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ABSTRACT
Bayesian persuasion studies how an informed sender should par-

tially disclose information so as to influence the behavior of self-

interested receivers. In the last years, a growing attention has been

devoted to relaxing the assumption that the sender perfectly knows

receiver’s payoffs. The first crucial step towards such an achieve-

ment is to study settings where each receiver’s payoffs depend on

their unknown type, which is randomly determined by a known

finite-supported probability distribution. This begets considerable

computational challenges, as computing a sender-optimal signaling

scheme is inapproximable up to within any constant factor, even in

basic settings with a single receiver. In this work, we circumvent

this issue by leveraging ideas from mechanism design. In particular,

we introduce a type reporting step in which the receiver is asked to

report their type to the sender, after the latter has committed to a

menu defining a signaling scheme for each possible receiver’s type.

Surprisingly, we prove that, with a single receiver, the addition of

this type reporting stage makes the sender’s computational prob-

lem tractable. Then, we extend our Bayesian persuasion framework

with type reporting to settings with multiple receivers, focusing

on the widely-studied case of no inter-agent externalities and bi-

nary actions. In such setting, we show that it is possible to find a

sender-optimal solution in polynomial-time by means of the ellip-

soid method, given access to a suitable polynomial-time separation

oracle. This can be implemented for supermodular and anonymous

sender’s utility functions. As for the case of submodular sender’s

utility functions, we first approximately cast the sender’s problem

into a linearly-constrained mathematical program whose objective

function is the multi-linear extension of the sender’s utility. Then,

we show how to find in polynomial-time an approximate solution

to the program by means of a continuous greedy algorithm. This

provides a

(
1 − 1

e

)
-approximation to the problem, which is tight.
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1 INTRODUCTION
Bayesian persuasion [26] studies the problem faced by an informed

agent (the sender) trying to influence the behavior of other self-

interested agents (the receivers) via the partial disclosure of payoff-
relevant information. Agents’ payoffs are determined by the actions

played by the receivers and by an exogenous parameter represented

as a state of nature, which is drawn by a known prior probability dis-
tribution and observed by the sender only. The sender commits to a

public, randomized information-disclosure policy, which is custom-

arily called signaling scheme. In particular, it defines how the sender

should send private signals to the receivers, essentially deciding

“who gets to know what". These kinds of problems are ubiquitous in

applications such as auctions and online advertising [5, 6, 8, 17, 23],

voting [1, 11, 12, 15, 18], traffic routing [7, 14, 30], recommendation

systems [27], security [28, 33], and product marketing [3, 10].

In the classical Bayesian persuasion model by Kamenica and

Gentzkow [26], the sender perfectly knows the payoffs of the re-

ceivers. This assumption is unreasonable in practice. Recently, some

works tried to relax such an assumption. Castiglioni et al. [13] do

that by framing the problem in an online learning framework, fo-

cusing on the single-receiver setting. They study the problem in

which the sender repeatedly faces a receiver whose type during

each iteration is unknown and selected beforehand by an adversary.

They design no-regret learning algorithms under full-information

and partial-information feedback. However, these algorithms re-

quire exponential running time, since even the offline problem in

which the receiver’s type is randomly selected according to a known

finite-supported probability distribution is NP-hard to approximate

up to within any constant factor. Castiglioni et al. [16] consider the

problem with multiple receivers, focusing on the classical model

with binary actions and no-inter-agent-externalities [2, 3], where

each receiver’s payoffs depend only on their action and the state

of nature. In the restricted setting in which each receiver has a

constant number of possible types, they show that the problem is

intractable for supermodular and anonymous sender’s utilities and

design a no-

(
1 − 1

e

)
-regret polynomial-time algorithm for submod-

ular sender’s utilities. Let us remark that Castiglioni et al. [13] and

Castiglioni et al. [16] show that, in their respective settings, the de-

sign of polynomial-time no-regret algorithms is impossible due to

the NP-hardness of the underlining offline optimization problems

in which the distribution over types is known. Hence, the design

of efficient algorithms for the offline problem is the bottleneck to

the design of efficient online learning algorithms.

In this work, we show how to circumvent this problem by lever-

aging ideas from mechanism design. For the single-receiver setting,

we introduce a type reporting step in which the receiver is asked

to report their type to the sender, after the latter has committed
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to a menu defining a signaling scheme for each possible receiver’s

type. Moreover, we extend the framework to accommodate multiple

receivers with binary actions. In such setting, we take advantage of

the no-inter-agent-externalities assumption to design a type report-

ing step that is independent among the receivers. In particular, we

introduce a type reporting step for each receiver, in which they are

asked to report their type to the sender, after the latter has com-

mitted to a menu defining a marginal signaling scheme for each

possible receiver’s type. Then, the sender commits to a signaling

scheme that is consistent with all the marginal signaling schemes.

By the no-inter-agent-externalities assumption, receivers’ payoffs

do not depend on such a signaling scheme, and, thus, each receiver’s

decision problem in the type reporting step is well defined.

1.1 Original Contribution
In this work, we show that the introduction of a type reporting step

makes the sender computational problem tractable.

For the single-receiver case, our main result is to show the exis-

tence of an optimal menu of direct and persuasive signaling schemes.

In the classical model in which the sender perfectly knows the re-

ceiver’s payoffs, a signaling scheme is direct if signals represent

action recommendations, while it is persuasive if the receiver is

incentivized to follow recommendations. We extend this definition

to menus of signaling schemes. In particular, a menu is direct if the

signals used by all the signaling schemes are action recommenda-

tions, whereas it is persuasive if the receiver has an incentive to

follow action recommendations when they reported their true type.

By using this result, an optimal menu of signaling schemes can be

computed efficiently by a linear program (LP) of polynomial size.

In the multi-receiver setting, we focus on classes of sender’s util-

ity functions that are commonly studied in the literature, namely

supermodular, submodular, and anonymous functions [2, 3, 22, 32].
As in the single-receiver case, we show that there always exists an

optimal sender’s strategy using a menu of direct and persuasive

marginal signaling schemes for each receiver. This allows us to

show that an optimal sender’s strategy can be computed by solving

an LPwith polynomially-many constraints and exponentially-many

variables. This is possible in polynomial time by means of the ellip-
soid method, given access to a suitable polynomial-time separation

oracle. Such an oracle can be implemented for supermodular and

anonymous sender’s utility functions. In the submodular case, the

problem cannot be approximated within any factor better that 1− 1

e ,

since our problem generalizes the one without types, which is NP-
hard to approximate up to within any factor better than 1 − 1

e [3].

