
How to Fairly Allocate Easy and Difficult Chores
Soroush Ebadian

University of Toronto

Toronto, Ontario, Canada

soroush@cs.toronto.edu

Dominik Peters

University of Toronto

Toronto, Ontario, Canada

dominik@cs.toronto.edu

Nisarg Shah

University of Toronto

Toronto, Ontario, Canada

nisarg@cs.toronto.edu

ABSTRACT
A major open question in fair allocation of indivisible items is

whether there always exists an allocation of chores that is Pareto

optimal (PO) and envy-free up to one item (EF1). We answer this

question affirmatively for the natural class of bivalued utilities,

where each agent partitions the chores into easy and difficult ones,

and has cost 𝑝 > 1 for chores that are difficult for her and cost 1

for chores that are easy for her. Such an allocation can be found in

polynomial time using an algorithm based on the Fisher market.

We also show that for a slightly broader class of utilities, where

each agent 𝑖 can have a potentially different integer 𝑝𝑖 , an allocation

that is maximin share fair (MMS) always exists and can be com-

puted in polynomial time, provided that each 𝑝𝑖 is an integer. Our

MMS arguments also hold when allocating goods instead of chores,

and extend to another natural class of utilities, namely weakly

lexicographic utilities.

KEYWORDS
Fair Division; Envy-Freeness; Pareto Optimality; Maximin Share

ACM Reference Format:
Soroush Ebadian, Dominik Peters, and Nisarg Shah. 2022. How to Fairly Al-

locate Easy and Difficult Chores. In Proc. of the 21st International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2022), Online, May
9–13, 2022, IFAAMAS, 9 pages.

1 INTRODUCTION
Fair allocation of collective resources and burdens between agents

is a fundamental task in multi-agent systems. Everyday applications

include splitting an estate between heirs or joint assets between a

divorcing couple (resources), or splitting work shifts between staff

or household chores between roommates (burdens).

We are interested in indivisible resources and burdens (i.e., ones

that cannot be subdivided). LetM be the set of such items. Following
a canonical model, we assume that each agent 𝑖 has a valuation

𝑣𝑖 (𝑟) for each item 𝑟 ∈ M. This gives rise to an additive utility
function over bundles of items: Agent 𝑖’s utility for a bundle 𝑆 ⊆ M
is 𝑣𝑖 (𝑆) =

∑
𝑟 ∈𝑆 𝑣𝑖 (𝑟). Items are called goods if all agents have

non-negative valuations for them, and chores if all agents have
non-positive valuations for them. We will only study cases where

either all items are goods, or all items are chores. The goal is to

find an allocation x, which is a partition of the set M of items

between the agents, with x𝑖 denoting the bundle allocated to agent

𝑖 . An allocation is efficient or Pareto optimal (PO) if there is no

other allocation y which every agent 𝑖 weakly prefers to x (i.e.,

𝑣𝑖 (y𝑖) ⩾ 𝑣𝑖 (x𝑖)), and for which at least one of these inequalities is

Proc. of the 21st International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2022), P. Faliszewski, V. Mascardi, C. Pelachaud, M.E. Taylor (eds.), May 9–13,
2022, Online. © 2022 International Foundation for Autonomous Agents and Multiagent

Systems (www.ifaamas.org). All rights reserved.

strict. We are interested in finding allocations that are efficient and

also fair. In particular, we will look at restricted classes of utilities

that allow us to guarantee stronger fairness axioms than the state

of the art for general additive utilities.

1.1 Envy-Freeness Up To One Item (EF1)
Perhaps the most compelling fairness guarantee from the literature

is envy-freeness (EF) [19, 20], which demands that no agent envy

another agent (i.e., 𝑣𝑖 (x𝑖) ⩾ 𝑣𝑖 (x𝑗) for all agents 𝑖, 𝑗). However,
it is easy to see that envy-freeness cannot be guaranteed; if we

are allocating a single item between two agents, then one will

necessarily envy the other. In response, the literature has turned to

relaxations which require that agents not envy others by too much.

A particularly appealing axiom is called envy-freeness up to one item
(EF1) [15], which demands that envy between any two agents be

avoidable by the removal of a single item from the bundle of one of

the two agents. For allocating goods, Caragiannis et al. [16] show

that an elegant rule called maximum Nash welfare (MNW) satisfies

EF1 and PO simultaneously. Informally, this rule maximizes the

product of utilities of the agents for their assigned bundles, i.e.,∏
𝑖 𝑣𝑖 (x𝑖). Due to its attractive properties, MNW has been deployed

to the popular fair division website Spliddit.org, where it has been

used by more than 10,000 people for applications such as dividing

estates and settling divorces [35]. Unfortunately, MNW has no

natural equivalent for chores, and whether an EF1 and PO allocation

of chores always exists has remained a major open question.

To make progress in resolving this problem, we look towards

restricted families of utility functions. An example is the class of

binary utilities, in which all valuations are in {0,−1}. For allocating
goods, the corresponding class of {0, 1}-utilities is interesting and

well-understood [10, 28]. But for allocating chores, this class is

trivial: first allocate any chore for which some agent has utility 0

to such an agent; then all agents have utility −1 for all remaining

chores, and we can allocate them as equally as possible to obtain

an EF1 + PO allocation.

A larger class is that of bivalued utilities, where all valuations

are in {𝑎, 𝑏}, for some fixed 0 > 𝑎 > 𝑏. The corresponding class for

goods (with 0 < 𝑎 < 𝑏) has already received significant attention in

the literature [1, 5, 23], where it has been used to achieve fairness

guarantees stronger than EF1 [2]. This class seems interesting for

practical applications: when eliciting agent preferences, it is often

cumbersome for agents to submit exact numerical utilities. Instead,

it is much easier to ask each agent to classify chores into easy and

difficult ones, with an interface familiar from approval voting. Then,

one can fix reasonable values of 𝑎 and 𝑏, and assume that all agents

have utility 𝑎 for the chores they consider to be easy and 𝑏 for the

ones they consider to be difficult.

For our results, scaling an agent’s utilities multiplicatively makes

no difference. Hence, bivalued utilities for chores can also be thought

Main Track AAMAS 2022, May 9–13, 2022, Online

372

http://www.spliddit.org

of as having utilities in {−1,−𝑝} for some number 𝑝 = 𝑏
𝑎 > 1 (or

{1, 𝑝} for goods). Our main contribution is to show that EF1 and

PO allocations of chores always exist under bivalued utilities, and

that such an allocation can be found in polynomial time. We obtain

this result via an algorithm based on Fisher markets. We borrow

ideas from the existing Fisher-market-based algorithm for finding

an EF1 and PO allocation of goods [9, 23], but combine it with a

more intricate analysis and new techniques that are key to making

the algorithm work for chores. In simultaneous independent work,

Garg et al. [25] obtained the same result, also via Fisher markets.

1.2 Maximin Share Fairness (MMS)
In addition to envy-freeness up to one good (EF1), we consider

another popular relaxation of envy-freeness called maximin share
fairness (MMS) [15]. This notionwants to give each agent 𝑖 at least as

much utility as the maximum that 𝑖 can achieve by partitioning the

items into 𝑛 bundles and receiving her least preferred bundle from

that partition. For general additive valuations, an MMS allocation

may not exist for goods [32] or for chores [7]. Thus, we again turn

to restricted utility classes that allow us to guarantee MMS.

