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ABSTRACT
Despite recent breakthroughs for learning a rich set of behaviors in
simulated tasks, reinforcement learning agents are not yet in wide-
spread use in the real world where rewards are naturally sparse. In
fact, efficient exploration remains a key challenge in sparse-reward
tasks as it requires quickly finding informative and task-relevant
experiences. While cloning behaviors provided by an expert is a
promising approach to the exploration problem, learning from a
fixed set of demonstrations may be impracticable due to lack of
state coverage or distribution mismatch - when the learner’s goal
deviates from the demonstrated behaviors. Moreover, we aim to
obtain a policy that can accomplish a variety of goals guided by
the same set of demonstrations (i.e. without additional human ef-
fort). We present a goal-conditioned method that leverages very
small sets of goal-driven demonstrations to significantly accelerate
learning. Crucially, we present the concept of active goal-driven
demonstrations to query the demonstrator only in hard-to-learn
and uncertain regions of the state space. We evaluate our frame-
work on a set of robot control tasks. Our method outperforms prior
imitation learning approaches in most of the tasks in terms of data
efficiency and scores while reducing the amount of human effort.
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1 INTRODUCTION
Reinforcement learning (RL) has shown impressive advances in a
plethora of simulated tasks, including game-playing [8] or robot
control [7]. On the other hand, many real-world problems involve
rewards that are sparse or delayed, which limits the applicability
of RL. As a result, such approaches require a large number of in-
teractions to reach decent performance, which is often intractable.
Therefore, achieving efficient exploration is a key challenge to ex-
pand the possible applications of RL.
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Multiple approaches were proposed to achieve better explorative
policies. One strategy is goal-conditioned learning, a form of self-
supervision that constructs a goal-conditioned policy [6, 11]. The
objective is to reach any goal upon demand. This idea was extended
in Hindsight Experience Replay (HER) [2] to artificially generate
additional transitions by relabeling goals seen along the state tra-
jectory. However, these algorithms might still produce ineffective
learning of complex policies - it may require a large amount of data
to capture complex or far-away goals.

Since it is often unrealistic to expect an end-to-end reinforcement
learning system to rapidly succeed with no prior assumptions about
the domain, multiple methods have introduced prior knowledge
into reinforcement learning systems. The most common form of
external supervision is imitation learning. Imitation learning seeks
to learn tasks from demonstrated state-action trajectories [1, 10].
For instance, Deep Q-learning from Demonstrations [5] improves
initial performance by pre-training the policy with demonstrations.
However, learning from human demonstrations suffers from three
problems. (1) It is hard to obtain a broad state coverage of task-
relevant regions from trajectories demonstrated without specific
goals. (2) It usually has an abundance of irrelevant or redundant
information. In this sense, imitation learning puts more burden on
humans than just providing insights about hard-to-learn regions of
the environment. (3) It assumes that the learner’s goal matches the
expert’s demonstrated behaviors. Besides, most imitation learning
algorithms learn policies that achieve a single task.

In this work [3], we propose an active goal-conditioned ap-
proach that drastically reduces expert workload by incrementally re-
questing partial demonstrations towards specific goals, goal-driven
demonstrations. In contrast with standard demonstrations, goal-
driven demonstrations do not aim to demonstrate the overall task
or all possible situations. Instead, goal-driven demonstrations ful-
fill particular goals that are actively chosen based on the agent’s
knowledge about the task. To do so, the present approach allows
an agent to jointly identify states where feedback is most needed
and communicate for specific domain knowledge throughout the
training. Namely, goal-driven demonstrations are actively queried
based on the agent’s confidence and the ability of the agent to reach
the goal being pursued. We build and compare two techniques to
estimate the agent’s confidence: 1) Bayesian-confidence, 2) quantile-
confidence; and study a relabeling strategy that extracts additional
information from the demonstrated trajectories. In addition, we
present a form of Q-filter that allows the agent to outperform the
demonstrator. Overall, this scheme constitutes a novel perspective
for robotic task learning and could help to expand the possible
applications of RL.

JAAMAS Track AAMAS 2022, May 9–13, 2022, Online

1923



(a) Hand Manipulate Block (b) Hand Manipulate Egg (c) Hand Manipulate Pen (d) Hand Reach

Figure 1: Performance (mean±std) on ShadowHand tasks averaged over 10 runs for our method using different estimations of
the agent’s confidence (GoAL(bayesian), GoAL(quantile)) and baselines DDPG [7], HER [2], DDPG+Demo [9], and goalGail [4].