However, we provide a polynomial-time algorithm that provides

a tight

(
1 − 1

e

)
-approximation. To do so, we show how to build a

linearly-constrained mathematical program whose objective is the

multi-linear extension of the sender’s utility, having optimal value

arbitrary close to that of an optimal sender’s strategy. Moreover,

we show that, from a solution to this program, we can recover in

polynomial time a sender’s strategy having in expectation almost

the same utility as the optimal value of the program. Finally, we

show how to find in polynomial time an approximate solution to the

program by means of a continuous greedy algorithm. This provides

a

(
1 − 1

e

)
-approximation to the problem, which is tight.

1.2 Related Works
Most of the computational works on Bayesian persuasion study

models in which the sender knowns the receiver’s utility function

exactly. Dughmi and Xu [21] initiate these studies with the single-

receiver case, while Arieli and Babichenko [2] extend their work to

multiple receivers without inter-agent externalities, with a focus on

private signaling. In particular, they focus on settings with binary

actions for the receivers and a binary space of states of nature.

They provide a characterization of an optimal signaling scheme

in the case of supermodular, anonymous submodular, and super-

majority sender’s utility functions. Arieli and Babichenko [2] extend

this latter work by providing tight

(
1 − 1

e

)
-approximate signaling

schemes for monotone submodular sender’s utilities and showing

that an optimal private signaling scheme for anonymous utility

functions can be found efficiently. Dughmi and Xu [22] generalize

the previous model to settings with an arbitrary number of states

of nature. There are also some works focusing on public signaling

with no inter-agent externalities, see, e.g., [22] and [32].

A recent line of research relaxed the assumption that the sender

perfectly knows the receivers’ utilities. Castiglioni et al. [13] and

Castiglioni et al. [16] study online problems with a single receiver

and multiple receivers, respectively. Babichenko et al. [4] study a

game with a single receiver and binary actions in which the sender

does not know the receiver utility, focusing on the problem of

designing a signaling scheme that performs well for any possible

receiver’s utility function. Zu et al. [34] relax the perfect knowledge

assumption, assuming that the sender and the receiver do not know

the prior distribution over the states of nature. They study the prob-

lem of computing a sequence of persuasive signaling schemes that

achieve small regret with respect to an optimal signaling scheme

with knowledge of the prior distribution.

Our problem is also related to automated mechanism design [19,

24, 31]. The closest to our work is [20], which studies a mechanism

design problem between a mechanism designer and an agent. The

agent has a finite number of types and both the agent and the

mechanism designer have a utility function that depends on the

agent’s type and on an outcome that the designer chooses from a

finite set. Moreover, the mechanism designer can commit to a menu

specifying an outcome for each reported type. The mechanism

designer knows the receiver’s probability distribution over types

and their goal is to design an incentive compatible menu in order

to maximize their utility. The authors show that it is NP-hard to

design an optimal menu, while if the mechanism is allowed to use

randomization the problem can be solved in polynomial time.

2 FORMAL MODEL
We formally introduce the Bayesian persuasion framework with

type reporting that we study in the rest of this work. In particular,

in Subsection 2.1, we describe the model with a single receiver,

while in Subsection 2.2 we extend it to multi-receiver settings.

2.1 Model with a Single Receiver
The receiver has a finite set A := {ai }

ℓ
i=1

of ℓ available actions and

a type chosen from a finite set K := {ki }
m
i=1

ofm possible types. For

each typek ∈ K , the receiver’s payoff function isuk : A×Θ→ [0, 1],
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where Θ := {θi }
d
i=1

is a finite set of d states of nature. We denote

by ukθ (a) ∈ [0, 1] the payoff obtained by the receiver of type k ∈ K

when the state of nature is θ ∈ Θ and they play action a ∈ A. The
sender’s payoffs are described by the functions usθ : A → [0, 1]
for θ ∈ Θ. As it is customary in Bayesian persuasion, we assume

that the state of nature is drawn from a common prior distribution

µ ∈ int(∆Θ), which is explicitly known to both the sender and

the receiver.
1
The sender commits to a signaling scheme ϕ, which

is a randomized mapping from states of nature to signals for the
receiver. Formally, ϕ : Θ→ ∆S , where S is a set of available signals.

For convenience, we let ϕθ be the probability distribution employed

by the sender to draw signals when the state of nature is θ ∈ Θ
and we denote by ϕθ (s) the probability of sending signal s ∈ S .
Moreover, we slightly abuse the notation and use ϕ to also denote

the probability distribution over signals induced by the signaling

scheme ϕ and the prior distribution µ.
In the classical Bayesian persuasion framework by Kamenica

and Gentzkow [26] (without type reporting), the interaction be-

tween the sender and the receiver goes on as follows: (i) the sender

commits to a signaling scheme ϕ and the receiver is informed about

it; (ii) the sender observes the realized state of nature θ ∼ µ; (iii)
the sender draws a signal s ∈ S according to ϕθ and communicates

it to the receiver; (iv) the receiver observes s and rationally updates

their prior belief over Θ according to the Bayes rule; (v) the receiver
selects an action maximizing their expected utility.

In step (iv), after observing a signal s ∈ S , the receiver infers
a posterior belief ξ s ∈ ∆Θ over the states of nature such that the

component of ξ s corresponding to state θ ∈ Θ is:
2

ξ sθ :=
µθ Prs ′∼ϕθ {s

′ = s}

Prs ′∼ϕ {s
′ = s}

. (1)

For the ease of notation, we let Ξ := ∆Θ be the set of receiver’s

posterior beliefs over states of nature. After computing ξ s , the
receiver plays an action maximizing their utility in ξ s . As it is
customary in the literature [13, 16], we assume that the receiver

breaks ties in favor of the sender. In the following, letting Bk
ξ
B

arg maxa∈A
∑
θ ∈Θ ξθu

k
θ (a) be the set of actions that maximize the

expected utility of the receiver of type k ∈ K in any posterior ξ ∈ Ξ,
we denote by bk

ξ
∈ arg maxa∈Bk

ξ

∑
θ ξθu

s
θ (a) the action in Bk

ξ
that

is actually played by the receiver of type k in posterior ξ .
In our Bayesian persuasion framework with type reporting, the

sender asks the receiver to report their type before observing the

realized state of nature. This enables the sender to increase their

expected utility. In particular, before the receiver reports their type,

the sender proposes to the receiver a menu Φ = {ϕk }k ∈K of signal-

ing schemes, committing to send signals according to the signaling

scheme ϕk if the receiver reports their type to be k ∈ K . In details,

the interaction goes on as follows: (i) the sender proposes a menu

Φ = {ϕk }k ∈K to the receiver; (ii) the receiver reports a type k ∈ K
that maximizes their expected utility given the proposed menu;

1
int(X ) is the interior of set X and ∆X is the set of all probability distributions over X .