We first consider personalized bivalued utilities, where the valua-
tions of each agent 𝑖 for the chores (resp., goods) lie in {−1,−𝑝𝑖 }
(resp., {1, 𝑝𝑖 }) for some 𝑝𝑖 > 1. The value 𝑝𝑖 can differ between

agents. To elicit such valuations, one can ask each agent 𝑖 to first

partition the chores into easy and difficult ones (resp., goods into

ordinary and preferred ones) using an approval interface, and then

submit a number 𝑝𝑖 indicating how many easy chores they would

do instead of a single difficult one (resp., how many ordinary goods

they would take in place of a single preferred one). We show that

for personalized bivalued utilities, for both goods and chores, an

allocation satisfyingMMS always exists and can be found in polyno-

mial time, provided that 𝑝𝑖 is an integer for each agent 𝑖 . Integrality

would be the natural outcome of the aforementioned elicitation.

Whether MMS can be guaranteed for non-integral 𝑝𝑖 remains an

open question. For (non-personalized) bivalued utilities, we can

compute in polynomial time an MMS allocation that is also PO.

We also prove the existence of MMS allocations for weakly lexi-
cographic utilities, for both goods and chores. Weakly lexicographic

utilities are a natural assumption if valuations are elicited by a

system that asks agents to rank the items in order of desirability,

allowing for ties. The defining assumption is that an agent likes

each good (resp., dislikes each chore) more than all strictly less pre-

ferred goods (resp., more preferred chores) combined. Such utility

functions, which we refer to as weakly lexicographic utilities, have

been considered in the literature [4]. We prove that for these utili-

ties, an allocation that satisfies both MMS and PO always exists and

can be computed in polynomial time. Hosseini et al. [29] prove this

for the special case of allocating goods under (strictly) lexicographic
utilities (in which there are no ties); our result extends theirs to

allocating goods or chores under weakly lexicographic utilities.

Both of our MMS existence results depend on a simple algorithm

for computing MMS values (i.e., the utility value guaranteed by the

MMS property on a given instance). Computing these values is NP-

hard for both goods and chores under general additive valuations

(being a special case of the 3-Partition problem [21, p. 224]), but

we show that it can be done in polynomial time for factored utility

functions, which includes both personalized bivalued and weakly

lexicographic utilities as special cases. A utility function is factored

if the non-zero utility values, say 𝑝1, . . . , 𝑝𝑘 , that it uses are such

that 𝑝 𝑗+1 is an integer multiple of 𝑝 𝑗 for each 𝑗 ∈ [𝑘 − 1]; examples

are {1, 2, 6, 12}-valuations and {0,−1,−5,−45}-valuations.
Figure 1 shows the utility classes that we study, together with

relevant results, both known and new. Due to space constraints,

proofs are omitted and can be found in the full version [18].

1.3 Related Work
Let us summarize a few related threads of work on fair allocation

of goods and chores to better contextualize our contributions.

Fisher market. As mentioned earlier, we achieve our main result

— an EF1 + PO allocation of chores with bivalued utilities — using

the framework of Fisher markets and competitive equilibria. Fisher

markets are typically studied for items that are divisible, i.e., that
can be portioned out fractionally between the agents. In this case,

a Fisher market equilibrium allocation exists and is EF + PO [36].

For goods, these allocation happen to be those that maximize the

Nash welfare, and they can be computed in strongly polynomial

time [17, 34]. For chores, the set of equilibria has a more intri-

cate structure [11] and their computation is an open question [14];

Boodaghians et al. [12] design an FPTAS for this problem. One issue

with chore allocation is that neither minimizing nor maximizing the

product of agents’ costs for their assigned bundles (the equivalent

of the Nash welfare objective for goods) yields a desirable alloca-

tion. However, Bogomolnaia et al. [11] show that maximizing this

objective subject to PO yields one of the aforementioned equilibria.

Unfortunately, the natural analog of this rule for indivisible chores

fails EF1, even for bivalued utilities. Barman et al. [9] adapt Fisher

markets to indivisible goods. They use this framework to show

that an EF1 + PO allocation can be found in pseudo-polynomial

time. Garg and Murhekar [23] improve the running time to strongly

polynomial when each agent has at most polynomially many utility

levels across all bundles of goods. The Fisher market approach has

also been used to obtain efficient allocations that are proportional

up to one item (PROP1) for both goods [8] and chores [14].

Factored bivalued utilities and max Nash welfare. The special
case of bivalued utilities in which the utility values lie in {𝑎, 𝑏} for
|𝑎 | < |𝑏 | and𝑏/𝑎 is an integer (whichwe refer to as factored bivalued
utilities) has been studied in the context of allocating goods. The

maximum Nash welfare (MNW) rule is NP-hard to compute for

general additive utilities [16], while Barman et al. [10] show that

it can be computed in polynomial time for binary ({0, 1}) utilities.
For bivalued utilities, its computability was an open question until

recently when Akrami et al. [1] established a surprising dichotomy:

it is polynomial-time computable when 𝑏/𝑎 is an integer (factored

bivalued utilities) but NP-hard to compute if 𝑎 and 𝑏 are coprime.

MMS. For allocating goods, Kurokawa et al. [32] show that there

exists an instance with additive utilities in which no allocation satis-

fies MMS. This motivates two threads of work. One, similarly to our

work, focuses on establishing the existence (and sometimes efficient

computability) of MMS allocations under restricted utility classes

such as utility functions with identical multisets [13], (strictly)

lexicographic utilities [29], and ternary ({0, 1, 2}) utilities [2]. We

Main Track AAMAS 2022, May 9–13, 2022, Online

373

additive

bivalued factored

factored bivalued weakly lexicographic

binary lexicographic

✓ EF1 + PO for goods; open for chores

✓ EF1 + PO for chores

✓ MMS + PO

✓ EFX + MMS + PO

MMS may not exist; MMS values NP-hard

MMS values in poly time

✓ MMS + PO

✓ EFX + MMS + PO for goods

Figure 1: Hasse diagram of valuation classes and results. Shaded blue nodes are new results of this paper, boxed results are
known. Checkmarks (✓) denote existence results, which all come with polynomial-time algorithms. Results hold for both
goods and chores unless otherwise indicated.

argued in the introduction that 0-utilities can be easily dealt with

for chores, so our bivalued result also works for {0,−1,−2}-utilities,
mirroring the result of Amanatidis et al. [2]. The other thread fo-

cuses on approximating the MMS guarantee for general additive

utilities: the best known multiplicative approximations are (slightly

better than) 3/4 for goods [26] and 9/11 for chores [30].

2 PRELIMINARIES
For 𝑘 ∈ N, define [𝑘] = {1, . . . , 𝑘}.
Instances: A fair division instance is given by 𝐼 = (N ,M, v), where
N = [𝑛] is a set of 𝑛 agents,M is a set of𝑚 indivisible items, and

v = (𝑣1, . . . , 𝑣𝑛) is the utility profile with 𝑣𝑖 : M → R being the

utility function of agent 𝑖 and 𝑣𝑖 (𝑟) indicating 𝑖’s utility for item 𝑟 .

