
Planning, Execution, and Adaptation for Multi-Robot Systems
using Probabilistic and Temporal Planning
Yaniel Carreno†, Jun Hao Alvin Ng†, Yvan Petillot and Ron Petrick

Edinburgh Centre for Robotics
Heriot-Watt University and The University of Edinburgh

Edinburgh, United Kingdom
{y.carreno,alvin.ng,y.r.petillot,r.petrick}@hw.ac.uk

ABSTRACT
Planning for multi-robot coordination during long horizonmissions
in complex environments need to consider resources, temporal con-
straints, and uncertainty. This could be computationally expensive
and impractical for online planning and execution. We propose a
decoupled framework to address this. At the high-level, we plan
for multi-robot missions that require coordination amongst robots
considering temporal and numeric constraints. The temporal plan
is decomposed into low-level plans for individual robots. At the low-
level, we perform online learning and adaptation due to unexpected
probabilistic outcomes to achieve mission goals. Our framework
learns over time to improve the performance by (1) updating the
learned domain model to reduce model prediction errors and (2)
constraining the robot’s capabilities which in turn improves goal
allocation. The approach provides a solution to planning prob-
lems that require long-term robot operability. We demonstrate the
performance of our approach via experiments involving a fleet of
heterogeneous robots.

KEYWORDS
Temporal Planning; Multi-Agent Planning; Multi-Robot Systems;
Model-Based Reinforcement Learning
ACM Reference Format:
Yaniel Carreno†, Jun Hao Alvin Ng†, Yvan Petillot and Ron Petrick. 2022.
Planning, Execution, and Adaptation for Multi-Robot Systems using Proba-
bilistic and Temporal Planning. In Proc. of the 21st International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2022), Online, May
9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
Automated planning provides the tools to enable intelligent be-
haviours in robotic systems operating in the real world. Temporal
planning considers temporal constraints and durative actions to
synthesise temporal plans involving concurrent actions and to sup-
port multi-agent coordination. However, these planners do not
consider probabilistic outcomes of actions as they only deal with
deterministic actions. Probabilistic planning reasons about the prob-
abilistic outcomes of actions or exogenous events to generate a
plan, providing an alternative approach for dealing with the risk of
failures. However, probabilistic planners do not reason about tem-
poral constraints and are ill-suited for multi-agent problems as the
† Authors with equal contribution.

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

Figure 1: Mission environment in simulation (left) and real
(right), where some robots plan, execute, and adapt in the
face of uncertainty to achieve some goals.

size of the state space increases exponentially with the number of
agents. Existing work combining temporal planning and reasoning
under uncertainty [2, 33, 35, 42] does not fully address the require-
ments of our application of interest: deploying and coordinating
a fleet of heterogeneous robots in an environment with temporal
uncertainty and probabilistic outcomes, without the requirement
of a true (i.e., complete and accurate) domain model. Consider the
following example.

Example 1. (Offshore Energy Platform) The maintenance and
supervision of an offshore energy platform is performed by a fleet
of heterogeneous Unmanned Aerial Vehicles (UAVs) and terrestrial
(Husky) robots (see Figure 1) that require coordination. For instance,
uav-1 needs to supervise husky-1 while the latter is manipulating the
control panel of an industrial motor in an area with high radiation.
In addition, robots need to operate over long time horizons to com-
plete goals that depend on the success of previous goals. For instance,
husky-2 in Figure 1 (right) needs to pick up and relocate tools that
are required to complete other goals. Working on an offshore energy
platform requires reasoning about the probability of failure associated
with actions. Replanning is not always an option in highly dynamic
environments. For instance, husky-1 might fail to manipulate the
control panel as a result of a damaged manipulator arm; it needs to
navigate to the base for repairs. A planner then needs to reason if it
should reallocate the goal to husky-2 or wait for husky-1’s repair to
complete. Our application involves hard (e.g., temporal and resource)
constraints, joint goals (achieved by coordinated actions from multiple
robots), and probabilistic dynamics, and cannot easily be solved by
solely using either temporal planning or probabilistic planning.

Main Track AAMAS 2022, May 9–13, 2022, Online

217

This paper presents two main contributions. First, we propose
the hybrid framework Temporal Planning and Multi-Agent Coor-
dination under Uncertainty (TPMACU). A centralised multi-agent
temporal planning (MATP) module, defined as the deterministic
high-level (H-L) planning component, acts as a strategic long hori-
zon planner coordinating multiple robots and reasons with tempo-
ral constraints and robot capabilities. Each robot is a decentralised
reinforcement learning (RL) agent, defined as the probabilistic low-
level (L-L) planning component, which adapts to unexpected events
and learns over time to improve reasoning capabilities. The second
contribution is the mapping of a temporal H-L problem to a set of
single-agent probabilistic L-L planning problems. The search spaces
of the single-agent planning problems are reduced by considering
only a subset of the state-action space of the MATP problem, which
in turn decreases the sample complexity of the RL algorithm. Ob-
servations from plan execution are used to inform H-L replanning
which manages mission safety and makespan—the plan execution
time. The two-tier approach significantly reduces the search space
on both levels, decreasing the computational cost and enabling
online planning and execution.

2 RELATEDWORK
Temporal planners such as [16, 21, 23] can solve MATP problems
but suffer from scalability issues. More recent work [1, 8–11, 30]
improves scalability. Carreno et al. [9] enhance the quality of MATP
solutions, but only consider deterministic domains. Prior work
dealing with multi-agent planning and uncertainty [4, 26, 39] does
not consider multi-agent coordination and temporal constraints.

Next, we consider work which combines probabilistic planning
and temporal planning. Our approach extends Schillinger et al. [33]
work by temporally constraining actions and goals, and relaxing the
requirement of holding a complete and accurate model. Bernardini
et al. [2] combine methods for the probabilistic motion of a target
with temporal planning. We consider uncertainty in outcomes of
task-level actions rather than in motion. In terms of probabilistic
dynamics and temporal uncertainty [35, 42], we address the uncer-
tainty by learning action durations from observations. Little et al.
[27], Foss and Onder [18] and Bradley et al. [3] present approaches
focusing on single-agent problems. Zhang et al. [42] focus on com-
plete decoupled missions while we are interested in coordinated
goals. Weld [37] describes a planner that handles concurrent, dura-
tive, and probabilistic activities; however, its performance is limited
in problems that require coordination.

Multi-agent RL (MARL) algorithms learn in the shared state-
action spaces of all agents [41] which are often prohibitively large
and do not scale well. An example of MARL complexity is the
work of Xinyi et al. [38]. Our approach achieves less expensive data
collection by decoupling MATP and goal allocation from single-
agent planning and learning. Our work extends the ideas in [7, 13]
to solve highly coupled problems with temporal requirements. Our
work uses a single-agent model-based RL method which has a lower
sample complexity than model-free methods [5, 14, 17].

3 PRELIMINARIES
The H-L component is modelled as a temporal planning problem
P𝑡 using the Planning Domain Definition Language (PDDL) [29]

version 2.1 [19]. The solution for the MATP problem decouples the
goal allocation from planning.