Vectors are highlighted in bold. For any vector x, the value of its i-th component is xi .
2
We omit the dependency of ξ s from ϕ as the signaling scheme that is actually used to

compute the posterior will be clear from context. Moreover, for the ease of presentation,

when we use notation Pr {·} we assume that the set S is finite, so that Pr {·} is well

defined. The notation can be easily generalized to the case of infinite sets S .

(iii) the sender observes the realized state of nature θ ∼ µ; (iv) the
sender draws a signal s ∈ S according to ϕkθ and communicates it

to the receiver; finally, the interaction terminates with steps (iv)

and (v) of the classical setting described above.

Notice that, in step (ii), the receiver of type k ∈ K can compute

their expected utility for each signaling scheme ϕk
′

in the menu as∑
θ ∈Θ

µθEs∼ϕk′θ

[
ukθ

(
bkξ s

)]
,

and, then, they can report a type k ′ ∈ K whose corresponding

signaling scheme ϕk
′

maximizes their expected utility.

We focus on menus of signaling schemes that are incentive com-
patible (IC), i.e., in which the receiver of type k is incentivized to re-

port their true type, for any k ∈ K .3 Formally, a menu Φ = {ϕk }k ∈K
is IC if, for every type k ∈ K , the following constraints are satisfied:∑
θ ∈Θ

µθEs∼ϕkθ

[
ukθ

(
bkξ s

)]
≥

∑
θ ∈Θ

µθEs∼ϕk′θ

[
ukθ

(
bkξ s

)]
∀k ′ , k . (2)

We say that a signaling scheme is direct if S = A, which means

that signals correspond to action recommendations for the receiver.

Moreover, we say that a direct signaling scheme is persuasive if the
receiver has an incentive to follow the action recommendations

that they receive as signals, when they report their true type. It is

easy to check that a menu Φ = {ϕk }k ∈K of direct and persuasive

signaling schemes is IC if∑
a∈A

∑
θ ∈Θ

µθϕ
k
θ (a)u

k
θ (a) ≥

∑
a∈A

max

a′∈A

∑
θ ∈Θ

µθϕ
k ′
θ (a)u

k
θ (a
′) ∀k ′ , k . (3)

In the rest of this work, we will use the well-known equiva-

lence between signaling schemes and distributions over receiver’s

posteriors (see [25] for further details). In particular, a signaling

scheme ϕ in equivalent to a probability distribution γ ∈ ∆Ξ over

posteriors such that Eξ∼γ [ξ ] = µ, so that the expected utility of the
receiver of type k ∈ K under the signaling scheme can be written

as Eξ∼γ

[∑
θ ∈Θ ξθu

k
θ

(
bk
ξ

)]
. Finally, when the distribution γ ∈ ∆Ξ

has finite support, we denote by γξ the probability of ξ ∈ Ξ in γ .

2.2 Model with Multiple Receivers
In a multi-receiver setting, there is a finite set R := {ri }

n
i=1

of

n receivers, and each receiver r ∈ R has a type chosen from

a finite set Kr := {kr,i }
mr
i=1

of mr different types. We introduce

K :=
>

r ∈R Kr as the set of type profiles, which are tuples k ∈ K
defining a type kr ∈ Kr for each receiver r ∈ R. Each receiver

r ∈ R has two actions available, defined by Ar := {a0,a1}. We let

A :=
>

r ∈R Ar be the set of action profiles specifying an action

for each receiver. The payoff of a receiver depends on the action

played by them, while it does not depend on the actions played by

the other receivers, since we assume that there are no inter-agent
externalities. Formally, a receiver r ∈ R of type k ∈ Kr has a payoff

function ur,k : Ar × Θ→ [0, 1]. The sender’s payoffs depend on

the actions played by all the receivers, and they are defined by

us : A ×Θ→ [0, 1]. For the ease of presentation, for every state of

nature θ ∈ Θ, we introduce the function fθ : 2
R → [0, 1] such that

fθ (R) represents the sender’s payoff when the state of nature is θ

3
Notice that, by a revelation-principle-style argument (see the book by Shoham and

Leyton-Brown [29] for some examples of these kind of arguments), focusing on IC

menus of signaling schemes is w.l.o.g. when looking for a sender-optimal menu.
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and all the receivers in R ⊆ R play action a1, while the others play

a0. In the rest of this work, we assume that the sender’s payoffs are

monotone non-decreasing in the set of receivers playing a1. Formally,

for each state θ ∈ Θ, we let fθ (R) ≤ fθ (R
′) for every R ⊆ R′ ⊆ R,

while fθ (∅) = 0 for the ease of presentation. As it is customary,

we focus on three families of functions: submodular, supermodular,
and anonymous. We say that fθ is submodular, respectively super-

modular, if for R,R′ ⊆ R: fθ (R ∩R
′)+ fθ (R ∪R

′) ≤ fθ (R)+ fθ (R
′),

respectively fθ (R ∩R
′)+ fθ (R ∪R

′) ≥ fθ (R)+ fθ (R
′). The function

fθ is anonymous if fθ (R) = fθ (R
′) for all R,R′ ⊆ R : |R | = |R′ |.

With multiple receivers, the sender must send a signal to each

of them. In this work, we focus on private signaling, where each
receiver has their own signal that is privately communicated to

them. Formally, there is a set Sr of possible signals for each re-

ceiver r ∈ R. Then, ϕ : Θ → ∆S is a signaling scheme, where

S :=
>

r ∈R Sr is the set of signal profiles, which are tuples s ∈ S
defining a signal sr ∈ Sr for each receiver r ∈ R. We denote by

ϕθ the probability distribution over signal profiles corresponding

to state θ ∈ Θ, while we let ϕθ (s) be the probability of sending

s ∈ S. Given a signaling scheme ϕ, we define the resulting mar-
ginal signaling scheme for receiver r ∈ R as ϕr : Θ→ Sr . Formally,

for every s ∈ Sr , it holds that ϕ
r
θ (s) = Prs∼ϕθ {sr = s}. Notice that

receiver r ’s posterior beliefs and expected utilities only depend on

the marginal signaling scheme ϕr .
The interaction between the sender and the receivers goes on

as follows: (i) the sender proposes to each receiver r ∈ R a menu

of marginal signaling schemes Φr = {ϕr,k }k ∈Kr ; (ii) each receiver

r ∈ R reports a type kr ∈ Kr such that ϕr,kr is the marginal

signaling scheme maximizing their expected utility; (iii) the sender

commits to a signaling schemeϕ whose resultingmarginal signaling

schemes ϕr are such that ϕr B ϕr,kr for all r ∈ R; (iv) the sender
observes the realized state of nature θ ∼ µ and draws a signal

profile s ∼ ϕθ ; (v) each receiver r ∈ R observes their signal sr ,
rationally updates their prior belief over Θ according to the Bayes
rule, and selects an action maximizing their expected utility. Notice

that the sender only needs to propose marginal signaling schemes

to the receivers (rather than general ones), since the expected utility

of each receiver only depends on their marginal signaling scheme,

and not on the others. Thus, the sender can delay the choice of the

(general) signaling scheme after types have been reported.