In this work, we assume that either all items are goods for all
agents (i.e., 𝑣𝑖 (𝑟) ⩾ 0 for all 𝑖 ∈ N and 𝑟 ∈ M), in which case we

refer to 𝐼 as a goods division instance, or all items are chores for all
agents (i.e., 𝑣𝑖 (𝑟) ⩽ 0 for all 𝑖 ∈ N and 𝑟 ∈ M), in which case we

refer to 𝐼 as a chore division instance.

We focus our attention to the class of additive utility functions,

in which the utility of agent 𝑖 for a set of items 𝑆 ⊆ M is given by,

with slight abuse of notation, 𝑣𝑖 (𝑆) =
∑
𝑟 ∈𝑆 𝑣𝑖 (𝑟). We are interested

in the following subclasses of additive utilities. Let 𝑣 denote an

additive utility function over a set of itemsM in a goods division

or chore division instance.

Definition 2.1 (Factored utilities). We say that a utility function

𝑣 : M → {0, 𝑝1, . . . , 𝑝𝑘 } ⊂ Z is factored if 𝑝 𝑗 divides 𝑝 𝑗+1 (i.e.,

𝑝 𝑗+1 = 𝑞 · 𝑝 𝑗 for some 𝑞 ∈ N>0) for each 𝑗 ∈ [𝑘 − 1].
Definition 2.2 (Weakly lexicographic utilities). We say that 𝑣 is

weakly lexicographic if there is a partition (𝐿1, . . . , 𝐿𝑘) ofM with

(1) ∀𝑖 ∈ [𝑘] and 𝑟, 𝑟 ′ ∈ 𝐿𝑖 , we have |𝑣 (𝑟) | = |𝑣 (𝑟 ′) | > 0, and

(2) ∀𝑖 ∈ [𝑘] and 𝑟 ∈ 𝐿𝑖 , we have |𝑣 (𝑟) | > |
∑
𝑟 ′∈𝐿𝑖+1∪...∪𝐿𝑘 𝑣 (𝑟

′) |.
Further, if 𝑘 =𝑚, then we say that 𝑣 is (strictly) lexicographic.

Weakly lexicographic utilities can be seen as a special case of

factored utilities, as we may assume that |𝑣𝑖 (𝑟) | is a power of𝑚.

The following lemma shows that we can make that assumption

without changing the ordinal preferences over bundles. All proofs

in the paper can be found in the full version [18].

Lemma 2.3. Let 𝑣 be a weakly lexicographic utility function over
a set of itemsM. Then, there exists a weakly lexicographic factored
utility function 𝑣 ′ given by 𝑣 ′ : M → {1,𝑚,𝑚2, . . .} for goods or

𝑣 ′ :M → {−1,−𝑚,−𝑚2, . . .} for chores such that 𝑣 (𝑆) ⩽ 𝑣 (𝑆 ′) ⇔
𝑣 ′ (𝑆) ⩽ 𝑣 ′ (𝑆 ′) for all 𝑆, 𝑆 ′ ⊆ M.

Definition 2.4 (Bivalued utilities). We say that 𝑣 is bivalued if

there are non-zero 𝑎, 𝑏 ∈ R such that 𝑣 (𝑟) ∈ {𝑎, 𝑏} for all 𝑟 ∈ M. In

case of goods, we will use the convention 0 < 𝑎 < 𝑏, and in case of

chores, we will use the convention 0 > 𝑎 > 𝑏. Further, if 𝑎 divides

𝑏, we say that 𝑣 is factored bivalued.

We say that a goods division or chore division instance has

factored (resp., weakly lexicographic) utilities if every agent has a

factored (resp., weakly lexicographic) utility function. The instance

has bivalued utilities if all agents have bivalued utilities for some

common 𝑎, 𝑏 (i.e., there exist 𝑎, 𝑏 such that 𝑣𝑖 (𝑟) ∈ {𝑎, 𝑏} for all 𝑖, 𝑟).
The instance has personalized bivalued utilities if each agent 𝑖 has a

bivalued utility function (perhaps with personalized 𝑎𝑖 , 𝑏𝑖).
1

Allocations: An allocation x = (x1, . . . , x𝑛) is a collection of bun-

dles x𝑖 ⊆ M, one for each agent 𝑖 ∈ N , such that the bundles are

pairwise disjoint (x𝑖 ∩ x𝑗 = ∅ for all distinct 𝑖, 𝑗 ∈ N) and every

item is allocated (

⋃
𝑖∈N x𝑖 =M).

Fairness and Efficiency Desiderata: We study two prominent

fairness notions for the allocation of indivisible items, known as

envy-freeness up to one item [15, 16, 33] and maximin share fair-

ness [15, 32]. These are respectively relaxations of the classical

notions of envy-freeness and of proportionality. We give defini-

tions that work for both goods and chores [6].

Definition 2.5 (Envy-freeness up to one item). An integral allo-

cation x is said to be envy-free up to one item (EF1) if, for every

pair of agents 𝑖, 𝑗 ∈ N such that x𝑖 ∪ x𝑗 ≠ ∅, there exists an item

𝑟 ∈ x𝑖 ∪ x𝑗 such that 𝑣𝑖 (x𝑖 \ {𝑟 }) ⩾ 𝑣𝑖 (x𝑗 \ {𝑟 }).

In a goods division problem, this reduces to 𝑣𝑖 (x𝑖) ⩾ 𝑣𝑖 (x𝑗 \ {𝑔})
for some good 𝑔 ∈ x𝑗 (a good removed from the bundle of agent 𝑗),

while in a chore division problem, it reduces to 𝑣𝑖 (x𝑖 \{𝑐}) ⩾ 𝑣𝑖 (x𝑗)
for some 𝑐 ∈ x𝑖 (a chore removed from the bundle of agent 𝑖).

Definition 2.6 (Maximin share fairness). For 𝑘 ∈ N, let P𝑘 (M)
be the set of all partitions ofM into 𝑘 bundles. For agent 𝑖 ∈ N , let

MMS
𝑘
𝑖
= max(𝑆1,...,𝑆𝑘) ∈P𝑘 (M) min𝑡 ∈[𝑘] 𝑣𝑖 (𝑆𝑡).

Note that this is the maximum utility she can obtain by partitioning

the items into 𝑘 bundles and receiving the least valued bundle. We

1
Personalized bivalued utilities are a special case of 𝑘-ary utilities [24].

Main Track AAMAS 2022, May 9–13, 2022, Online

374

refer to an optimal partition (𝑆1, . . . , 𝑆𝑘) in the above equation as a

maximin 𝑘-partition for agent 𝑖 . The maximin share of agent 𝑖 ∈ N
is defined as MMS

𝑛
𝑖
. For simplicity of notation, we write MMS

𝑛
𝑖
as

MMS𝑖 and refer to a maximin 𝑛-partition as a maximin partition.
An allocation x is said to be maximin share fair (MMS) if each

agent receives at least as much utility as her maximin share, i.e., if

𝑣𝑖 (x𝑖) ⩾ MMS𝑖 for each agent 𝑖 ∈ N .

Finally, we define a prominent notion of economic efficiency.