Definition 1. The tuple P𝑡 := ⟨P,V,A,I,G,T⟩ represents a
temporal planning problem where P is a set of atomic propositions;V
is a set of numeric variables;A is a set of instantaneous and durative
actions where each action 𝑎 ∈ A is a tuple ⟨𝑎pre, 𝑎eff , 𝑎dur ⟩, 𝑎pre is a
set of conditions that must hold for the action to be applicable, 𝑎eff is
the set of action effects, and 𝑎dur is a set of duration constraints; I
(initial state) and G (set of goals) are respectively complete/partial
value assignment to P andV ; and T is a set of timed initial literals
(TILs) which defines the time 𝑡 at which a proposition 𝑝 ∈ P becomes
true/false and characterises a time window.

A timed initial literal (TIL) [12] is a pair (𝑡𝑖 , 𝑝𝑖) that defines the
time 𝑡𝑖 when a Boolean variable 𝑝𝑖 ∈ P becomes true. Similarly, a
TIL (𝑡𝑖 ,¬𝑝𝑖) describes the time 𝑡𝑖 when 𝑝𝑖 becomes false (¬𝑝𝑖). The
solution Π𝑡 = {𝑎1 · · · , 𝑎𝑛} to P𝑡 is a time-aware plan described
by a sequence of durative and instantaneous actions, where each
action in the sequence is applicable, and Π𝑡 achieves the goals in
G satisfying the temporal constraints.

Definition 2. A goal allocation problem is defined by a tuple
GA := ⟨R,RC,G,GC,X⟩ where R is a set of agents; RC is a set of
agents’ capabilities; G is a set of goals; GC is a set of capabilities
required to implement the goals; and X is a set of coordinates for
locations of interest, which represent an abstraction of the world.

A capability set C = {𝑐1, · · · , 𝑐𝑧 } associated with a robotics
problem describes an abstraction of the robot 𝑟𝑖 , where 𝑟𝑖 ∈ R,
considering the actions A and goals in G that 𝑟𝑖 can achieve based
on its sensors, actuators and intelligent software systems.

The L-L component uses a model-based reinforcement learn-
ing (MBRL) method to train a policy for a single-agent problem,
modelled as a MDP using the Relational Dynamic Influence Dia-
gram Language (RDDL) [32]. In contrast to PDDL, RDDL allows
the modelling of probabilistic action outcomes.

Definition 3. MDPs model fully-observable problems with un-
certainty. A finite-horizon MDP is a tuple ⟨𝑆,𝐴,𝑇 , 𝑅, 𝑠0, 𝐻,𝛾⟩ where
𝑆 is a set of states, 𝐴 is the set of actions, 𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] is
the transition function, 𝑅 : 𝑆 ×𝐴→ R specifies rewards for perform-
ing actions, 𝑠0 is the initial state, 𝐻 is the time horizon, and 𝛾 is the
discount factor.

We consider uncertainty in the L-L problem which is modelled as a
MDP. In complex domains, the true models (i.e., 𝑇 and 𝑅) are often
not known. Thus, probabilistic planners are not feasible. Instead,
we use MBRL to learn a Q-function which estimates the expected
values, or Q-values, of executing actions in states. This does not
require the true model. The agent follows a greedy policy which
selects an action with the maximal Q-value.

4 PROBLEM MODEL
In this section, we describe the H-L and L-L domains1, the mapping
from an H-L domain (problem) to an L-L domain (problem), and
the decomposition of an H-L plan to a set of L-L plans. Here, we
model Example 1 as a planning problem.
1Domains and problems at https://github.com/YanielCarreno/bechmark-domains.git

Main Track AAMAS 2022, May 9–13, 2022, Online

218

https://github.com/YanielCarreno/bechmark-domains.git

High-Level (H-L) Domain. The H-L domain, modelled in PDDL,
incorporates predicates that describe the environment and robot
properties, including robot capabilities, availability, and possible
locations each robot can navigate to. For example, the predicate
robot_can_act(?r ?wp) constrains robot ?r to a set of locations ?wp
where it can be at. We use functions to represent a robot’s energy
and data resources, and distances between locations. For example,
distance_intime (?wpi ?wpf) defines the time robot ?r at ?wpi takes
to reach ?wpf. We have six durative H-L actions for a robot ?𝑟 : (i)
navigation (?r ?wpi ?wpf), ?r moves from location ?wpi to ?wpf ; (ii)
take_image (?r ?s ?wp), ?r captures an image of the location ?wpwith
its camera ?s; (iii) check_temperature (?r ?s ?wp), ?r measures the
temperature at location ?wp with its sensor ?s; (iv) valve_inspection
(?r ?s ?wp), ?r inspects the valve at location ?wp with its camera ?s;
(v) and manipulate_valve (?r1 ?r2 ?s1 ?s2 ?wp1 ?wp2), a husky ?r1’s
manipulator arm ?s1 turns the valve at location ?wp1 while a UAV
?r2 at location ?wp2 records the process with its camera ?s2.

Our application involves two types of robots, a husky and an UAV,
which have different sensors onboard. Thus, some PDDL actions
and predicates could apply to one type of robot and not the other.
The duration of the H-L actions is determined from data collected
in past experiments involving real robots. The H-L domain models
multiple robot behaviours and but does not consider probabilistic
outcomes due to actions.

Low-Level (L-L) Domain. The L-L domain models probabilistic
actions which allows reasoning over every probable outcome dur-
ing plan execution. Probabilistic outcomes are: (i) the loss of robot’s
localisation while navigating, (ii) the loss of robot’s camera cali-
bration, and (iii) the damage of a husky’s manipulator arm while
navigating. To model these probabilistic outcomes, we use RDDL
which cannot represent temporal aspects. Hence, we map the H-L
actions to non-durative L-L actions as shown in Figure 2. The L-L
actions which a robot ?𝑟 can execute are: (i) capture_image(?r ?poi),
?r takes an image of ?poi; (ii) locate_poi(?r ?poi), ?r search for ?poi
at its current location; (iii) inspect_poi(?r ?poi), a husky ?r inspects
the temperature, pressure, or valve, or a UAV ?r records a husky
manipulating the valve ?poi; (iv) localise(?r), ?r localises itself; (v)
goto_waypoint(?r ?wpi ?wpf), ?r navigates from location ?wpi to
?wpf ; (vi) manipulate_valve(?r ?poi), a husky ?r manipulates the
valve ?poi; (vii) repair_manipulator(?r), a husky ?r repairs its manipu-
lator arm, possibly with external aid; (viii) and calibrate_camera(?r),
?r calibrates its camera.

We introduce the actions localise, repair_manipulator, and cali-
brate_camera to handle unexpected events. An ill-calibrated cam-
era reduces the probability of success of inspect_poi and manipu-
late_valve, while a damaged manipulator arm reduces the proba-
bility of success of manipulate_valve. A robot can only calibrate
its camera or repair its manipulator arm at the base. If it loses
localisation, it cannot execute any other actions except localise.

We consider and model temporal elements of the H-L domain
in the L-L domain. First, the costs of L-L actions are the duration
of executing the actions. An RL algorithm which maximises the
expected return will therefore learn policies which minimise the
makespan. Second, joint goals are represented as predicates which
must be made true by the time instances as defined by the end time
of the H-L action manipulate_valve in the temporal plan. Robots

Figure 2: Mapping from an H-L action for a husky and UAV
to a sequence of L-L actions. More than one H-L action can
be mapped to an L-L action using different grounding.