As customary, we assume that the receivers break ties in favor of

the sender. Since functions fθ are monotone, this amounts to play

a1 whenever indifferent between the two actions. Moreover, we say

that a signaling scheme is direct and persuasive if S = A and the

receivers are better off playing recommended actions. We denote

with R ⊆ R the direct signal profile in which it is recommended to

play a1 to all the receiver in R and a0 to all the receiver in R \ R.
Similarly to the single-receiver case, we restrict the attention to

IC menu of marginal signaling schemes. Thus, in a multi-receiver

setting, a sender’s strategy is composed by an IC menu of marginal

signaling scheme Φr = {ϕr,k }k ∈Kr for each receiver r ∈ R, and a

set of signaling schemes {ϕk }k ∈K (one per type profile possibly

reported by the receivers) such that the resulting marginal signaling

schemes satisfy ϕk,r = ϕr,kr for all k ∈ K and r ∈ R.

2.3 Sender’s Computational Problems
We consider the computational problem in which, given the prob-

ability distribution over the receivers’ types, the sender wants to

maximize their expected utility. In the single-receiver case, the re-

ceiver’s type k ∈ K is drawn from a known distribution λ ∈ ∆K .
We call MENU-SINGLE the problem of computing an IC menu of

signaling schemes Φ = {ϕk }k ∈K that maximizes the sender’s ex-

pected utility, given a probability distribution λ ∈ ∆K as input. In

the multi-receiver case, the types profiles k ∈ K are drawn from

a known distribution λ ∈ ∆ ¯K , where
¯K ⊆ K is a subset of possi-

ble types vectors, i.e., the support of λ. We call MENU-MULTI the

problem of computing a sender’s strategy—made by an IC menu

of marginal signaling schemes Φr = {ϕr,k }k ∈Kr for each receiver

r ∈ R and a set of signaling schemes {ϕk }k ∈K—that maximizes

the sender’s expected utility, given λ ∈ ∆ ¯K as input.
4

3 SINGLE-RECEIVER PROBLEM
We show how to solve MENU-SINGLE in polynomial time.

By using the equivalence between signaling schemes and dis-

tributions over posteriors (see Section 2.1), it is easy to check that

an optimal menu of signaling schemes can be computed by the fol-

lowing LP 4 with an infinite number of variables, namely γk ∈ ∆Ξ

for k ∈ K . In LP 4, the objective is the sender’s expected utility

assuming the receiver reports their true type, the first set of con-

straints encodes IC conditions, while the last one ensures that the

distributions over posteriors correctly represent signaling schemes.

max

γ

∑
k ∈K

λkEξ∼γ k
∑
θ ∈Θ

ξθu
s
θ

(
bkξ

)
s.t. (4)

Eξ∼γ k

[∑
θ ∈Θ

ξθu
k
θ

(
bkξ

)]
≥ Eξ∼γ k

[∑
θ ∈Θ

ξθu
k
θ

(
bkξ

)]
∀k , k ′ ∈ K

Eξ∼γ k [ξθ ] = µθ ∀θ ∈ Θ,∀k ∈ K
γk ∈ ∆Ξ ∀k ∈ K .
As a first step, we show that there always exists an optimal

solution to LP 4 in which the probability distributions γk ∈ ∆Ξ

have finite support. This allows us to compute an optimal menu of

signaling schemes by solving an LP with a finite number of vari-

ables. In the following, for every k ∈ K and a ∈ A, let Ξk,a B{
ξ ∈ Ξ : a ∈ Bk

ξ

}
and Ξ̂k,a B

{
ξ ∈ Ξ : a = bk

ξ

}
. Moreover, for ev-

ery a ∈
>

k ∈K A, let Ξa B
⋂
k ∈K Ξk,ak and Ξ̂a B

⋂
k ∈K Ξ̂k,ak ,

where ak is the k-th component of a. Finally, let Ξ∗ be such that

Ξ∗ B
⋃

a∈
>

k∈K AV (Ξa), where V (Ξa) denotes the set of vertices
of the polytope Ξa

. The following Lemma 1 shows that there always

exists an optimal menu of signaling schemes that can be encoded

as probability distributions over Ξ∗. Formally, the lemma is proved

by showing that the following LP 5 is equivalent to LP 4.

max

γ

∑
k ∈K

λk
∑
ξ ∈Ξ∗

γkξ

∑
θ ∈Θ

ξθu
s
θ

(
bkξ

)
s.t. (5a)∑

ξ ∈Ξ∗
γkξ

∑
θ ∈Θ

ξθu
k
θ

(
bkξ

)
≥

∑
ξ ∈Ξ∗

γk
′

ξ

∑
θ ∈Θ

ξθu
k
θ

(
bkξ

)
∀k , k ′ ∈K (5b)

4
A polynomial-time algorithm for MENU-MULTI must run in time polynomial in the

size of the instance and in the size of the support of the distribution λ. Notice that, in
general, the latter may be exponential in the number of receivers n.
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∑
ξ ∈Ξ∗

γkξ ξθ = µθ ∀k ∈ K ,∀θ ∈ Θ (5c)∑
ξ ∈Ξ∗

γkξ = 1 ∀k ∈ K . (5d)

Intuitively, the result is shown by noticing that, once fixed the

receiver’s best responses to a ∈
>

k ∈K A, the sums over Θ in the

objective and the constraints of LP 4 are linear in the posterior

ξ , which allows to apply Carathèodory theorem to replace each

posterior with a probability distributions over the vertices of Ξa
.

Lemma 1. In single-receiver instances, there always exists a sender-
optimal menu of signaling schemes that can be encoded as probability
distributions over the finite set of posteriors Ξ∗.

Next, we show that there always exists an optimal menu of direct

and persuasive signaling schemes, and that it can be computed in

polynomial time by solving a polynomially-sized LP obtained by

further simplifying LP 5 (Theorem 1). Notice that, in a Bayesian

persuasion problem without type reporting, an optimal signaling

scheme must employ a signal for each action profile a ∈
>

k ∈K A.
Since these profiles are exponentially many, an optimal direct and

persuasive signaling scheme cannot be computed in polynomial

time by linear programming. Indeed, without typer reporting, the

problem has been shown to be NP-hard [13].