Definition 2.7 (Pareto optimality). We say that allocation x is

Pareto dominated by allocation x′ if 𝑣𝑖 (x𝑖) ⩽ 𝑣𝑖 (x′𝑖) for every agent

𝑖 ∈ N and at least one inequality is strict. An allocation x is said to

be Pareto optimal (PO) if it is not Pareto dominated by any allocation.

3 EF1 + PO FOR BIVALUED CHORES
In this section, we present a polynomial-time algorithm that finds

an EF1 and PO allocation for chore division instances with bivalued

utilities, thereby also establishing the existence of such allocations.

Specifically, we scale agent utilities such that for some 𝑝 > 1, the

utility of each agent 𝑖 for every chore 𝑐 is 𝑣𝑖 (𝑐) ∈ {−1,−𝑝}. Further,
if some agent 𝑖 has 𝑣𝑖 (𝑐) = −𝑝 for all chores 𝑐 , then we will scale

this so that 𝑣𝑖 (𝑐) = −1 for all chores 𝑐 . This will ensure that each
agent values at least one chore at −1. Recall that scaling the utilities
of any agent does not affect whether an allocation is EF1 or PO.

Our algorithm builds on the algorithm by Barman et al. [9] for

finding an EF1 and PO allocation of goods. Their algorithm starts

with a PO allocation and then moves items around until it is EF1,

while maintaining that the allocation is PO at every step. Pareto

optimality is maintained in the algorithm by ensuring that the

allocation remains an equilibrium in a Fisher market. Thus, we start
by introducing some basic concepts about Fisher markets.

3.1 Fisher Markets for Chore Division
A price vector p assigns a price p(𝑐) > 0 to each chore 𝑐 . For a

subset 𝑆 ⊆ M of chores, we write p(𝑆) = ∑
𝑐∈𝑆 p(𝑐). Given this

price vector, the pain per buck (PB) ratio of agent 𝑖 for chore 𝑐 is

defined as PB𝑖 (𝑐) = |𝑣𝑖 (𝑐) |p(𝑐) , and the minimum pain per buck (MPB)

ratio of agent 𝑖 is defined as MPB𝑖 = min𝑐∈M PB𝑖 (𝑐). A chore 𝑐

with PB𝑖 (𝑐) = MPB𝑖 is called an MPB chore for agent 𝑖 .

Definition 3.1. A pair (x, p) of an allocation x and a price vector

p is a (Fisher market) equilibrium if each agent is allocated only her

MPB chores, i.e., if PB𝑖 (𝑐) = MPB𝑖 for all 𝑖 ∈ N and all 𝑐 ∈ x𝑖 .
We say that x is an equilibrium allocation if (x, p) is an equilib-

rium for some price vector p. The following is known to hold by

the so-called first welfare theorem.

Proposition 3.2. Every equilibrium allocation is Pareto optimal.

In fact, a stronger statement is true: every equilibrium alloca-

tion is fractionally Pareto optimal (fPO), which means it is not even

Pareto dominated by a fractional allocation [9]. Moreover, a second

welfare theorem shows that every fPO allocation arises as an equi-

librium allocation [9]. For the special case of bivalued utilities, it

turns out that that PO and fPO are equivalent.

Theorem 3.3. Given a goods or chore division problem with bi-
valued utilities, an allocation x is Pareto optimal if and only if it is
fractionally Pareto optimal.

Thus, the stronger efficiency guarantee fPO that Fisher markets

provide does not have bite in our setting. Conversely, though, this

equivalence means that any method that identifies a PO allocation

for bivalued utilities must implicitly calculate an equilibrium.

As an invariant, our algorithmwill keep the considered allocation

an equilibrium. Our aim is to find a fair equilibrium, by which we

will mean that the prices of agents’ bundles are approximately

equal. This notion is an adaption to the chores case of a property

introduced by Barman et al. [9].

Definition 3.4 (Price envy-freeness up to one item). We say that

(x, p) is price envy-free up to one item (pEF1) if, for all 𝑖, 𝑗 ∈ N with

x𝑖 ≠ ∅, there is a chore 𝑐 ∈ x𝑖 such that p(x𝑖 \ {𝑐}) ⩽ p(x𝑗).
Like for the goods division case [9], pEF1 implies EF1.

Lemma 3.5. If (x, p) is a pEF1 equilibrium, then x is EF1.

For 𝑆 ⊆ M, define pup to 1 (𝑆) = p(𝑆) − max𝑐∈𝑆 p(𝑐), if 𝑆 ≠ ∅,
and 0 if 𝑆 = ∅. We often write ls ∈ N for the least spender, i.e., an
agent ls ∈ argmin𝑖∈N p(x𝑖). Then we see that (x, p) is pEF1 if and
only if pup to 1 (x𝑖) ⩽ p(x

ls
) for all 𝑖 ∈ N . Let us call an agent 𝑖 ∈ N

a violator if pup to 1 (x𝑖) > p(x
ls
). Thus, (x, p) is pEF1 if and only if

no agent is a violator.

Given an equilibrium (x, p), we write 𝑗
𝑐← 𝑖 if agent 𝑖 owns item

𝑐 (so 𝑐 ∈ x𝑖) and 𝑐 is an MPB chore for 𝑗 . Thus, if we have 𝑗
𝑐← 𝑖

then the allocation x′ obtained from x by transferring item 𝑐 from

𝑖 to 𝑗 is still an equilibrium.

Definition 3.6 (MPB alternating path). An MPB alternating path
of length ℓ from 𝑖ℓ to 𝑖0 is a sequence 𝑖0

𝑐1← 𝑖1
𝑐2← · · · 𝑐ℓ← 𝑖ℓ .

If there exists an MPB alternating path from 𝑖ℓ to 𝑖0, we write

𝑖0 {𝑖ℓ . We always have 𝑖0 {𝑖0.

3.2 Algorithm
We now present Algorithm 1 which computes an PO and EF1 allo-

cation given a chore division instance with bivalued utilities.

Theorem 3.7. Given a chore division problem 𝐼 = (N ,M, v)
with bivalued utilities, Algorithm 1 finds a PO and EF1 allocation in
poly(𝑛,𝑚) time.

The algorithm starts with an (x, p) that is guaranteed to be an

equilibrium. Then, it proceeds in iterations. The value 𝑘 , maintained

by the algorithm, signifies the current iteration number. In each

iteration 𝑘 , the algorithm goes through Phases 2a, 2b, and 3 (except

that in the final iteration the algorithm terminates after Phase 2b).

During Phases 2a and 2b, the algorithm keeps the price vector p
fixed and updates the allocation x, and in the subsequent Phase 3,

it then keeps the allocation x fixed, identifies a certain set 𝐻𝑘 of

agents and updates the price vector p by reducing the prices of the

chores allocated to 𝐻𝑘 by a multiplicative factor 𝛼 .

A key property of our algorithm is that it ensures that the sets

𝐻𝑘 are disjoint across different iterations. This helps prove that

our algorithm always terminates after at most 𝑛 iterations, since

each 𝐻𝑘 contains at least one agent. This property differentiates

our algorithm from the algorithm of Barman et al. [9] for allocating

goods and requires us to introduce Phase 2a, which is not present

in their algorithm. Phase 2b, on the other hand, is very similar to

Phase 2 in their algorithm.