H-L plan L-L plan for husky-2 L-L plan for uav-1

Time: Action [Duration] Action Action
0.0: nav(h2 ...) [166.4] loc(h2) loc(uav-1)
0.0: nav(h1 ...) [115.2] goto_wp(h2 wpg1 wpg52) goto_wp(uav-1 wpa0 wpa35)

0.0: nav(uav-1 ...) [111.5] loc_poi(h2 pressure_wpg52) ...
... ... loc_poi(uav-1 valve_wpa35)

166.4: check_press(h2 ...) [20.0] goto_wp(h2 wpg52 wpg35) inspect_poi(uav-1 valve_wpa35)
268.0: valve_inspection(h2 ...) [50.0]man_valve(h2 valve_wpg35)
318.0: man_valve(h2 uav-1 ...) [30.0]

Table 1: A fragment of an H-L temporal plan for uav-1,
husky-1 (h2), and husky-2 (h2). Fragments of the L-L plans
mapped from the H-L temporal plan for husky-2 and uav-1.

fail to achieve a joint goal if the mission time exceeds the start time
of the joint goal. A joint goal of manipulating a valve is achieved
when a husky executes manipulate_valve and a UAV executes in-
spect_poi concurrently. Either robot can execute the joint action
before the start time of the joint goal. When this happens, the robot
simply idles till the start time. Planning (or replanning) at the H-L
is required to coordinate robots to achieve a joint goal.

Mapping betweenH-L and L-L Representations. The L-L prob-
lems and L-L plans are mapped from the H-L problem and temporal
plan. By using only objects which are relevant to each robot, the
state-action space for an agent is reduced which decreases the
sample and computational complexities of MBRL.

Definition 4. An object is relevant for a L-L problem if it is in
the initial state of the robot, is associated with the goals allocated to
the robot, or is associated with an action in the L-L plan.

We illustrate the mapping from a temporal plan for an H-L prob-
lem used in our experiments (see Section 6) to L-L plans. To generate
the L-L plan for husky-2, we extract H-L actions from the temporal
plan which involve husky-2. Each of these H-L actions is mapped to
L-L actions following the schema shown in Figure 2. For example,
the navigation action is mapped to localise and goto_waypoint if
the robot is not localised in the initial state, and subsequent navi-
gation actions are mapped to goto_waypoint. This low-level detail
is abstracted in the H-L domain but is important in the L-L domain
as the actions relate to different actuation commands.

A fragment of an H-L plan and fragments of the associated L-
L plans are presented in Table 1 (action names and parameters
are abbreviated in the table). The goal of manipulating the valve
valve_wpg35 is a joint goal implemented by uav-1 and husky-2 (h2).

Main Track AAMAS 2022, May 9–13, 2022, Online

219

Figure 3: TPMACU framework for planning, acting, moni-
toring, and replanning. The H-L component deals with tem-
poral and multi-agent planning while the L-L component
deals with online learning and single-agent planning.

The actions which achieve this joint goal are highlighted in blue
in Table 1. The H-L joint action manipulate_valve achieves this
joint goal and requires the coordination of uav-1 and h2. This H-L
action is mapped to two different L-L actions. Both robots have
to execute their L-L actions by the mission time of 𝑡 = 318. Thus,
a joint goal has a time constraint which is modelled in the L-L
problem representation. If one of the robots attempts to achieve the
joint goal before 𝑡 , it will have to wait for the other robot. If either
robot did not attempt the joint goal (by executing their respective
L-L actions) by 𝑡 , the joint goal can no longer be achieved until
H-L replanning is done. Both robots will adapt to the situation by
abandoning their L-L plans and follow their L-L policies instead. A
L-L policy maps a state to an action. We describe the generation of
L-L policies in Section 5. Mapping from L-L to H-L is required to
update the H-L problem for H-L replanning. The H-L problem is
updated to reflect changes in knowledge on the action durations,
dynamics of the environment, and robot capabilities. Details are
presented in Section 5.

5 FRAMEWORK IMPLEMENTATION
This section describes the algorithms for plan generation, execution,
and adaptation at the H-L and L-L. Temporal planners generate
plans which distribute the goals over multiple agents and min-
imise the makespan. However, the goal allocation quality is often
relatively poor [9]. We address this issue by decoupling goal allo-
cation from temporal planning. Next, we introduce a model-based
reinforcement learning (MBRL) algorithm which deals with proba-
bilistic dynamics. We use a H-L domain for temporal planning and
a L-L domain for MBRL.

TPMACU Framework. Figure 3 illustrates our TPMACU frame-
work which integrates the Multi-Role Goal Allocator* (MRGA*) al-
gorithm (see Algorithm 1), temporal planning, and MBRL algorithm
(see Algorithm 2). TPMACU performs planning, plan execution,
replanning, and learning in an integrated cycle where observations
from plan execution are used to improve planning performance. A
MATP problem is decomposed into several single-agent probabilis-
tic planning problems, reducing computational costs by avoiding
planning in the combinatorial state space representing both tempo-
ral constraints and probabilistic dynamics.

We provide an overview of TPMACU here. Firstly, MRGA* aug-
ments the MATP problem with information about goal allocation.
The augmented problem is given to the temporal planner which
synthesises a multi-robot plan. Secondly, the H-L domain, problem,
and plan are mapped to L-L domains, problems, and plans. We
assume that the true probabilistic dynamics of the environment
are unknown and rely on approximate (i.e., partially correct and
incomplete) models. The models are generative; given a state-action
pair (𝑠, 𝑎), it predicts the successor state (𝑠 ′) and immediate reward
(𝑟). Thirdly, each robot will execute its L-L plan. Unexpected events
could render the L-L plan inapplicable (i.e., the precondition of the
action suggested by the L-L plan is not satisfied in the current state).
Replanning at the H-L is impractical; if a robot requests replanning
at the H-L while another robot is performing an inspection, this
forces the latter to abort the inspection. Therefore, the robot acts
according to a greedy policy generated from the Q-function, or its
L-L policy. The Q-function is trained with imagined observations
(𝑠, 𝑎, 𝑟, 𝑠 ′) produced by the generative model. Each robot adapts to
unexpected events and attempts to achieve its allocated goals within
the makespan of the H-L plan. Lastly, the observations acquired
during plan execution are used to improve the L-L domains and
update the actions’ expected duration. At the end of the mission,
robots feed back observations to the High-Level Mission Advisor
(HLMA). When feedback from every robot is received, HLMA up-
dates MRGA* on the robots’ capabilities, observed action durations,
and status of goals (completed or not). If there are unsatisfied goals,
MRGA* reallocates these goals to the robots and the cycle repeats.

Goal Allocation and Coordinated Actions. Our goal allocation
approach, MRGA*, extends the MRGA [9] strategy to address prob-
lems where collaborative and coordinated actions are required to
achieve goals by recognising goal dependency. Algorithm 1 de-
scribes MRGA* (our extensions are highlighted in blue). The inputs
are a goal allocation problem GA (see Definition 2), sensor redun-
dancy S𝑒 , andM𝑟

𝑚 , the set of cumulative makespan (initialised to
0) for each robot 𝑟 which includes the time required (M𝐺𝑜𝑎𝑙) to
achieve a goal and the time history of the goals achieved by a robot
𝑟 . A goal could require a robot or multiple robots to achieve. In
the first step (line 2), the goals each robot can achieve are identi-
fied based on the robot capabilities and goal requirements. Next,
the dependency between goals in G are determined (line 3) and
embedded intoW∗. Therefore, each dependency 𝑤 ∈ W∗ is an
ordered subset of G. For example, a robot husky-1 (see Figure 1,
right) needs to navigate to the location wp2 (𝑔2), pick up a tool
(𝑔3), then navigate (𝑔4) to wp20 to manipulate a valve (𝑔1). The
dependency𝑤 is the order 𝑔2 ≺ 𝑔3 ≺ 𝑔4 ≺ 𝑔1.

Next, we initialise a set of parameters for each dependency𝑤 ∈
W∗ (line 4), including the goals’ order and the first goal in𝑤 (line
5), the total makespan of achieving𝑤 ,M𝐺𝑜𝑎𝑙 (line 6), and the set of
capabilities required to achieve𝑤 (line 7). G is updated by denoting
the goals with dependency by the name of the first goal in𝑤 (line
8). The first goal in each𝑤 has a makespan that denotes the time
required to achieve all goals in 𝑤 . Next, goals in G are clustered
into regions (line 9); C𝑠𝑜𝑙 is a set of generated clusters, GR𝑠𝑜𝑙 is the
set of goals each robot can achieve in each cluster, and JG ⊂ W∗
is the set of goals with dependency that cannot be achieved by
a single robot. MRGA* assigns robots to regions considering the

Main Track AAMAS 2022, May 9–13, 2022, Online

220

number of goals the robots can achieve in the region (line 10-11).
At most one robot assigned to each region. The goal in the robot’s
region with the closest proximity to the robot is allocated to it (line
12-13). The initial set of allocated goals GAINIT is assigned to the
final goal allocation set GAFINAL (line 14). When a goal associated
with a dependency𝑤 is allocated to the robot, the remaining goals
in𝑤 are also allocated to it.

MRGA* allocates the remaining goals in G to robots such that
the cost of achieving each goal is minimised (line 15-23). If a goal
𝑔 is in JG, MRGA* finds the best robots (Rset) to achieve 𝑔 (line
18). The accumulated makespan for each robot is used to find the
maximum makespan (line 19). The accumulated makespanM𝑟

𝑚

considers the time associated with the goals that were allocated
to the robots in the set in previous iterations. In this iteration, we
addM𝑟

𝑚 to the cost of implementing 𝑔 which isM𝐺𝑜𝑎𝑙 =M𝑤
W∗ .

Having the newM𝑟
𝑚 , we calculate the cost of implementing the

goal 𝑔 which is saved in the 𝑏 set (line 20). If the goal is not in JG
(line 21), the goal or the set of goals with dependencies that require
a robot to solve the problem is evaluated to find 𝑏 (line 22-23). 𝑏 is
calculated consideringM𝑟

𝑚 , X, and the redundancy of the sensory
system. The goal is allocated to the robot with the lowest bid (line
24). This process is repeated until all goals are allocated. In every
iteration we evaluate all remaining goals and robots to find the
lowest bid. If the lowest bid is associated with a goal 𝑔 ∈ JG, 𝑔
is allocated to all robots in Rset and theirM𝑟

𝑚 are updated. The
goal allocation is transformed into PDDL instances of the predicate
(robot_can_act ?r - robot ?wp - poi) (line 25) which are included in
the H-L problem (see Section 4).

Temporal Planning. The H-L domain, H-L problem, and the infor-
mation provided by MRGA* are given inputs to a temporal planner
to generate the temporal plan or H-L plan. We use the OPTIC [1]
planner for temporal planning. The H-L plan specifies the actions
each robot executes at a time instance. The H-L plan is decomposed
into individual plans for each robot which are then mapped to L-L
plans. A L-L plan is given as input to our MBRL method.

Online Planning, Execution, and Learning.During plan execu-
tion of the L-L plan, an unexpected event could invalidate the plan
which necessitates replanning. For example, the robot’s manipula-
tor arm might be damaged forcing the robot to return to the base
for repairs. This leads to two consequences. Firstly, the robot is now
at the base and could be farther away from the goals it has been al-
located. Secondly, joint goals which require the coordination of the
robot cannot be achieved unless the repair is done. We propose to
replan at the L-L where every robot is capable of online replanning.
The robot deliberates over whether it should return to the base to
repair its manipulator arm. This might be undesirable if the mission
time exceeds the start time of a joint goal after the repair. However,
if the probability of success with a damaged manipulator arm is low,
then the robot might focus on completing other goals which does
not require manipulation. Alternatively, it could choose to prioritise
joint goals. A probabilistic planner is unable to reason about these
as it requires the true model; we assume only an incomplete and
deterministic model is available initially. Hence, we use a MBRL
approach to learn a policy given observations. MBRL methods have
a lower sample complexity than model-free methods [15] and are
more suited to applications where data collection is expensive.

Algorithm 1: MRGA*
Inputs: (GA , S𝑒 ,M𝑟

𝑚)
1 begin
2 K ←ANALYSER(G, R, RC, GC)
3 W∗ ← find_dependency(G)
4 for each ordered w ∈ W∗ do
5 F𝑤W∗ ←extract_first_goal (G,w)
6 M𝑤

W∗ ← calculate_total_makespan(G, R, 𝑤, X)
7 Creq𝑤W∗ ← check_capability_requirement (G, R,w)
8 G ←update_goal (G, F𝑤W∗ ,W

∗)
9 [C𝑠𝑜𝑙 , GR𝑠𝑜𝑙 , JG] = cluster_cal

(
G, R, X,K, Creq𝑤W∗

)
10 𝑘 = weight_calculation(C𝑠𝑜𝑙 , GR𝑠𝑜𝑙)
11 RAINIT =𝑚𝑎𝑥

{
𝑘 }

12 regions_distance_evaluation(RAINIT , X, C𝑠𝑜𝑙)
13 allocate_first_goal(GAINIT ← G)
14 GAFINAL (G, R) ← GAINIT
15 while not G.update(GAINIT) ← ∅ do
16 for 𝑔 ∈ G do
17 if 𝑔 ∈ JG then
18 Rset ← find_required_robots(R, 𝑔, Creq𝑤W∗)
19 M𝑟

𝑚 ← find_maximum_makespan(Rset ,M𝑟
𝑚)

20 𝑏 = allocate_goal(Rset , 𝑔, S𝑒 ,M𝑟
𝑚, X,W∗)

21 else
22 for 𝑟 ∈ R do
23 𝑏 = allocate_goal(𝑟, 𝑔, S𝑒 ,M𝑟

𝑚, X,W∗)

24 GAFINAL (G, R) ← findMin(b)

25 return transformPDDL
(
GAFINAL

)

Algorithm 2 describes our MBRL method. It takes as input a
generative model (M), a problem (𝑃), goals (𝐺) and joint goals
(JG) allocated to the robot, an L-L plan (𝐴) which is mapped
from the H-L plan given by the temporal planner, the rollout hori-
zon (𝐻𝑟𝑜𝑙𝑙𝑜𝑢𝑡), the maximum allowable makespan (𝐻𝑚𝑘), and the
number of rollouts (𝑁𝑟𝑜𝑙𝑙𝑜𝑢𝑡). The problem 𝑃 is represented as an
MDP ⟨𝑆,𝐴,𝑇 , 𝑅, 𝑠0, 𝐻,𝛾, 𝑡⟩ with a continuous time dimension 𝑡 for
mission time. The transition function 𝑇 is unknown. We start by
training a Q-function 𝑄𝜃 (line 8) with imagined observations gen-
erated usingM which predicts the successor state (𝑠𝑖), reward (𝑟𝑡),
and execution duration (Δ𝑡) (lines 3-8). This process is similar to
Dyna [34]. The length of each rollout, or the number of successive
simulated steps from the initial state, is at most 𝐻𝑟𝑜𝑙𝑙𝑜𝑢𝑡 (less than
𝐻𝑟𝑜𝑙𝑙𝑜𝑢𝑡 if a terminal state is reached). During simulation training,
actions are selected with an epsilon-greedy policy, 𝜋𝑒𝑝𝑠 (line 6).
The reward (or cost) of executing an action is −Δ𝑡 , and a reward of
+100 is given for each goal achieved while no reward is given for
achieving a joint goal after its start time (or its time constraint).𝑄𝜃

is approximated as a linear function of the weight vector 𝜃 and a set
of basis functions F . The basis function is represented by features
which are conjunctive predicates which maps a state to a lower
dimension. The initial set of features comprises of every state pred-
icate and its negation. New features, which are conjunctions of any
two existing features, are added incrementally using iFDD+ [20], an
online feature discovery algorithm. The weight vector is updated
with Double Q-learning [22] (line 8). The simulation training is
computationally expensive but can be done offline.