An intuition behind the proof of Theorem 1 is provided in the

following. Fix type k ∈ K and action a ∈ A. Suppose that an opti-

mal menu of signaling schemes employs γk ∈ ∆Ξ∗ for the type k ,

and that γk has in the support two posteriors ξ 1, ξ 2 ∈ Ξ̂k,a with

probabilities γk
ξ 1

and γk
ξ 2
. Consider a new signaling scheme that re-

places the two posteriors ξ 1
and ξ 2

with their convex combination

ξ ∗ ∈ ∆Ξ∗ , so that

ξ ∗θ =
γk
ξ 1
ξ 1

θ + γ
k
ξ 2
ξ 2

θ

γk
ξ 1
+ γk

ξ 2

for every θ ∈ Θ and γk
ξ ∗
= γk

ξ 1
+ γk

ξ 2
.

Both ξ 1
and ξ 2

induce the same best response of the receiver of type

k , and Objective (5a) and Constraints (5c) are linear in ξ . Hence,
replacing the two posteriors with their convex combination ξ ∗ pre-
serves the value of the objective, while maintaining the constraints

satisfied. The same does not hold for Constraints (5b), which are

linear in the posterior only if we fix the best responses of all the

receiver’s types. For Constraints (5b), if we consider an inequality

in which γk appears in the left hand side, the sum over Θ is linear

in ξ and

γk
ξ 1

∑
θ ∈Θ

ξ 1

θu
k
θ (a) + γ

k
ξ 2

∑
θ ∈Θ

ξ 2

θu
k
θ (a) = γ

k
ξ ∗

∑
θ ∈Θ

ξ ∗θu
k
θ (a).

Instead, if γk appears in the right hand side, by the convexity of

the max operator it hods:

γk
ξ 1

max

a′∈A

∑
θ ∈Θ

ξ 1

θu
k
θ (a
′) + γk

ξ 2
max

a′∈A

∑
θ ∈Θ

ξ 1

θu
k
θ (a
′)

≥ max

a′∈A

[
γk
ξ 1

∑
θ ∈Θ

ξ 1

θu
k
θ (a
′) + γk

ξ 2

∑
θ ∈Θ

ξ 1

θu
k
θ (a
′)

]
= max

a′∈A

∑
θ ∈Θ

ξ ∗θu
k
θ (a
′).

Therefore, if we replace two posteriors that induce the same re-

ceiver’s best responses with their convex combination, the left hand

side of Constraints (5b) is preserved, while the value of the right

hand side can only decrease, guaranteeing that Constraints (5b)

remain satisfied. By using this idea, we can join all the posteriors

that induce the same best responses. Finally, by resorting to the

equivalence between signaling schemes and distributions over, we

obtain the following LP 6 of polynomial size. Hence, an optimal

menu of signaling schemes can be computed in polynomial time.

max

ϕ,l

∑
k ∈K

λk
∑
θ ∈Θ

µθ
∑
a∈A

ϕkθ (a)u
s
θ (a) s.t. (6a)∑

a∈A

∑
θ ∈Θ

µθϕ
k
θ (a)u

k
θ (a) ≥

∑
a∈A

lk,k
′

a ∀k , k ′ ∈ K (6b)

lk,k
′

a ≥
∑
θ ∈Θ

µθϕ
k
θ (a)u

k
θ (a
′) ∀k , k ′ ∈ K ,∀a,a′ ∈ A (6c)∑

θ ∈Θ

µθϕ
k ′
θ (a)u

k
θ (a) ≥

∑
θ ∈Θ

µθϕ
k ′
θ (a)u

k
θ (a
′) ∀k ∈ K ,∀a,a′ ∈ A (6d)∑

a∈A
ϕkθ (a) = 1 ∀k ∈ K ,∀θ ∈ Θ. (6e)

Notice that Constraints (6b) and (6c) are equivalent to the IC con-

straints for direct and persuasive signaling schemes, which are those

specified in Equation (3), where maxa′∈A
∑
θ ∈Θ µθϕ

k ′
θ (a)u

k
θ (a
′) is

the best response of the receiver of type k ∈ K to the direct signal a
for the receiver of type k ′ ∈ Kd . Moreover, Constraints (6d) force

the signaling schemes to be persuasive.

Theorem 1. In single-receiver instances, there always exists an op-
timal menu of direct and persuasive signaling schemes. Moreover, it
can be computed in polynomial time.

4 MULTI-RECEIVER PROBLEM
In this section, we switch the attention to MENU-MULTI. As we

will show in the following (Theorem 2), given any multi-receiver

instance, there always exists an optimal sender’s strategy that uses

menus of direct and persuasive marginal signaling schemes. This

allows us to formulate the sender’s problem as the following LP 7,

which will be crucial for the results in the rest of this section.

Since ϕkθ (a0) = 1 − ϕkθ (a1) for every r ∈ R, k ∈ ¯Kr , and θ ∈ Θ,

by letting xr,kθ = ϕkθ (a1) we can formulate the following LP:

max

ϕ≥0,x ≥0

∑
θ ∈Θ

µθ
∑
k ∈ ¯K

λk

∑
R⊆R

ϕkθ (R)fθ (R) s.t. (7a)∑
R⊆R:r ∈R

ϕkθ (R) = xr,krθ ∀k ∈ ¯K,∀r ∈ R,∀θ ∈ Θ (7b)∑
θ ∈Θ

µθx
r,k
θ ur,kθ (a1) +

∑
θ ∈Θ

µθ

(
1 − xr,kθ

)
ur,kθ (a0)

≥ lr,k,k
′

a1
+ lr,k,k

′

a0
∀r ∈ R,∀k , k ′ ∈ Kr (7c)

lr,k,k
′

a1
≥

∑
θ ∈Θ

µθx
r,k ′
θ ur,kθ (a)

∀r ∈ R,∀a ∈ Ar ,∀k , k ′ ∈ Kr (7d)

lr,k,k
′

a0
≥

∑
θ ∈Θ

µθ

(
1 − xr,k

′

θ

)
ur,kθ (a)

∀r ∈ R,∀a ∈ Ar ,∀k , k ′ ∈ Kr (7e)
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∑
θ ∈Θ

µθx
r,k
θ

[
ur,kθ (a1) − u

r,k
θ (a0)

]
≥ 0 ∀r ∈ R,∀k ∈ Kr

(7f)∑
θ ∈Θ

µθ

(
1 − xr,kθ

) [
ur,kθ (a0) − u

r,k
θ (a1)

]
≥ 0 ∀r ∈ R,∀k ∈ Kr

(7g)∑
R⊆R

ϕkθ (R) = 1 ∀k ∈ ¯K,∀θ ∈ Θ. (7h)

In the LP, Constraints (7b) represent consistency conditions ensur-

ing that the general signaling scheme ϕk results in the marginal

signaling schemes ϕk,r , which are defined by means of variables

xr,kθ . Constraints (7c), (7d), and (7e) represent IC constraints for the

menus of marginal signaling schemes, where, as in LP 6, we use

Constraints (7d) and (7e) with variables lr,k,k
′

a0
, lr,k,k

′

a1
to compute

receivers’ expected utilities of playing a best response. Finally, Con-

straints (7f) and (7g) encode the persuasiveness conditions, while

Constraints (7h) require the signaling scheme be well defined.

