,
providing a speed up. Full details on the simulations can be found
in [5].

3 CURRENTWORK
The current vector of research we are exploring deals with allo-
cating many identical resources (referred to as multi-unit) under
the presence of uncertainty. There is a wealth of literature on a
similar problem in the multi-agent planning community, where it
is assumed that robots are willing to cooperate. In the cooperative
shared resource allocation literature, it is assumed each agent has a
Markov Decision Process (MDP) that governs its interactions with
the world. Actions take a certain amount of resources, and uncer-
tainty is built into the transition model. de Nijs et al. [2] provides
a comprehensive review of these cooperative approaches. When
agents request a certain number of resources to be pre-allocated,
they are likely uncertain about the true number of resources they
consume when they execute a given plan because of the stochastic
environment. Say an agent is allocated a fixed number of resources.
If they plans for the worst-case (i.e., assuming that uncertainty is
resolved with maximum resource usage), resources may be under-
utilised as agents are unable to choose policies that use too many
resources with a very low probability. On the other hand, if they
plan only for expected resource usage, it could result in agents
counting on resources without any guarantee that they are actu-
ally available. So instead, we consider allocating resources that are
chance constrained, as in [3]. This allows for agents to choose less
conservative plans where resources violations are unlikely, but may
occur some fixed percentage of the time. Our goal is to consider the
multi-robot planning problem under chance-constrained resources
in a non-cooperative setting. We plan to address this problem with
an auction where agents are asked to bid on resources, reporting
both how much they value each resource and how likely they are
to exceed a given resource amount. Agents could then be allocated
resources though solving a constrained optimisation problem that
ensures a chance constraint over the probability of exceeding the
resource limit is met over all agents.

We would also like to consider richer understandings of uncer-
tainty. While this planning under a chance constraint represents
a good trade off between expected resource use and worst-case
resource use, it only provides information on how often a resource
violation can happen, without considering how bad that violation
is when it does happen. Instead we hope to consider risk-aware
systems, which consider tail cases in their entirety. One risk metric
we are considering is Conditional Value at Risk, which asks "In the
worst x% of cases, how bad will the outcome be on average."

Another future avenue concerns incorporating continuous or
logic-based time into our existing models. Both the multi-agent
pathfinding problem described in Section 2 and the resource alloca-
tion under uncertainty problem described above rely on discrete
time, which requires synchronised clocks, perfect communication
between agents, and uniform action duration. We hope to incorpo-
rate interval time logic into these systems to better account for real
world robotics capabilities.
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