Main Track AAMAS 2022, May 9–13, 2022, Online

375

ALGORITHM 1: EF1 + PO for Bivalued Chores

1 Phase 1 Initialization
2 Let x be an allocation maximizing social welfare

∑
𝑖∈N 𝑣𝑖 (x𝑖) .

3 For each 𝑐 ∈ M, let p𝑐 = 𝑝 · |max𝑖∈N 𝑣𝑖 (𝑐) |
4 𝑘 ← 1, the number of the current iteration

5 Phase 2a Reallocate chores
6 for ℓ ∈ (𝑘 − 2, 𝑘 − 3, . . . , 2, 1) do
7 while true do
8 𝑖 ← an agent from argmax𝑖∈𝐻ℓ pup to 1 (x𝑖)
9 𝑗 ← an agent from argmin𝑗 ∈𝐻ℓ+1∪···∪𝐻𝑘−1 p(x𝑗)

10 if pup to 1 (x𝑖) > p(x𝑗) then
11 𝑐 ← any item from x𝑖 \ entitled(𝑖)
12 Transfer 𝑐 from 𝑖 to 𝑗

13 else
14 break
15 Phase 2b Reallocate chores
16 while true do
17 ls← an agent from argmin𝑖∈N p(x𝑖)
18 if there is an MPB alternating path ls

𝑐1← 𝑖1
𝑐2← · · ·

𝑐ℓ← 𝑖ℓ with
pup to 1 (x𝑖ℓ) > p(x

ls
) then

19 Choose such a path of minimum length ℓ

20 Transfer 𝑐ℓ from 𝑖ℓ to 𝑖ℓ−1
21 else
22 break
23 if x satisfies pEF1 then
24 return x
25 Phase 3 Price reduction
26 𝐻𝑘 ← {𝑖 ∈ N :

there is an agent ls ∈ argmin𝑖∈N p(x𝑖) with ls {𝑖 }
27 ▶ Timestamp: 𝑡𝑘,𝑏

28 𝛼 ← min{PB𝑖 (𝑐)/MPB𝑖 : 𝑖 ∈ 𝐻𝑘 , 𝑐 ∈
⋃

𝑗 ∈N\𝐻𝑘
x𝑗 }

29 for 𝑖 ∈ 𝐻𝑘 do
30 entitled(𝑖) ← x𝑖
31 for 𝑐 ∈ x𝑖 do
32 p𝑐 ← 1

𝛼
· p𝑐

33 ▶ Timestamp: 𝑡𝑘,𝑎

34 𝑘 ← 𝑘 + 1
35 Start Phase 2a (i.e. go to line 5)

Another key ingredient of our algorithm is that once an agent 𝑖

is assigned to a set 𝐻𝑘 , the chores assigned to 𝑖 at that time become

entitled chores of agent 𝑖 , denoted entitled(𝑖). These are the chores
which went through a price reduction while they were allocated to

agent 𝑖 . Subsequently the algorithm will never move the entitled

chores away from 𝑖 . Finally, in order to reason about the equilibria at

different times during the execution of the algorithm, we timestamp

important steps of the algorithm: 𝑡𝑘,𝑏 and 𝑡𝑘,𝑎 denote the time right

before and right after the execution of Phase 3 in iteration 𝑘 .

We prove the correctness of the algorithm by induction on 𝑘 . We

claim that for all 𝑘 ⩾ 1 such that Algorithm 1 reaches time 𝑡𝑘,𝑎 ,

(H1) 𝐻𝑘 ∩ 𝐻ℓ = ∅ for all 1 ⩽ ℓ < 𝑘 .

(H2) During iteration 𝑘 , each time the algorithm reaches line 11,

there exists a chore 𝑐 ∈ x𝑖 \ entitled(𝑖). All such chores are

MPB chores for agent 𝑗 .

(H3) At time 𝑡𝑘,𝑏 , each 𝑖 ∈ 𝐻1 ∪ · · · ∪ 𝐻𝑘 is not a violator, so

pup to 1 (x𝑖) ⩽ p(x
ls
) where ls is the least spender.

(H4) At time 𝑡𝑘,𝑎 , each 𝑖 ∈ 𝐻1 ∪ · · · ∪𝐻𝑘 owns every entitled item,

entitled(𝑖) ⊆ x𝑖 .
(H5) When line 28 is reached during iteration 𝑘 , 𝛼 is set to 𝑝 .

(H6) At time 𝑡𝑘,𝑎 , we have p(𝑐) ∈ {1, 𝑝} for all 𝑐 ∈ M. If p(𝑐) = 1,

then 𝑐 ∈ entitled(𝑖) for some 𝑖 ∈ 𝐻1 ∪ · · · ∪ 𝐻𝑘 .

(H7) At time 𝑡𝑘,𝑎 , we haveMPB𝑖 = 1 for all 𝑖 ∈ 𝐻1 ∪ · · · ∪𝐻𝑘 , and

MPB𝑖 = 1/𝑝 for all other agents.

Let us first check that these statements together imply that (x, p)
remains an equilibrium throughout the execution of the algorithm,

and that the algorithm terminates in polynomial time, in line 24.

Then (x, p) is an equilibrium satisfying pEF1, and thus we have

found an PO and EF1 allocation, as required.

Lemma 3.8. Assume that (H1) to (H7) hold for all 𝑘 ⩾ 1 such
that Algorithm 1 reaches time 𝑡𝑘,𝑎 . Then, throughout the algorithm’s
execution, (x, p) is an equilibrium.

For the statement about termination, we need a few properties

of Phase 2b of the algorithm, which is very similar to Phase 2 of

the original algorithm due to Barman et al. [9].

Lemma 3.9 (Properties of Phase 2b). Consider a run of Phase
2b, and assume that (x, p) is an equilibrium at the start of the run.

(1) The run terminates after poly(𝑛,𝑚) time.
(2) Least spending min𝑖∈N p(x𝑖) never decreases during the run.

Assuming the induction hypotheses and using the lemmas men-

tioned above, we can now prove that the algorithm terminates, and

is hence correct.

Lemma 3.10. Assume that (H1) to (H7) hold for all 𝑘 ⩾ 1 such
that Algorithm 1 reaches time 𝑡𝑘,𝑎 . Then the algorithm terminates in
polynomial time and returns a pEF1 equilibrium.

We now turn to proving our induction hypotheses. Recall that

we prove them by induction on the iteration number 𝑘 . First, let us

prove them in the base of 𝑘 = 1.

Lemma 3.11 (Base case). (H1) to (H7) hold for 𝑘 = 1.

From now on, we assume that (H1) to (H7) hold for all ℓ with

1 ⩽ ℓ ⩽ 𝑘 for some 𝑘 ⩾ 1. Our goal is to show that (H1) to (H7)

hold for iteration 𝑘 + 1.
The next lemma proves the usefulness of Phase 2a, which is that

at the end of this phase, no agent in 𝐻1 ∪ · · · ∪ 𝐻𝑘 (i.e., no agent

who has gone through a price reduction) can be a violator.

Lemma 3.12. Let 𝑡mid denote the time when the algorithm reaches
line 16 in iteration 𝑘 + 1, i.e. when Phase 2a ends and Phase 2b begins.
We claim that at time 𝑡mid, no agent in 𝐻1 ∪ · · · ∪ 𝐻𝑘 is a violator.

The next lemma proves a useful guarantee for Phase 2b.

Lemma 3.13. During the execution of Phase 2b in iteration 𝑘 + 1,
no entitled items are transferred. Further, at the end of Phase 2b, no
agent 𝑖 ∈ 𝐻1 ∪ · · · ∪ 𝐻𝑘 is a violator.

Finally, we prove the induction step of our induction hypotheses.

Lemma 3.14. Suppose Algorithm 1 reaches time 𝑡𝑘+1,𝑎 . Then (H1)
to (H7) hold for 𝑘 + 1.

Main Track AAMAS 2022, May 9–13, 2022, Online

376

12

x1 x2 x3 x4
Step 1

12

6

x1 x2 x3 x4
Step 2

12

6 6

x1 x2 x3 x4
Step 3

12

6 6

3

x1 x2 x3 x4
Step 4

12

6 6

3

3

x1 x2 x3 x4
Step 5

12

6

3

6

3

3

x1 x2 x3 x4
Step 6

12

6

3

6

3

3

3

x1 x2 x3 x4
Step 7

12

6

3

6

3

3

3

1

x1 x2 x3 x4
Step 8

12

6

3

6

3

3

3

1

1

x1 x2 x3 x4
Step 9

Figure 2: An execution of Algorithm 2 to obtain a maximin 4-partition for the factored utility function 𝑣 = (12, 6, 6, 3, 3, 3, 3, 1, 1).
For each step, the gray box indicates the item placed by the algorithm in that step.

4 MMS UNDER RESTRICTED UTILITIES
As discussed earlier, MMS allocations are not guaranteed to exist

for arbitrary additive utilities. Prior work on allocating goods es-

tablishes that they always exist for binary utilities [13] and strictly

lexicographic utilities [29].We generalize these results to the classes

of weakly lexicographic and factored personalized bivalued utilities.

The following theorem summarizes our main result of this section.

Theorem 4.1. In every goods or chore division instance with weakly
lexicographic or factored personalized bivalued utilities, an MMS al-
location always exists and can be computed in polynomial time.

4.1 Ordered Instances and Valid Reductions
Let us begin by reviewing two basic techniques which are com-

monly used in the literature on computingMMS allocations. Through-

out this section, we let N = [𝑛] andM = [𝑚].

4.1.1 Ordered Instances. Bouveret and Lemaître [13, Prop. 14]

show that when dealing with MMS allocations, one can assume,

without loss of generality, that all agents have the same preference

ranking over the items. This result was originally stated for goods,

but the same proof works for chores as well.

Lemma 4.2 ([13]). Let 𝐼 = (N ,M, v) be a goods or chore division
instance. Let 𝐼 ′ = (N ,M, v′) be an ordered instance where, for each
𝑖 ∈ N , 𝑣 ′

𝑖
is a permutation of 𝑣𝑖 such that |𝑣 ′

𝑖
(1) | ⩾ . . . ⩾ |𝑣 ′

𝑖
(𝑚) |. If

x′ is an MMS allocation for 𝐼 ′, then there exists an MMS allocation x
for 𝐼 . Given x′, one can compute x in polynomial time.

Given Lemma 4.2, wewill assume that all instances in this section

(except in Section 4.5, where our goal is to achieve PO in conjunction

with MMS) are ordered instances. Specifically, we will assume that

|𝑣𝑖 (1) | ⩾ . . . ⩾ |𝑣𝑖 (𝑚) | for each agent 𝑖 ∈ N .

4.1.2 Valid Reductions. Another common idea used in the liter-

ature on finding (approximate) MMS allocations is that of valid
reductions [3, 22, 26, 27, 31, 32].

Definition 4.3 (Valid Reduction). Let 𝐼 = (N ,M, v) be a goods or
chore division instance, 𝑖 ∈ N be an agent, and 𝑆 ⊆ M be a subset

of items. The pair (𝑖, 𝑆) is a valid reduction if

(1) 𝑣𝑖 (𝑆) ⩾ MMS
𝑛
𝑖
(M), and

(2) MMS
𝑛−1
𝑗
(M \ 𝑆) ⩾ MMS

𝑛
𝑗
(M) for all 𝑗 ∈ N \ {𝑖}.

If (𝑖, 𝑆) is a valid reduction, we can allocate bundle 𝑆 to agent

𝑖 , and ignore 𝑖 and 𝑆 subsequently. Formally, consider the reduced

instance 𝐼 ′ = (N \ {𝑖},M\𝑆, v) obtained from 𝐼 by removing 𝑖 and

𝑆 . Then if x′ is an MMS allocation for 𝐼 ′, then the allocation x with

x𝑖 = 𝑆 and x𝑗 = x′
𝑗
for all 𝑗 ≠ 𝑖 is an MMS allocation for 𝐼 . This

holds because agent 𝑖 receives her MMS value in x by (1), and for

any other agent 𝑗 , 𝑣 𝑗 (x′𝑗) ⩾ MMS
𝑛−1
𝑗
(M \ 𝑆) ⩾ MMS

𝑛
𝑗
(M) by (2).

Our proofs for both goods and chore division under both weakly

lexicographic and factored personalized bivalued utilities work in

the same fashion: we show that every instance admits a valid reduc-

tion which can be computed efficiently. The next lemma identifies

one of the ways of finding a valid reduction.

Lemma 4.4. For a goods or chore division instance 𝐼 = (N ,M, v),
the pair (𝑖, 𝑆), where 𝑖 ∈ N and 𝑆 ⊆ M is a valid reduction if
𝑣𝑖 (𝑆) ⩾ MMS

𝑛
𝑖
(M) and, for all agents 𝑖′ ∈ N \ {𝑖}, there is a

maximin 𝑛-partition 𝑃𝑖′ = (𝑆 ′
1
, . . . , 𝑆 ′𝑛) of agent 𝑖′ and a bundle

𝑆 ′ ∈ 𝑃𝑖′ with 𝑆 ⊆ 𝑆 ′ for goods division and 𝑆 ⊇ 𝑆 ′ for chore division.

4.2 Exact MMS Value for Factored Utilities
Note that in order to check the validity of a reduction (𝑖, 𝑆) via
Lemma 4.4, we need to relate 𝑆 to one of the bundles in a maximin

𝑛-partition of every agent other than 𝑖 . For this, we need to reason

about what a maximin 𝑛-partition looks like for an agent. We show

that in any goods or chore division instance with factored utilities

(which covers weakly lexicographic and personalized factored bi-

valued utilities as special cases), a maximin 𝑛-partition of an agent

(and hence, her MMS value) can be computed efficiently. This is in

sharp contrast to the case of general additive utilities, for which the

problem is known to be NP-hard for both goods and chores [21].

Algorithm 2 works for both goods division and chore division. It

considers items in nonincreasing order of their absolute value and

greedily assigns them to a bundle with lowest total absolute value.

Figure 2 shows the execution of the algorithm on an example.

ALGORITHM 2: Compute a maximin 𝑛-partition for a factored utility

function 𝑣

1 x← (x𝑖 = ∅)𝑖∈N // x denotes a partial allocation

2 for 𝑟 ∈ M in a nonincreasing order of |𝑣 (𝑟) | do
3 𝑘∗ ← argmin𝑘∈N |𝑣 (x𝑘) |
4 x𝑘∗ ← x𝑘∗ ∪ {𝑟 }
5 return x

Main Track AAMAS 2022, May 9–13, 2022, Online

377

Lemma 4.5. Given a factored utility function 𝑣 over a set of items
M (all goods or all chores), Algorithm 2 efficiently computes a max-
imin 𝑛-partition ofM under 𝑣 .

When we assume our instance to be ordered, we will consider

the items in the standard order 1, . . . ,𝑚 in Algorithm 2. This will

allow us to reason about the exact indices of items allocated to

different bundles under Algorithm 2.

Algorithm 2 does not always work for utility functions 𝑣 that

are not factored. For example, let 𝑣 = (3, 3, 2, 2, 2) and 𝑛 = 2. The

algorithm produces the partition x1 = {3, 2, 2} and x2 = {3, 2},
for a minimum share of 5. However, the unique MMS partition is

x1 = {3, 3} and x2 = {2, 2, 2}, which achieves a maximin share of 6.

4.3 Weakly Lexicographic Utilities
We now present a valid reduction for weakly lexicographic utilities.

First, we introduce the concept of a “bad cut”. Recall that we work

with ordered instances in which |𝑣𝑖 (1) | ⩾ . . . ⩾ |𝑣𝑖 (𝑚) | for all 𝑖 .
Definition 4.6 (Bad Cuts). In a goods or chore division instance

𝐼 = (N ,M, v), we say that index 𝑘 ∈ [𝑚 − 1] is a cut of agent 𝑖 if
𝑣𝑖 (𝑘) ≠ 𝑣𝑖 (𝑘 + 1). Further, if 𝑘 is not a multiple of 𝑛, we say that it

is a bad cut of agent 𝑖 . Define 𝐶𝑖 to be the smallest bad cut of agent

𝑖; let 𝐶𝑖 =𝑚 if agent 𝑖 does not have any bad cuts.

𝑖 |𝑣1 | |𝑣2 | |𝑣3 | |𝑣4 | |𝑣5 | |𝑣6 | |𝑣7 | |𝑣8 | |𝑣9 | 𝐶𝑖

𝑖1 81 81 81 81|4 9 9 9|7 1 1 4

𝑖2 81 81 81|✓ 9 9 9|✓ 1 1 1 9

𝑖3 729|1 81 81 81|4 9 9 9|7 1 1 1

Table 1: An instance with weakly lexicographic utilities. Bad
cuts at index 𝑘 are shown as |𝑘 , and non-bad cuts as |✓ .

Example 4.7. The ordered instance described in Table 1 consists

of 𝑛 = 3 agents and𝑚 = 9 items. The cuts of 𝑖1, 𝑖2, and 𝑖3 are {4, 7},
{3, 6}, and {1, 4, 7} respectively. Here, a cut is considered a bad cut
if it is not divisible by 𝑛 = 3. Then, all cuts of 𝑖1 and 𝑖3 are bad while

𝑖2 has no bad cuts. Following the definition of𝐶𝑖 ’s, we have𝐶𝑖1 = 4,

𝐶𝑖2 =𝑚 = 9, and 𝐶𝑖3 = 1.

First, for any agent 𝑖 , we identify a specific bundle in a maximin

𝑛-partition of agent 𝑖 produced by Algorithm 2, in terms of 𝐶𝑖 .

Lemma 4.8. For a goods or chore division instance 𝐼 = (N ,M, v)
with weakly lexicographic utilities and agent 𝑖 ∈ N , there exists a
maximin 𝑛-partition of agent 𝑖 in which one of the bundles is 𝑆 =

{1, 𝑛 + 1, . . . , 𝑘𝑛 + 1}, where 𝑘 = ⌊(𝐶𝑖 − 1)/𝑛⌋.
Lemma 4.8 shows that in Example 4.7 there exists a maximin

3 partition for 𝑖1 where one of the bundles is {1, 4}. Same applies

to {1, 4, 7} and {1} for 𝑖1, 𝑖2 and 𝑖3 respectively. Following this

observation and assuming items here are all goods, allocating {1}
to 𝑖3 is a valid reduction by Lemma 4.4, because {1} is a subset

of the other two bundles described. If the items were chores, i.e.

values being costs, allocating {1, 4, 7} to 𝑖2 would have formed a

valid reduction.

Next, we show that if we choose an agent 𝑖 with the minimum

or maximum 𝐶𝑖 and the corresponding 𝑆 from Lemma 4.8, the pair

(𝑖, 𝑆) forms a valid reduction. Note that this valid reduction can be

found in polynomial time.

Lemma 4.9. For a goods (respectively, chore) division instance 𝐼 =
(N ,M, v) with weakly lexicographic utilities, the pair (𝑖, 𝑆) is a valid
reduction when 𝑖 is an agent with the minimum (resp., maximum)𝐶𝑖
and 𝑆 = {1, 𝑛 + 1, . . . , 𝑘𝑛 + 1}, where 𝑘 = ⌊(𝐶𝑖 − 1)/𝑛⌋.

4.4 Factored Personalized Bivalued Utilities
In this section, we present a valid reduction for factored personal-

ized bivalued utilities. Recall that we work with ordered instances.

Hence, for each agent 𝑖 , there exists 𝑘 ∈ [𝑚] such that |𝑣𝑖 (𝑟) | = 𝑝𝑖
for all 𝑟 ⩽ 𝑘 and |𝑣𝑖 (𝑟) | = 1 for all 𝑟 > 𝑘 . Thus, each agent 𝑖 has at

most one cut (𝑘 , if 𝑘 < 𝑚), and 𝐶𝑖 is equal to this cut (if it exists

and it is bad) and𝑚 otherwise. However, in this case, simply choos-

ing an agent 𝑖 with the minimum or maximum 𝐶𝑖 does not work.

Instead, we rely on a different metric, called “idle time”.

Definition 4.10 (Idle Time). In a goods or chore division instance

𝐼 = (N ,M, v) with factored personalized bivalued utilities, we

define 𝐴𝐶𝑖 as 0 if 𝐶𝑖 =𝑚 and as 𝑛 − (𝐶𝑖 mod 𝑛) otherwise. Let the
idle time of agent 𝑖 to be 𝑇 idle

𝑖
= min{𝑝𝑖 · 𝐴𝐶𝑖 ,𝑚 −𝐶𝑖 }.

𝑖 |𝑣1 | |𝑣2 | |𝑣3 | |𝑣4 | |𝑣5 | |𝑣6 | |𝑣7 | |𝑣8 | |𝑣9 | 𝐶𝑖 𝐴𝐶𝑖 𝑇 idle

𝑖

𝑖1 2 2 2 2 |4 1 1 1 1 1 4 2 4

𝑖2 5 |1 1 1 1 1 1 1 1 1 1 2 8

𝑖3 4 4 4 4 4 4 4 4 |8 1 8 1 1

Table 2: An instancewith personalized bivalued utilities. Bold
cells refer to active bundles 𝐴𝐶𝑖 , and the underlined ones
refer to idle times 𝑇 idle

𝑖
.