2 PROPOSED FRAMEWORK
The proposed framework provides us a mechanism to mitigate the
above-mentioned problems by incrementally querying goal-driven
demonstrations. Namely, our approach introduces human feedback
into goal-conditioned learning via HER. The agent receives feed-
back in the form of short goal-driven demonstrations—the tutor is
requested to reach a specific goal. We decide how to query goal-
driven demonstrations based on the agent’s needs and the expected
value of information of the query, drastically reducing the number
of required demonstrations.

The framework consists of five steps. We first collect a trajectory
based on the goal being pursued by running a goal-conditioned
agent. Second, the agent decides whether it should query a goal-
driven demonstration to the demonstrator by evaluating the agent’s
confidence. In this work we present and compare two techniques to
estimate the agent’s confidence: 1) Bayesian-confidence, 2) quantile-
confidence. Given such a query, the teacher is requested to reach a
specific goal that has been chosen by the agent. Third, after each
query, we perform expert relabeling to artificially generate more
expert data. Expert relabeling is a type of data augmentation on the
provided goal-driven demonstrations. Fourth, an imitator policy is
then trained to imitate the demonstration data. Note that in order
to allow the agent to significantly outperform the demonstrator,
we use a Q-filter function [9] in a goal-conditioned setting, which
we extend to take into account the gap between “optimal” and
“sub-optimal” transitions. Finally, we augment the policy loss with
an extra objective that aims to mimic the demonstrated behaviors.
Note that the transitions used to train the policy are generated
following a similar strategy as in HER [2], except that we modified
the goal sampling to take advantage of the demonstrations. This
process continues until the task is mastered.

3 EXPERIMENTS AND RESULTS
Via a wide range of simulations, the paper analyses and compares
the proposed framework with several baselines on eight robotic
tasks implemented in MujoCo [12]. Simulations allow us to sys-
tematically evaluate the performance of our system under different
hypotheses about the teaching conditions (e.g. low query budget),
and to test its limits. For instance, we evaluate the robustness of
our framework against noisy guidance data and erroneous teach-
ing signals. The experimental results of the simulations can be
summarized as follows:

Ideal CaseWhen teaching signals are correct, our method im-
proves the convergence speed, and in some tasks the final perfor-
mance with respect to baselines approaches, as shown in Figure
1. Please note that we compare the average learning performance
of our method that uses two different mechanisms to evaluate the
agent’s confidence when deciding to make a query.

Better-than-expert Performance The experimental results
show that the proposed Q-filter technique allows the agent to out-
perform the teacher by discarding sub-optimal expert transitions,
yielding better-than-expert performance.

Erroneous instructions We study how our agent performs
when imperfect guidance is generated by the demonstrators by
adding normal noise. The proposed method is reasonably robust to
noise in the demonstrations, and hence a non-expert can provide a
feedback signal to the agent.

Generalization to unseen goals When training our agent on
a set of goals (i.e., not contained within the provided guidance), the
agent can generalize the provided guidance to unseen goals with a
slight loss in the performance.

Low Query Budget Our method leverages a small amount of
demonstrations that cover task-relevant regions of the state space,
which entails that it remains effective with a low query budget. In
addition, the present method outperforms the baselines by a large
margin under the same query budget.

4 CONCLUSION
This work presents a method for actively teaching an agent with
goal-driven demonstrations to both learn more effectively and effi-
ciently. Goal-driven demonstrations do not intend to demonstrate
the overall task, but help the agent to fulfill particular interme-
diate goals when it struggles. In contrast with traditional imita-
tion learning approaches where the agent passively accesses to
the demonstration data, our approach actively decides when to
request goal-driven demonstrations based on the confidence of the
agent. In addition, we show how to generate additional expert data
by relabeling goal-driven demonstrations. As a result, this novel
form of human guidance is less expensive and more intuitive than
pure demonstrations, while ensuring that the provided knowledge
match the agent’s needs, hence escaping the known “distribution
mismatch” issues of prior work. A promising research direction
is to replace the human trainer with another source of guidance.
For instance, if demonstrations are not available, one solution is to
reuse successful rollouts as demonstration data.
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