Next, we prove our main existence result supporting LP 7.

Theorem 2. In multi-receiver instances, there always exists an opti-
mal sender’s strategy that uses menus of direct and persuasive mar-
ginal signaling schemes.

4.1 Supermodular/Anonymous Sender’s Utility
LP 7 has an exponential number of variables and a polynomial

number of constraints. Nevertheless, we show that it is possible to

apply the ellipsoid algorithm to its dual formulation in polynomial

time, provided access to a suitably-defined separation oracle.

Theorem 3. Given access to an oracle that solves maxR⊆R fθ (R) +∑
r ∈R wr for anyw ∈ Rn , there exists a polynomial-time algorithm

that finds an optimal sender’s strategy in any multi-receiver instance.

An oracle that solves maxR⊆R fθ (R) +
∑
r ∈R wr can be imple-

mented in polynomial time for supermodular and anonymous func-

tions, as shown by Dughmi and Xu [22]. As a consequence, we

obtain the following corollary.

Corollary 1. Inmulti-receiver instances with supermodular or anony-
mous sender’s utility functions, there exists a polynomial-time algo-
rithm that computes an optimal sender’s strategy.

4.2 Submodular Sender’s Utility
In this section, we show how to obtain in polynomial time a

(
1 − 1

e

)
-

approximation to an optimal sender’s strategy in instances with

submodular utility functions, modulo an additive loss ϵ > 0. This is

the best approximation result that can be achieved in polynomial

time, since, as it follows from results in the literature, it is NP-hard
to obtain an approximation factor better than 1 − 1

e . Indeed, if we

consider settings without types, i.e., in which |Kr | = 1 for all r ∈ R,
the problem reduces to computing an optimal signaling scheme

when the sender knows receivers’ utilities. Then, in the restricted

case in which there are only two states of nature, Babichenko and

Barman [3] show that, for each ϵ > 0, it is NP-hard to provide a(
1 − 1

e + ϵ
)
-approximation of an optimal signaling scheme.

Then, the following theorem provides a tight approximation

algorithm that runs in polynomial time.

Theorem 4. For each ϵ > 0, there exists an algorithm with running
time polynomial in the instance size and 1

ϵ that returns a sender’s

strategy with utility at least
(
1 − 1

e

)
OPT − ϵ in expectation, where

OPT is the sender’s expected utility in an optimal strategy.

In order to prove the result, we reduce the problem of computing

the desired (approximate) sender’s strategy to solving the follow-

ing linearly-constrained mathematical program (Program 8). The

program exploits the fact that, as we will show next, there always

exists an “almost” optimal sender’s strategy in which the sender

employs signaling schemes ϕk (for k ∈ ¯K) such that the distribu-

tions ϕkθ are q-uniform over the set 2
R
. In particular, we say that a

distribution is q-uniform if it follows a uniform distribution on a

multiset of size q, where we denote by [q] the set {1, . . . ,q}. Then,
the mathematical program reads as follows.

max

x

∑
θ ∈Θ

µθ
∑
k ∈ ¯K

λk
1

q

∑
j ∈[q]

Fθ

(
x j,k,θ

)
s.t. (8a)

∑
j ∈[q]

1

q
x
j,k,θ
r ≤ xr,krθ ∀r ∈ R,∀k ∈ ¯K,∀θ ∈ Θ (8b)∑

θ ∈Θ

µθx
r,k
θ ur,kθ (a1) +

∑
θ ∈Θ

µθ

(
1 − xr,kθ

)
ur,kθ (a0)

≥ lk,k
′

a1
+ lk,k

′

a0
∀r ∈ R,∀k , k ′ ∈ Kr (8c)

lk,k
′

a1
≥

∑
θ ∈Θ

µθx
r,k ′
θ ur,kθ (a)

∀r ∈ R,∀a ∈ Ar ,∀k , k ′ ∈ Kr (8d)

lk,k
′

a0
≥

∑
θ ∈Θ

µθ

(
1 − xr,k

′

θ

)
ur,kθ (a)

∀r ∈ R,∀a ∈ Ar ,∀k , k ′ ∈ Kr (8e)∑
θ ∈Θ

µθx
r,k
θ

[
ur,kθ (a1) − u

r,k
θ (a0)

]
≥ 0 ∀r ∈ R,k ∈ Kr (8f)∑

θ ∈Θ

µθ

(
1− xr,kθ

)[
ur,kθ (a0)− u

r,k
θ (a1)

]
≥ 0∀r ∈ R,∀k ∈ Kr (8g)

0 ≤ xr,kθ ≤ 1 ∀r ∈ R,∀k ∈ Kr ,∀θ ∈ Θ (8h)

0 ≤ x
j,k,θ
r ≤ 1 ∀j ∈ [q],∀r ∈ R,∀k ∈ Kr ,∀θ ∈ Θ. (8i)

In Program 8, each variable xr,kθ represents the probability ϕkθ (a1)

that the sender recommends action a1 to receiver r ∈ R of type k ∈
Kr in state θ ∈ Θ. Constraints (8c)–(8h) force the marginal signal-

ing schemes to be well defined, where Constraints (8c), (8d), and (8e)

encode the IC conditions, Constraints (8f) and (8g) ensure the per-

suasiveness property, and Constraints (8h) require the marginal

signaling schemes to be feasible, i.e., ϕr,kθ (a1) + ϕ
r,k
θ (a0) = 1 and

ϕr,kθ (a) ≥ 0 for every a ∈ {a0,a1}. Moreover, the program uses vari-

ables x
j,k,θ
r ∈ {0, 1} to represent whether the recommended action

to receiver r ∈ R is a1 or a0 in the j-th action profile in the support

of ϕkθ . Notice that we relaxed these variables to x
j,k,θ
r ∈ [0, 1] and

use the multi-linear extension of the sender’s utility functions fθ ,
which, for every θ ∈ Θ, reads as

Fθ (x) B
∑
R⊆R

fθ (R)
∏
r ∈R

xr
∏
r<R
(1 − xr ).
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Moreover, we also relax the constraints ensuring the consistency

of the marginal signaling schemes, namely Constraints (8b), by

replacing the condition

∑
j ∈[q]

1

q x
j,k,θ
r = xr,krθ for all r ∈ R,k ∈

¯K,θ ∈ Θ with

∑
j ∈[q]

1

q x
j,k,θ
r ≤ xr,krθ for all r ∈ R,k ∈ ¯K,θ ∈ Θ.