Example 4.11. Table 2 presents an ordered instance with person-

alized bivalued utilities where 𝑝𝑖1 = 2, 𝑝𝑖2 = 5 and 𝑝𝑖3 = 4. The

number of active bundles and idle times are also shown in the table.

First, note that when agent 𝑖 does not admit a bad cut, we have

𝐶𝑖 = 𝑚, 𝐴𝐶𝑖 = 0, and 𝑇 idle

𝑖
= 0. Suppose agent 𝑖 admits a bad cut

𝐶𝑖 = 𝑘𝑛 + 𝑟 with remainder 𝑟 ∈ [𝑛 − 1]. Observe that Algorithm 2

operates in at most three phases. In the first phase, it divides the

items with absolute value 𝑝𝑖 in a round robin fashion between all 𝑛

bundles, until it reaches the bad cut. At that time,𝐶𝑖 mod 𝑛 bundles

have an extra itemwith absolute value 𝑝𝑖 . We refer to the remaining

bundles as the “active bundles” ; note that there are precisely 𝐴𝐶𝑖
many active bundles. In the second phase, it divides the items

with absolute value 1 between the active bundles in a round robin

fashion, until either all items are allocated or all 𝑛 bundles become

of exactly equal value (this is where the assumption of the utilities

being factored, i.e., 𝑝𝑖 being an integer is crucial). Note that the

duration of this second phase is precisely the idle time of agent 𝑖

defined above. If there are any remaining items with absolute value

1, the algorithm divides them between all 𝑛 bundles in a round

robin fashion in the final phase.

Using this observation, we are ready to characterize one of the

bundles in some maximin 𝑛-partition of agent 𝑖 .

Lemma 4.12. For a goods or chore division instance 𝐼 = (N ,M, v)
with factored personalized bivalued utilities and agent 𝑖 ∈ N , there
exists a maximin 𝑛-partition of agent 𝑖 in which one of the bundles is
𝑆 = {1, 𝑛+1, . . . , 𝑘𝑛+1}, where𝑘 = ⌊(𝑚−max{𝑇 idle

𝑖
−𝐴𝐶𝑖 , 0}−1)/𝑛⌋.

Main Track AAMAS 2022, May 9–13, 2022, Online

378

In Example 4.11, we can find a valid reduction similar to the case

of weakly lexicographic utilities. By Lemma 4.12, there is a maximin

3 partition for 𝑖1 where one of the bundles is {1, 4, 7}. Same holds

for bundles {1} and {1, 4, 7} for 𝑖2 and 𝑖3 respectively. If items were

goods, the pair of 𝑖2 with {1} would have been a valid reduction,

and the pair 𝑖1 and {1, 4, 7} would have worked if they were chores.

Now, we can show that choosing agent 𝑖 with the minimum

or maximum max{(𝑇 idle

𝑖
−𝐴𝐶𝑖), 0} and the corresponding 𝑆 from

Lemma 4.12 yields a valid reduction (𝑖, 𝑆).

Lemma 4.13. For a goods (respectively, chore) division instance
𝐼 = (N ,M, v) with weakly lexicographic utilities, the pair (𝑖, 𝑆)
is a valid reduction when 𝑖 is an agent with the maximum (resp.,
minimum) value ofmax{(𝑇 idle

𝑖
−𝐴𝐶𝑖), 0} and 𝑆 = {1, 𝑛+1, . . . , 𝑘𝑛+1},

where 𝑘 = ⌊(𝑚 −max{(𝑇 idle

𝑖
−𝐴𝐶𝑖), 0} − 1)/𝑛⌋.

4.5 Achieving Pareto Optimal MMS Allocations
In this section, we show that for weakly lexicographic as well as for

factored bivalued instances, we can compute an allocation that is

MMS and PO in polynomial time. Our approach uses the fact that if

x is an MMS allocation, and x′ is a Pareto improvement over x then

x′ is also MMS. Thus to find an MMS and PO allocation, we can

compute an MMS allocation using Theorem 4.1 and then repeatedly

find Pareto improvements until we reach a PO allocation. In this

section, we will show that we can in polynomial time find Pareto

improvements if they exist, and that we will reach a PO allocation

after at most polynomially many Pareto improvements.

Aziz et al. [4] prove that in case of goods division with weakly

lexicographic or bivalued utilities, one can efficiently test if a given

allocation is Pareto optimal (PO). Further, if it is not PO, a Pareto

dominating allocation with special properties always exists and can

be computed efficiently. The following lemma states their result

for goods division, together with an extension to chore division.

While in the case of weakly lexicographic utilities our proof for

chores almost mirrors their proof for goods, the ideas needed in the

case of bivalued utilities are slightly different for chores. Also, the

statement below is their claim for weakly lexicographic utilities;

while they make a differently worded claim for bivalued utilities,

their proof also shows that this claim holds for bivalued utilities.

Lemma 4.14. In a goods or chore division instance with weakly
lexicographic or bivalued utilities, one can efficiently test whether a
given allocation x is Pareto optimal. Further, if x is not Pareto optimal,
then there exists a cycle of distinct agents (𝑖1, . . . , 𝑖𝑘 , 𝑖𝑘+1 = 𝑖1) and a
cycle of distinct items (𝑟1, . . . , 𝑟𝑘 , 𝑟𝑘+1 = 𝑟1) such that:

(1) 𝑟𝑡 ∈ x𝑖𝑡 and 𝑣𝑖𝑡 (𝑟𝑡−1) ⩾ 𝑣𝑖𝑡 (𝑟𝑡) for each 𝑡 ∈ {2, . . . , 𝑘 + 1},
(2) at least one of the above inequalities is strict, and
(3) the allocation x∗ obtained from x by reallocating item 𝑟𝑡−1 to

agent 𝑖𝑡 for 𝑡 ∈ {2, . . . , 𝑘 + 1} is a Pareto improvement over x.

Such a Pareto improvement x∗ can be computed in polynomial time.

For bivalued instances, the conclusion of Lemma 4.14 also follows

from our Theorem 3.3 which shows that for bivalued utilities Pareto

optimality and fractional Pareto optimality are equivalent, together

with the fact that fractional Pareto optimality can be checked in

polynomial time via linear programming. In fact, the proofs of

Lemma 4.14 and Theorem 3.3 are very similar.

The next lemma shows that starting from any allocation, if we

repeatedly find a Pareto improvement using Lemma 4.14, then we

obtain a Pareto optimal allocation in a polynomial number of steps.

Lemma 4.15. Let x0 be an allocation in a goods division or chore
division instance with weakly lexicographic or bivalued utilities. Let
(x0, x1, x2, . . .) be a chain in which, for each 𝑘 ⩾ 1, x𝑘 is a Pareto
improvement over x𝑘−1 satisfying the properties in Lemma 4.14. Then,
the chain terminates at a Pareto optimal allocation in at most a
polynomial number of steps.

In Lemma 4.15, note that if the initial allocation x is an MMS

allocation, then the final allocation must be bothMMS and PO, since

Pareto improvements preserve the MMS property. