
Task Generalisation in Multi-Agent Reinforcement Learning
Doctoral Consortium

Lukas Schäfer
University of Edinburgh

Edinburgh, United Kingdom
l.schaefer@ed.ac.uk

ABSTRACT
Multi-agent reinforcement learning agents are typically trained in
a single environment. As a consequence, they overfit to the training
environment which results in sensitivity to perturbations and inabil-
ity to generalise to similar environments. For multi-agent reinforce-
ment learning approaches to be applicable in real-world scenarios,
generalisation and robustness need to be addressed. However, un-
like in supervised learning, generalisation lacks a clear definition
in multi-agent reinforcement learning. We discuss the problem
of task generalisation and demonstrate the difficulty of zero-shot
generalisation and finetuning at the example of multi-robot ware-
house coordination with preliminary results. Lastly, we discuss
promising directions of research working towards generalisation
of multi-agent reinforcement learning.
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1 INTRODUCTION
Reinforcement learning (RL) [26] is a paradigm of machine learning
which enables agents to learn behaviour from interaction with an
environment.Multi-agent reinforcement learning (MARL) [4, 23] ex-
tends this framework to multi-agent systems, i.e. it enables multiple
agents to concurrently learn from interaction with the environment
as well as interactions with each other. RL methods become increas-
ingly capable in learning complex behaviour [20, 25, 28]. However,
their learned strategies are usually highly task-specific. This makes
the application of RL in real-world tasks difficult which usually
require the learned behaviour to be robust to small perturbations
and changes in the environment [1]. In our recent work [24], we
proposed a novel decoupling scheme which allows to leverage
intrinsically-motivated exploration [2, 21, 22] and train a separate
policy while improving the robustness of these typically brittle
exploration methods. Ideally, RL should be able to develop a funda-
mental understanding of the dynamics and interactions within their
environment and be able to re-apply such learned knowledge in a
related task. However, training a policy in one task and applying it
to a new similar task requires to train the policy from scratch as
learned behaviour and representations currently do not generalise.
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Figure 1: Multi-robot warehouse challenge

Established techniques from transfer learning [5, 27] try to ad-
dress this problem by extracting representations, action selection
or other components from already learned models. However, these
methods are limited in that they require a dedicated transferring
procedure for each new task to evaluate in. Meta RL [6–8, 16, 29]
instead aims to learn policies which are adaptable using few-shot
learning to be effective in testing tasks.

2 WHAT IS GENERALISATION?
The problem of generalisation is present in all branches of machine
learning. While it is comparably well understood in supervised
learning [13, 19], RL still lacks a unified view on generalisation.
Recently, some advances are being made to define and understand
generalisation in RL [9, 14, 17]. In the following, we discuss the
challenge of generalisation in the setting of MARL.

Individual MARL tasks can be modelled as partially-observable
stochastic games (POSG) [11]. To evaluate MARL generalisation,
the joint policy 𝜋 over all agents is trained in a set of training
tasks T𝑡𝑟𝑎𝑖𝑛 and evaluated based on average returns in testing tasks
𝑇 ∼ T𝑡𝑒𝑠𝑡 . Note, T𝑡𝑟𝑎𝑖𝑛 and T𝑡𝑒𝑠𝑡 might be disjoint but tasks from
the training set might also be considered for testing. In this work,
we consider zero-shot generalisation of MARL algorithms, i.e. 𝜋
is directly applied in testing tasks without any further training
allowed after the initial training in T𝑡𝑟𝑎𝑖𝑛 , as well as finetuning, i.e.
𝜋 is allowed further training in T𝑡𝑒𝑠𝑡 . Both these cases of generali-
sation require agents to learn re-usable skills and representations
which transfer to testing tasks.

The most important question with respect to the type of gener-
alisation of a particular problem are the similarities and differences
between T𝑡𝑟𝑎𝑖𝑛 and T𝑡𝑒𝑠𝑡 . Without any further assumptions, train-
ing and testing tasks could be arbitrarily different and hence no
generalisation could be feasibly expected. Therefore, further as-
sumptions need to be made on the relationship between training
and testing tasks to restrict the problem space and allow for focused
research. In the following, we focus on task generalisation where
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(a) Observation encodings
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Figure 2: Normalised returns in zero-shot generalisation to
warehouses of block height 2 − 15 with varying observation
encodings, architectures and domain randomisation (DR).

training and testing tasks represent the same type of problem, but
contain different states. An example would be multi-robot ware-
house navigation (Figure 1) where the high-level goal is consistent
across all warehouses but encountered states depend on the layout
of a particular instance. A diverse set of states has strong implica-
tions as it also indirectly affects transition function, rewards and
observations which are defined over the set of states.

3 PRELIMINARY EXPERIMENTS
In the multi-robot warehouse (RWARE)1 [23], visualised in Figure 1,
multiple agents (orange) need to navigate a gridworld warehouse,
collect randomly requested shelves (green) and deliver them to
the dropoff locations (black). While the challenge and required be-
haviour of agents intuitively remains very similar across varying
shapes of warehouses, existing MARL algorithms are unable to
achieve such generalisation. We investigated the impact of (1) vary-
ing observation encodings, (2) domain randomisation (DR), and
(3) varying neural network architectures for policies on zero-shot
generalisation capabilities of agents to identify the limitations of
existing approaches. Lastly, we also evaluate the ability of agents
to finetune representations for task generalisation.

We trained agents using independent synchronous Advantage
Actor-Critic (IA2C), i.e. agents are independently trained with
A2C [18], in warehouses of similar layout but varying height of
blocks of shelves (blue box in Figure 1) for 50 million timesteps.

Observations in RWARE encode a limited grid centered around
agents to keep observation dimensions consistent across varying
warehouses and focus on most relevant information in the im-
mediate proximity. Preliminary experiments showed that agents
which observe absolute locations in the warehouse are unable to
generalise at all if trained in a single warehouse instance (blue
in Figure 2a). Out-of-(training-)distribution values lead to unsta-
ble policies. Slightly changing the observation encoding using an
image-encoding of local information without providing coordinates
significantly improves generalisation capabilities even without rely-
ing on DR (green in Figure 2a). DR is an approach to generalisation
in which agents are concurrently trained in a diverse set of tasks.
We observed that such training improves generalisation for either
observation encoding across warehouses of similar variability as
observed in the training set (orange and red in Figure 2a).

We also considered applying convolutional neural networks
(CNN) [15] to encode the 2D spatially correlated observations and
1Environment available at https://github.com/uoe-agents/robotic-warehouse
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Figure 3: Evaluation returns for IA2C with GRUs and CNNs
on 5 × 5 image observations with finetuning and training
from scratch.

apply Gated Recurrent Networks (GRU) [3] to preserve memory
of the partially-observable information provided to agents [12].
Encoding of image observations using CNNs in itself does not
appear to significantly benefit generalisation, but the application of
CNNs allowed to learn from observations with increased visibility
radius (purple and brown in Figure 2b). The application of GRUs
improved performance of all agents, but its benefits appeared to be
not specific to generalisation (Figure 2b).

Lastly, we evaluated agents in a larger warehouse after training
in smaller warehouses (Figure 1). None of the agents are able to
deliver more than a few shelves successfully in this testing task. Ob-
servations are sufficiently different from observations encountered
at training time which leads to agents becoming stuck.

Overall, our zero-shot experiments demonstrate that carefully
selected observation encodings with corresponding architectural
choices and DR can improve generalisation across a set of training
tasks. However, neither approach is sufficient in achieving general-
isation to warehouses of different layouts as visualised in Figure 1.
Motivated by these results, we investigated the suitability of fine-
tuning learned representations in this testing task. After training
in smaller warehouses for 50 million timesteps, we train agents
for further 50 million timesteps in the larger warehouse. Figure 3
compares such finetuned agents with agents only trained in the
testing task for 100 million timesteps. We observe that pretrained
agents achieve significantly higher returns in the larger warehouse
after ∼ 20 million timesteps of finetuning compared to agents only
trained in the larger warehouse. This indicates that representations
learned in the smaller warehouse include useful information for the
testing task with agents benefitting from the pretraining procedure.

4 CONCLUSIONS
We demonstrated the challenge of task generalisation in MARL in
preliminary experiments. Existing MARL algorithms are shown
to be too sensitive to task-specific changes in observations but
learned representations appear to include valuable information
with promising results after limited finetuning in new testing tasks.
These results indicate the possible suitability of meta RL adapta-
tion techniques [6, 8, 16, 29] which we aim to extend for MARL
generalisation. Furthermore, we aim to theoretically formalise the
relationship of warehouse tasks as shown in Figure 1. Existing ap-
proaches, such as contextual formalisms [10] are able to represent
the general idea, but do not represent the intuitive similarity of
high-level concepts such as dynamics, rewards and observations.
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