In order to reduce the problem of computing the desired sender’s

strategy to solving Program 8, we need the following two lemmas

(Lemma 2 and Lemma 3). We show that the value of Program 8 for

a suitably-defined q approximates the value of an optimal sender’s

strategy (i.e., an optimal solution to LP 7) and that, given a solution

to Program (8), we can recover a sender’s strategy with approxi-

mately the same expected utility for the sender. Our result is related

to those in [22] for the casewithout types. However, Dughmi and Xu

[22] use a probabilistic method to show the existence of an “almost”

optimal signaling scheme that uses q-uniform distributions over

the signals. This approach cannot be applied to our problem since

it slightly modifies the receivers’ utilities. In the case of persuasive-

ness constraints, they show how to maintain feasibility. However,

this approach does not work for the IC constraints. We propose a

different technique based on the fact that LP 7 has a polynomial

number of constraints. Let β be the number of constraint of LP 8.

Notice that β is polynomial in the size of the LP. We show that, for

each ϵ > 0, there exist a q such that LP 8 has value at leastOPT − ϵ ,
where OPT is the value of an optimal sender’ strategy.

Lemma 2. For each ϵ > 0, the optimal value of Program 8 with

q =
⌈
β
ϵ

⌉
is at least OPT − ϵ , where OPT is the value of an optimal

sender’s strategy and β is the number of constraints of LP 7.

Then, we show how to obtain a signaling scheme given a solution

of Program 8. Dughmi and Xu [22] build a signaling scheme by

using a technique whose generalization to our setting works as

follows. Given a state of nature θ ∈ Θ and a vector of types k ∈ ¯K ,

it selects a j ∈ [q] uniformly at random and recommends signal

a1 to receiver r ∈ R with probability x
j,k,θ
r , while it recommends

a0 otherwise. By definition of multi-linear extension, using this

technique the sender achieves expected utility equal to the value of

the given solution to Program 8. However, this signaling scheme

uses an exponential number of signal profiles, and, thus, it cannot

be represented explicitly. In the following lemma, we show how

to obtain a sender’s strategy in which signaling schemes use a

polynomial number of signal profiles.

Lemma 3. Given a solution to Program 8 with value APX , for each
ι > 0, there exists an algorithm with running time polynomial in the
instance size and ι that returns a sender’s strategy with utility at least
APX − n

q − ι in expectation. Moreover, such sender’s strategy employs
signaling schemes using polynomially-many signal profiles.

Proof. Let x be a solution to Program 8 with value APX . Next,

we show how to obtain the desired sender’s strategy.

First, we build a new solution to Program 8 such that Con-

straints (8b) are satisfied with equality. Since the functions Fθ are

monotonic, we can simply obtain such solution by increasing the

values of variables x
j,k,θ
r . It is easy to see that, by the monotonicity

of Fθ , the objective function does not decrease.
Then, we obtain an “almost binary” solution by applying, for

every θ ∈ Θ and k ∈ ¯K , the procedure outlined in Algorithm 1. An

a first operation, the algorithm iterates over the receivers, doing

the operations described in the following for each receiver r ∈ R.
For each j ∈ [q], the algorithm computes an estimate of the

following partial derivative

∂Fθ
(
x j,k,θ

)
∂x

j,k,θ
r

=∑
R⊆R\{r }

[
fθ (R ∪ {r }) − fθ (R)

] ∏
r ′∈R

x
j,k,θ
r

∏
r ′<R,r ′,r

(
1 − x

j,k,θ
r

)
,

This is accomplished by drawing σ = −8

ι2 n
2

log
p
2
samples of the

random variable fθ (R̃ ∪ {r }) − fθ (R̃) (with p = ι
2 | ¯K |dqn

), where

R̃ ⊆ R is obtained by randomly picking each receiver r ′ ∈ R : r ′ , r

independently with probability x
j,k,θ
r ′ . It is easy to see that the

expected value of the random variable is exactly equal to value of

the partial derivative above. Letting ẽ
j,k,θ
r be the empirical mean

of the samples, by an Hoeffding bound, we get

Pr

{ �����ẽ j,k,θr −
∂Fθ

(
x j,k,θ

)
∂x

j,k,θ
r

����� ≥ ι

4n

}
≤ p.

Moreover, consider the event E in which

���ẽ j,k,θr −
∂Fθ

(
x j,k ,θ

)
∂x j,k ,θr

��� ≤ ι
4n

for all j ∈ [q],k ∈ ¯K,θ ∈ Θ, and r ∈ R. By a union bound, the

event E holds with probability at least 1 − p | ¯K|dqn.
As a second step, the algorithm re-labels the indexes so that, if

j < j ′, then ẽ
j,k,θ
r ≥ ẽ

j′,k,θ
r . Notice that the value of the partial

derivative with respect to x
j,k,θ
r does not depend on its value.

Hence, given two indexes j < j ′, by “moving” a value t from x
j′,k,θ
r

to x
j,k,θ
r , the sum

∑
j ∈[q] Fθ

(
x
j,k,θ
r

)
decreases at most of

t

(
∂Fθ (x

j′,k,θ )

∂x
j′,k,θ
r

−
∂Fθ (x

j,k,θ )

∂x
j,k,θ
r

)
≤ t

( ι

2n
+ ẽ

j′,k,θ
r − ẽ

j,k,θ
r

)
≤ t

ι

2n
.

Let Qk,θ,r = {1, . . . , j∗} be the set of the j∗ =
⌊∑

j ∈[q] x
j,k,θ
r

⌋
smallest indexes in [q]. Then, the algorithm updates the solution x

by setting x
j,k,θ
r = 1 for all indexes j ∈ Qk,θ,r

and setting

x
j∗,k,θ
r =

∑
j′∈Qk ,θ ,r

x
j′,k,θ
r −


∑

j′∈Qk ,θ ,r

x
j′,k,θ
r

 .
After having iterated over all the receivers, the algorithm has

built a new feasible solution x̄ to Program 8 such that∑
j ∈[q]

[
Fθ (x̄

j,k,θ
r ) − Fθ (x

j,k,θ
r )

]
≥ −qι/2,

since the algorithm moved at most a value q from variables indexed

by j ′ to variables indexed byj < j ′. Moreover, each receiver r ∈ R

has at most a non-binary element among variables x̄
j,k,θ
r .

As a final step, the algorithm first builds a set Qk,θ
of indexes

j ∈ [q] such that x̄ j,k,θ is a binary vector. Notice that there always

exists one such set Qk,θ
of size at least q − n. Then, the algorithm

constructs a signaling scheme such that

ϕkθ (R) =
1

q

���{j ∈ Qk,θ
: x

j,k,θ
r = 1∀r ∈ R,x j,k,θr = 0∀r < R

}��� .
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Notice that

∑
R∈R:r ∈R ϕ

k
θ (R) ≤ xr,kr and, by the monotonicity

assumption on fθ , it is easy to build a signaling scheme such

that

∑
R∈R:r ∈R ϕ

k
θ (R) = xr,kr with greater sender’s expected util-

ity. Finally, the algorithm outputs the sender’s strategy made by

{ϕk }k ∈ ¯K and {xr,k }r ∈R,k ∈Kr , where the menus of marginal sig-

naling schemes are those given as input.

To conclude the proof, we show that the utility of the sender’s

strategy described above is at least APX − n
q − ι in expectation. If

the event E holds, the utility of the solution is at least∑
θ ∈Θ

µθ
∑
k ∈ ¯K

λkϕ
k
θ (R)fθ (R)

≥
∑
θ ∈Θ

µθ
∑
k ∈ ¯K

λk
1

q

∑
j ∈Qk ,θ

Fθ
(
x̄ j,k,θ

)
≥

∑
θ ∈Θ

µθ
∑
k ∈ ¯K

λk
1

q


∑
j ∈[q]

Fθ
(
x̄ j,k,θ

)
− n


≥

∑
θ ∈Θ

µθ
∑
k ∈ ¯K

λk
1

q


∑
j ∈[q]

Fθ
(
x j,k,θ

)
− n −

ιq

2


=

∑
θ ∈Θ

µθ
∑
k ∈ ¯K

λk


1

q

∑
j ∈[q]

Fθ
(
x j,k,θ

)
−
n

q
− ι/2


≥

∑
θ ∈Θ

µθ
∑
k ∈ ¯K

λk
1

q

∑
j ∈[q]

Fθ
(
x j,k,θ

)
−
n

q
− ι/2

= APX −
n

q
− ι/2.

Hence, the sender’s expected utility is at least

Pr {E}

(
APX −

n

q
− ι/2

)
≥ (1 − p | ¯K|dqn)

(
APX −

n

q
−

ι

2

)
≥ APX −

n

q
−

ι

2

− p | ¯K|dqn

≥ APX −
n

q
− ι.

Since we the marginal signaling schemes do not change, all the

persuasiveness and IC constraints are satisfied. Moreover, for every

k ∈ ¯K,θ ∈ Θ, and r ∈ R, it holds∑
R⊆R:r ∈R

ϕkθ (R) =
1

q

∑
j ∈[q]

x̄
j,k,θ
r =

1

q

∑
j ∈[q]

x
j,k,θ
r = xr,krθ ,

while it is easy to see that

∑
R⊆R ϕ

k
θ (R) = 1 for every k ∈ ¯K and

θ ∈ Θ. This concludes the proof of the lemma. □

Now, we can prove Theorem 4.

proof of Theorem 4. By Lemmas 2 and 3, we only need to pro-

vide an algorithm that approximates the optimal solution of LP 8.

The objective is a linear combination with non-negative coefficients

of the multi-linear extension of monotone submodular functions.

Hence, it is smooth, monotone and submodular. Moreover, since we

relaxed Constraints (8b), the feasible region is a down-monotone

polytope
5
and it is defined by polynomially-many constraints. For

5
A polytope P ∈ Rn+ is down-monotone if 0 ≤ x ≤ y coordinate-wise and y ∈ P
imply x ∈ P.

Algorithm 1 Algorithm in Lemma 3

Input: N. of samples σ > 0; Solution x to Program 8; k ∈ ¯K ; θ ∈ Θ

1: for r ∈ R do
2: Compute ẽ

j,k,θ
r estimating

∂Fθ (x j,k ,θ )
∂x j,k ,θr

with σ samples

3: Re-label indexes j ∈ [q] in decreasing order of ẽ
j,k,θ
r

4: j∗ ←
⌊∑

j ∈[q] x
j,k,θ
r

⌋
5: x

j∗+1,k,θ
r ←

∑
j ∈[q] x

j,k,θ
r − j∗

6: Qk,θ,r ← {1, . . . , j∗}

7: for j ∈ Qk,θ,r do
8: x

j,k,θ
r ← 1

9: for j ≥ j∗ + 2 do
10: x

j,k,θ
r ← 0

11: Construct ϕkθ as follows:

12: ϕkθ (R)=
1

q

���{j ∈ [q] :x
j,k,θ
r =1∀r ∈R,x j,k,θr =0∀r <R

}���∀R ⊆R
13: Update ϕkθ to make it consistent with the menus of marginal

signaling schemes {xr,krθ }r ∈R

14: return ϕkθ

each δ > 0, this problem admits a

(
1 − 1

e

)
OPT − δ -approximation

in time polynomial in the instance size and δ , see the continuous
greedy algorithm in [9] and [22] for a formulation in a similar

problem.
6
Finally, we can obtain an arbitrary good approximation

choosing an arbitrary large value for q and an arbitrary small value

for δ and ι. □

5 CONCLUSIONS AND FUTUREWORKS
We proposed to extend the Bayesian persuasion framework with a

type reporting step. We proved that, with a single receiver, the ad-

dition of this type reporting step makes the sender’s computational

problem tractable. Moreover, we extended the framework to set-

tings with multiple receivers, focusing on the widely-studied case

with no inter-agent-externalities and binary actions. We showed

that an optimal sender’s strategy can be computed in polynomial

time when the sender’s utility function is supermodular or anony-

mous. Moreover, when the sender’s utility function is submodular,

we designed a polynomial-time algorithm that provides a tight(
1 − 1

e

)
-approximation.

In the future, it would be interesting to study the setting in which

the sender has access only to samples from the distribution of the

receiver’s types. Another interesting direction is to explore how

the type reporting step can be used to provide polynomial-time

no-regret algorithms in an online learning framework.
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6
The bound holds only for arbitrary large probability. This reduces the total expected

utility by an arbitrary small factor.
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