After simulation training, the robot executes the plan 𝐴 sequen-
tially (line 12). If an unexpected outcome occurs which renders the
next action in 𝐴 to be inapplicable (line 13), the robot then follows

Main Track AAMAS 2022, May 9–13, 2022, Online

221

Algorithm 2: MBRL
Inputs: (M, 𝑃,𝐺, JG, 𝐴,𝐻𝑟𝑜𝑙𝑙𝑜𝑢𝑡 , 𝐻𝑚𝑘 , 𝑁𝑟𝑜𝑙𝑙𝑜𝑢𝑡)

1 begin
2 𝜃 ← 0, F ← initialise_features(M, 𝑃)
3 for 1 to 𝑁𝑟𝑜𝑙𝑙𝑜𝑢𝑡 do
4 𝑡 = 0, Δ𝑡 = 0
5 for i = 1 to 𝐻𝑟𝑜𝑙𝑙𝑜𝑢𝑡 do
6 𝑎𝑖−1 ← 𝜋𝑒𝑝𝑠

(
𝑠𝑖−1

)
7 𝑠𝑖 , 𝑟𝑖 ,Δ𝑡 ← imagine

(
M, JG,𝐺, 𝑠𝑖−1, 𝑎𝑖−1, 𝑡 + Δ𝑡

)
8 F, 𝜃 ← update(F, 𝜃, 𝑠𝑖−1, 𝑎𝑖−1, 𝑟𝑖 , 𝑠𝑖)

9 𝑡 = 0, 𝐹𝑜𝑙𝑙𝑜𝑤 = ⊤
10 for i = 1 to 𝐻 do
11 if Follow then
12 𝑎 ← follow_plan(𝐴)
13 if 𝑎 is not applicable in 𝑠𝑖−1 then 𝐹𝑜𝑙𝑙𝑜𝑤 = ⊥
14 if ¬ Follow then 𝑎 ← 𝜋𝑔𝑟𝑒𝑒𝑑𝑦

(
𝑠𝑖−1

)
15 𝑠𝑖 ,Δ𝑡 ← execute(𝑠𝑖−1, 𝑎), 𝑡 ← 𝑡 + Δ𝑡
16 M ← update_model(M, 𝑠𝑖−1, 𝑎, 𝑠𝑖 ,Δ𝑡)
17 if all goals achieved or 𝑡 ≥ 𝐻𝑚𝑘 then return (M, 𝑠𝑖 , 𝑡)

18 return (M, 𝑠𝐻 , 𝑡)

a greedy policy 𝜋𝑔𝑟𝑒𝑒𝑑𝑦 generated by 𝑄𝜃 (line 14). Exploitation is
desired for safety reasons and because 𝑄𝜃 is updated only during
simulation training. We do not perform online learning for 𝑄𝜃 as
the number of real observations is typically much smaller than
𝑁𝑟𝑜𝑙𝑙𝑜𝑢𝑡 ×𝐻𝑟𝑜𝑙𝑙𝑜𝑢𝑡 , the number of imagined observations. A policy
maps each state to an action while a plan maps a sequence of states
to actions. In addition, our policy is computed offline. Thus, our
approach incurs a lower computational cost during plan execution
than probabilistic planning and enables fast decision-making [6].
Since the policy is trained withM which is often an approximation
of the true model, the policy could be suboptimal or unsound in
regions of the state spaces whereM is a poor predictor. This is
an issue known as distribution shift. Recent works have proposed
solutions to deal with this [24, 36, 40]. A plausible solution is to ter-
minate the mission when a state that is not seen during simulation
training is visited.

The action is executed (line 15) and the resulting observation is
used to updateM (line 16) which could then generatemore accurate
imagined observations. We use the model learner from [28] to learn
first-order rules for the transition function and translate the rules
to RDDL syntax. The current state and mission time are inputs to
the temporal planner for H-L replanning, if necessary. The mission
is terminated (line 17) if (1) there are no remaining goals, or (2) the
mission time exceeds 𝐻𝑚𝑘 . H-L replanning is done only after all
robots have completed or terminated their missions.

High-Level Mission Advisor (HLMA). The High-Level Mission
Advisor (HLMA) acts as a bridge between MBRL and H-L. This is
detailed in Algorithm 3 where R is the set of robots, Π𝑡 is the H-L
plan, RL is a set of advice from MBRL, and RC is the set of robots’
capabilities. We consider the feedback from MBRL to update the
H-L problem. An advice 𝜗 ∈ RL associated with a robot 𝑟 ∈ R is
appended to Ξ as a pair ⟨𝑟, 𝜗⟩ (lines 2-5). This process ends when all
robots are evaluated and all advice are considered (lines 2-5). The H-
L problem is updated to consider the robots’ current locations (line
6), the expected duration to achieve a goal (line 7), and the remaining
unachieved goals (line 8).MGoal is the duration of actions which

Algorithm 3: HLMA
Inputs: (R,Π𝑡 , RL, RC)

1 begin
2 for 𝑟 ∈ R do
3 𝜗 ←acquired_modification(|RL |, 𝑟)
4 Ξ←append_modification(𝜗 ,𝑟)
5 RL.update(|RL |, 𝜗)
6 X ← modify_robot_location(R,Ξ)
7 MGoal ←modify_action_duration(R,Ξ)
8 G ← modify_goal(R,Ξ)
9 KK ← repair_time(R,Ξ)

10 if contain_information(G) then
11 RC ← modify_capability(RC,MGoal ,KK,Π𝑡)

12 return (X,MGoal , G,KK, RC)

achieve a goal (line 7). For example, in our domain, the duration of
take_image is defined by the function (take_image_dur). If an advice
in Ξ changes the duration of take_image, this updated duration is
appended to MGoal . KK is the additional duration required to
calibrate the robot’s camera or repair its manipulator arm (line
9). This duration is included in the time required to achieve any
remaining goal. In cases where the robots fail to achieve goals,
HLMA evaluates the robots’ capabilities RC (lines 10-11) using
the equation E = argMIN{

∑
𝑟𝑖 ∈R′ cost (𝜋𝑡𝑖 ,MGoal,KK,G)}, where

R ′ ⊂ R are robots with the capabilities required to achieve the
goals in G, and 𝜋𝑡𝑖 is the subsequence of the H-L plan Π𝑡 that
encloses the actions associated with the robot 𝑟𝑖 . The approach
evaluates the duration required by each robot to achieve the goals.
For the robot associated with the failure, HLMA adds to its plan’s
makespan the repair time in KK . The other robots include the
time required to achieve the goal. HLMA finds the best robot(s) to
achieve the goals. If the robot associated with the failure does not
obtain the plan with the minimum E, the capability associated with
the goal is removed from its capability set.

Example 2. (From L-L to H-L) HLMA improves the plan’s quality
by applying the information learned by individual robots during
plan execution. Considering Example 1 (see Figure 1), the tasks in
an initial H-L plan (Plan-A) are distributed amongst a fleet of three
robots. A husky robot (h-1) fails the manipulation task which requires
coordination with uav-1 in charge of supervising the task execution.
Assuming the remaining goals are achieved, replanning is required
for the joint goal. HLMA reasons about the additional time required
for h-1 to return to the base for repairs, which is predicted byM,
to advise MRGA* on the reallocation of goals. In Plan-B, the goal is
reallocated to h-2 as a consequence of HLMA’s advice (i.e., the time
incurred to repair h-1 is larger than that of having h-2 achieve the
goal).

Complexity Analysis.We consider Theorem 12 (polynomial re-
duction to classical planning) in [31] to claim PSPACE-completeness
in MATP problems. MRGA* prunes the search space by constrain-
ing the number of agents considered to achieve goals. Next, the
sample complexity of many RL algorithms depends polynomially
on the size of the state space [25]. MARL algorithms suffers from
poor scalability as they learn in the joint state and action spaces
which scale exponentially with the number of agents. The joint
action space for a multi-agent problem with 𝑘 agents is

∏𝑘
𝑖=1 |𝐴𝑖 |

Main Track AAMAS 2022, May 9–13, 2022, Online

222

where 𝐴𝑖 is the action space for the 𝑖-th agent. We decompose the
MATP problem into single-agent problems and include only rel-
evant objects in the single-agent problems. This reduces the size
of the state-action space further. As an illustration, the size of the
state space for a single agent is 2 |P | where P is the set of predicates
ground over the set of objects 𝑂 . A lifted predicate with an arity
of 𝑛 can be grounded to

∏𝑛
𝑖=1 |𝑂𝑖 | ground predicates where |𝑂𝑖 | is

the number of objects of the same type as the 𝑖-th argument of the
predicate. The number of actions relate to the number of predicates
in the same manner.

6 EXPERIMENTS AND RESULTS
We evaluate our work with a mission: husky-1, husky-2 and uav-1
are tasked with checking the temperature at a poi, checking the
pressure at another poi, taking images of two other poi, and manip-
ulating two valves. These six H-L goals are mapped to eight L-L
goals. The manipulation of a valve is a joint goal which requires
the coordination of a husky and a UAV to achieve. This is mapped
to two L-L goals, one for the husky and one for the UAV. While our
mission involves only three robots, our method does not have sig-
nificant scalability issues because (1) MRGA* simplifies the MATP
problem for a temporal planner by performing goal allocation in
its place, and (2) MBRL handles single-agent problems and are not
susceptible to the exponential increase in the size of the joint state
and action space inherent in MARL algorithms. Problems which
are challenging for our method possess a high goals-to-robots ratio
(i.e., limited resources available to achieve the goals) rather than
a large number of robots. In view of this, we posit a mission with
eight goals for three robots is sufficient to provide some interesting
empirical insights on our work.

We conducted simulated experiments using RDDLSim [32] as
the simulator. We added normally-distributed noise to action dura-
tions (20% of its mean duration) which is not made known to our
algorithms. At the start, MRGA* allocates the goals to the robots.
Each husky is tasked with manipulating a valve which requires the
supervision of uav-1 (i.e., uav-1 has two temporally-dependent joint
goals since it cannot perform both at the same time). In addition,
uav-1 needs to take images of two poi and husky-2 needs to check
the temperature and pressure of two poi. The state-action spaces
of the L-L problems for uav-1, husky-1, and husky-2 are 236 × 45,
212 × 12, and 229 × 41, respectively. The joint state space is 2167 and
the joint action space is 170× 1732. The significant reduction in the
state-action space demonstrates the essential step of decomposition
that leads to only relevant objects for each robot being considered.
Consider a hypothetical mission where the number of objects are
doubled (i.e., four huskies, two UAVs, four valves, etc.) and the goals
allocated to uav-1, husky-1, and husky-2 remain the same as before.
The state-action spaces for their L-L problems remain unchanged.
Conversely, the joint state space is 2454 and the joint action space
is 6262 × 6314, which are exponentially larger.

We evaluate the utility of learning over time using MBRL. An L-L
policy is a greedy policy generated from the Q-function which is
learned during simulation training with an approximate model (see
Algorithm 2). The hyperparameters are 𝐻𝑟𝑜𝑙𝑙𝑜𝑢𝑡 = 30, 𝑁𝑟𝑜𝑙𝑙𝑜𝑢𝑡 =

1000, and 𝐻 = 40. We compare two possible scenarios: Scenario 1
where no observations are available and a deterministic model is

used, and Scenario 2where a learned probabilistic model is learned
from observations acquired from previous missions using the model
learner from [28]. Both models are approximate (i.e., partially cor-
rect and incomplete) though the true preconditions of L-L actions
are assumed to be known. As the deterministic model does not pre-
dict any probabilistic outcomes, it cannot predict states where the
robot loses localisation, its camera loses calibration, or its manipu-
lator arm is damaged. Therefore, these states are never encountered
in the simulation training and the L-L policy is suboptimal or even
unsound in these regions of the state space. On the other hand, the
learned model predicts all probabilistic outcomes, albeit with the
wrong probabilities.2

Since the environment is probabilistic, we simulated 100 inde-
pendent runs with different random seeds for each scenario. The
performances of both scenarios are shown in the table in Figure 4
and are measured by the number of goals completed/G (𝑇𝐶) and
the number of missions completed by following the L-L plan/total
number of missions (𝑀𝐶𝑃𝑙𝑎𝑛), or by following the L-L policy/total
number of missions (𝑀𝐶𝑃𝑜𝑙𝑖𝑐𝑦). A robot will only follow its L-L
policy after its L-L plan is invalidated. Thus,𝑀𝐶𝑃𝑜𝑙𝑖𝑐𝑦 is the num-
ber of additional goals achieved due to our framework rather than
aborting a robot’s mission when its L-L plan cannot be executed. A
robot’s mission is completed if all of its goals are completed. If no
unexpected events are encountered during plan execution, a robot
can complete all of its goals by executing its L-L plan. Otherwise, it
has to adapt by following its L-L policy.

Our empirical results show that the learned model leads to im-
proved performances. In general, the robots completed more mis-
sions and goals in Scenario 2 than in Scenario 1. Following the L-L
policy trained with the learned model, uav-1 completed 255 out of
400 goals (uav-1 is allocated 4 goals, and there are 100 missions), 10
goals more than the deterministic model. The largest performance
improvement due to the learned model is demonstrated in the re-
sults for husky-1 where husky-1 completed 22 missions out of 100
missions by following the L-L policy as compared to 11 missions
using the deterministic model. Due to the probabilistic nature of
the environment, only a small number of the missions are com-
pleted when the robots follow the L-L plan (𝑀𝐶𝑃𝑙𝑎𝑛). The utility
of adapting to unexpected events by switching to the L-L policy
is demonstrated by the relatively significant number of missions
completed by following the L-L policy (𝑀𝐶𝑃𝑜𝑙𝑖𝑐𝑦).

At the end of the missions, the robots feed back to HLMA. If at
least one goal is not completed, replanning at the H-L is required;
a new temporal plan and problem instance are produced which
are then mapped to a set of L-L problems. We do not reuse the L-L
policies from before as objects and goals have changed. Instead, we
train new L-L policies with simulation training using the approxi-
mate models again. Observations acquired in the previous mission
are insufficient to improve the model, thus we use the same models
as before.3 Scenario 2 generally outperforms Scenario 1 as more
goals are achieved in Scenario 2 than in Scenario 1. Unachieved
2The true model (resp. learned model) predicts the probability of the loss of camera
calibration is 0.08 (resp. 0.42) and the probability of damaging a manipulator arm is 0.05
(resp. 0.12). The probability of success for locate_poi, inspect_poi, and capture_image if
the camera is damaged is 0.2 (resp. 0.77, 0.69, 0.24, respectively). If the manipulator
arm is damaged, the probability of success for manipulate_valve is 0.2 (resp. 0.74).
3The number of observations in each mission is at most 𝐻 = 40. While observations
in 100 independent runs might be sufficient to improve the model, information is

Main Track AAMAS 2022, May 9–13, 2022, Online

223

Scenario Robot TC1 MCPlan
1 MCPolicy

1 %TC2 %MCPlan
2 %MCPolicy

2

1 uav-1 245/400 13/100 14/100 64 42 3
2 uav-1 255/400 25/100 12/100 81 46 19
1 husky-1 55/100 44/100 11/100 89 23 62
2 husky-1 66/100 44/100 22/100 88 23 55
1 husky-2 234/300 27/100 27/100 93 36 56
2 husky-2 252/300 34/100 28/100 97 43 52

Figure 4: Experiment 1 (left): Comparison in performance using Scenario 1 and Scenario 2 following𝑇𝐶,𝑀𝐶𝑃𝑙𝑎𝑛 and𝑀𝐶𝑃𝑜𝑙𝑖𝑐𝑦

metrics. The superscript 1 (2) denotes the results for missions before (after) the H-L replanning. Experiment 2 (centre):
Makespan for (1) planning and (2) replanning in Scenarios 1 and 2, respectively. Experiment 3 (right): Cumulative reallocation
of goals using a deterministic and a learned model for planning and replanning.

goals are typically joint goals. In other words, Scenario 2 has a
more significant proportion of goals which are joint goals. These
can be impossible to achieve if unexpected events occur (e.g., it
might not be possible for a husky to repair its arm and manipu-
late the valve in time). In Scenario 1 (Scenario 2), 21 (26) missions
were completed where all goals were achieved. Following H-L re-
planning, in Scenario 1 (Scenario 2), 34 (46) more missions were
completed. This leaves 45 (28) uncompleted missions (at least one
goal remains unachieved) with 74 (44) unachieved goals in Sce-
nario 1 (Scenario 2).4 This shows that our work could improve per-
formances over time even with an approximate model by updating
the generative model given new observations. That is, the deter-
ministic model (in Scenario-1) is updated to a probabilistic model
(Scenario-2). Furthermore, the absence of probabilistic reasoning,
due to the use of a deterministic model, in Scenario 1 causes the
performances to deteriorate. Some missions remain uncompleted
and require H-L replanning. We limit the duration of a mission to
𝐻 discrete steps and a makespan of 𝐻𝑚𝑘 . Our evaluation does not
consider the number of H-L replanning required to complete all
missions as we intend for H-L replanning (i.e., MRGA* and HLMA)
to improve the coordination of robots over time. For example, if
the duration of a mission is unbounded, then the mission can be
completed without H-L replanning but this does not imply a better
performance.

Figure 4 (centre) shows the statistics for the makespan for H-L
planning and replanning in both scenarios. In general, themakespans
in the replanning outcomes are longer. The advice from HLMA in-
fluences the reallocation of goals such that the risk of failure is
reduced during plan execution. The learned model experienced
the most considerable change as HLMA considers the probabili-
ties of unexpected outcomes. MRGA* is thus forced to reallocate
goals less optimally (i.e., trading off makespan for reduced risk).
However, this translates into a more significant number of mis-
sions completed for the learned model. Figure 4 (right) shows the
cumulative reallocation of goals in both scenarios for H-L plan-
ning and replanning. Here, the advice from HLMA influences the

not exchanged between the runs as they are independent and serve to give statistical
confidence in our results.
4The metrics are shown in percentages for missions after replanning because the
number of remaining goals is different which makes comparison of absolute numbers
between the two scenarios difficult.

number of goals that MRGA* reallocates. If HLMA provides advice,
the MRGA* executes the strategy considering robot positions and
new action durations. HLMA also reasons about the trade-off in
allocating a goal to a robot which needs to repair its manipulator
arm or calibrate its camera such that it can achieve a goal with
a high probability, versus assigning the goal to a fully-functional
robot that may be farther away from the goal. Based on this rea-
soning, HLMA advises MRGA* to retain the capability required to
achieve the goal. The number of goals which have to be reallocated
is reduced from H-L planning to H-L replanning. Our approach
optimises the goal distribution considering learned knowledge from
observations. Scenario 2 outperforms Scenario 1 in terms of the
number of reallocations required (the fewer the better) for planning
and replanning as a result of using a more accurate model. HLMA
allows the approach to reach the best possible plan in comparison to
the initial deterministic plan. Therefore, the number of reallocations
due to risk of failures, which is feed back by MBRL, is gradually
reduced over time. This explains the similarity of the results (3.2%
∼ 6.4%) for replanning in Scenario 2.

7 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a framework, TPMACU, which decouples
multi-goal allocation, MATP, and MBRL. This reduces the com-
putational cost and the search space considered by each of them
which improved scalability to large scale planning problems and
is also well-suited for online planning, adaptation, and execution.
MATP does not need to reason over all probable outcomes of ac-
tions while MBRL only deals with single-agent problems without
temporal constraints. To introduce robustness to uncertainty, feed-
back from MBRL advises the multi-goal allocation and MATP. We
demonstrated the applicability of our approach with a fleet of het-
erogeneous robots operating in an offshore energy platform. For
future work, different strategies for goal reallocation can be ex-
plored (e.g., when a robot is unlikely to complete a joint goal or a
severe unexpected outcome is encountered).

ACKNOWLEDGEMENTS
This work was supported by the ORCA Hub (https://www.orcahub.
org/), under EPSRC grant EP/R026173/1.

Main Track AAMAS 2022, May 9–13, 2022, Online

224

https://www.orcahub.org/
https://www.orcahub.org/

REFERENCES
[1] J Benton, Amanda Jane Coles, and Andrew Coles. 2012. Temporal Planning with

Preferences and Time-Dependent Continuous Costs. In ICAPS. 2–10.
[2] Sara Bernardini, Maria Fox, and Derek Long. 2017. Combining temporal planning

with probabilistic reasoning for autonomous surveillance missions. Autonomous
Robots 41, 1 (2017), 181–203.

[3] Christopher Bradley, Adam Pacheck, Gregory Stein, Sebastian Castro, Hadas
Kress-Gazit, and Nicholas Roy. 2021. Learning and Planning for Temporally
Extended Tasks in Unknown Environments. ICRA (2021).

[4] Michael Brenner and Bernhard Nebel. 2009. Continual planning and acting in
dynamic multiagent environments. Autonomous Agents and Multi-Agent Systems
19, 3 (2009), 297–331.

[5] Jacob Buckman, Danijar Hafner, George Tucker, Eugene Brevdo, and Honglak Lee.
2018. Sample-efficient reinforcement learning with stochastic ensemble value
expansion. In Advances in Neural Information Processing Systems. 8224–8234.

[6] Thiago Bueno, Leliane Barros, Denis Mauá, and Scott Sanner. 2019. Deep Reactive
Policies for Planning in Stochastic Nonlinear Domains. AAAI 33 (07 2019), 7530–
7537.

[7] Rafael C Cardoso and Rafael H Bordini. 2019. Decentralised Planning for Multi-
Agent Programming Platforms. In AAMAS. 799–818.

[8] Yaniel Carreno, Èric Pairet, Yvan Petillot, and Ronald P A Petrick. 2020. A
Decentralised Strategy for Heterogeneous AUV Missions via Goal Distribution
and Temporal Planning. In ICAPS, Vol. 30. 431–439.

[9] Yaniel Carreno, Èric Pairet, Yvan Petillot, and Ronald P A Petrick. 2020. Task
Allocation Strategy for Heterogeneous Robot Teams in Offshore Missions. In
AAMAS. 222–230.

[10] Amanda Jane Coles, Andrew Coles, Maria Fox, and Derek Long. 2010. Forward-
Chaining Partial-Order Planning. In ICAPS. 42–49.

[11] Amanda Jane Coles, Andrew I Coles, Maria Fox, and Derek Long. 2012. COLIN:
Planning with continuous linear numeric change. JAIR 44 (2012), 1–96.

[12] Stephen Cresswell and Alexandra Coddington. 2003. Planning with timed literals
and deadlines. In UK PlanSIG. 23–35.

[13] Matthew Crosby, Michael Rovatsos, and Ronald Petrick. 2013. Automated Agent
Decomposition for Classical Planning. In ICAPS. 46–54.

[14] Marc Deisenroth and Carl E Rasmussen. 2011. PILCO: A model-based and data-
efficient approach to policy search. In ICML. 465–472.

[15] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. 2013. A Survey on
Policy Search for Robotics. Vol. 2. Foundations and Trends®in Robotics. 1–142
pages.

[16] Patrick Eyerich, Robert Mattmüller, and Gabriele Röger. 2009. Using the context-
enhanced additive heuristic for temporal and numeric planning. In ICAPS.

[17] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML.

[18] Janae N Foss and Nilufer Onder. 2006. A Hill-Climbing Approach for Planning
with Temporal Uncertainty.. In FLAIRS. 868–870.

[19] Maria Fox and Derek Long. 2003. PDDL2.1: An extension to PDDL for expressing
temporal planning domains. JAIR 20 (2003), 61–124.

[20] Alborz Geramifard, Finale Doshi, Josh Redding, Nicholas Roy, and Jonathan How.
2011. Online Discovery of Feature Dependencies. In ICML. 881–888.

[21] Alfonso Gerevini and Derek Long. 2006. Preferences and soft constraints in
PDDL3. In Proceedings of ICAPS Workshop on Planning with Preferences and Soft
Constraints. 46–53.

[22] Hado van Hasselt, Arthur Guez, and David Silver. 2016. Deep Reinforcement
Learning with Double Q-Learning. In AAAI. 2094–2100.

[23] Chih-Wei Hsu and Benjamin W Wah. 2008. The SGPlan planning system in
IPC-6. In ICAPS.

[24] Michael Janner, Justin Fu, Marvin Zhang, and Sergey Levine. 2019. When to trust
your model: Model-based policy optimization. In Advances in Neural Information
Processing Systems. 12519–12530.

[25] Sham M. Kakade. 2003. On the sample complexity of reinforcement learning. Ph.D.
Dissertation. University College London.

[26] Thomas Keller and Patrick Eyerich. 2012. PROST: Probabilistic Planning Based
on UCT. In ICAPS.

[27] Iain Little, Douglas Aberdeen, and Sylvie Thiébaux. 2005. Prottle: A Probabilistic
Temporal Planner. In AAAI, Vol. 3. 1181–1186.

[28] David Martínez, Tony Ribeiro, Katsumi Inoue, Guillem Alenyà Ribas, and Carme
Torras. 2015. Learning probabilistic action models from interpretation transitions.
In ICLP. 1–14.

[29] Drew McDermott, Malik Ghallab, Adele Howe, Craig Knoblock, Ashwin Ram,
Manuela Veloso, Daniel Weld, and David Wilkins. 1998. PDDL – The Planning
Domain Definition Language (Version 1.2). Technical Report CVC TR-98-003/DCS
TR-1165. Yale Center for Computational Vision and Control.

[30] Masood Feyzbakhsh Rankooh and Gholamreza Ghassem-Sani. 2015. ITSAT: an
efficient sat-based temporal planner. Journal of Artificial Intelligence Research 53
(2015), 541–632.

[31] Jussi Rintanen. 2007. Complexity of Concurrent Temporal Planning. In ICAPS,
Vol. 7. 280–287.

[32] Scott Sanner. 2010. Relational dynamic influence diagram language (RDDL):
Language description. Unpublished manuscript. Australian National University
32 (2010), 27.

[33] P. Schillinger, M. Bürger, and D. V. Dimarogonas. 2018. Auctioning over Proba-
bilistic Options for Temporal Logic-Based Multi-Robot Cooperation Under Un-
certainty. In IEEE-ICRA. 7330–7337.

[34] Richard S Sutton, Csaba Szepesvári, Alborz Geramifard, and Michael H Bowling.
2008. Dyna-style planning with linear function approximation and prioritized
sweeping. In UAI.

[35] Ioannis Tsamardinos. 2002. A Probabilistic Approach to Robust Execution of
Temporal Plans with Uncertainty. In SETN.

[36] Yi Wan, Muhammad Zaheer, Adam White, Martha White, and Richard S Sutton.
2019. Planning with expectation models. In IJCAI. 3649–3655.

[37] Daniel S Weld. 2005. Concurrent probabilistic temporal planning. In ICAPS.
120–129.

[38] Zhao Xinyi, Zong Qun, Tian Bailing, Zhang Boyuan, and YouMing. 2019. Fast task
allocation for heterogeneous unmanned aerial vehicles through reinforcement
learning. Aerospace Science and Technology 92 (2019), 588 – 594.

[39] Sung Wook Yoon, Alan Fern, and Robert Givan. 2007. FF-Replan: A Baseline for
Probabilistic Planning.. In ICAPS, Vol. 7. 352–359.

[40] Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Zou, Sergey Levine,
Chelsea Finn, and Tengyu Ma. 2020. MOPO: Model-based Offline Policy Opti-
mization. arXiv preprint arXiv:2005.13239 (2020).

[41] Kaiqing Zhang, Zhuoran Yang, and Tamer Başar. 2019. Multi-agent reinforce-
ment learning: A selective overview of theories and algorithms. arXiv preprint
arXiv:1911.10635 (2019).

[42] Shiqi Zhang, Yuqian Jiang, Guni Sharon, and Peter Stone. 2017. Multirobot
Symbolic Planning under Temporal Uncertainty. In AAMAS. 501–510.

Main Track AAMAS 2022, May 9–13, 2022, Online

225

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Model
	5 Framework Implementation
	6 Experiments and Results
	7 Conclusions and Future Work
	References

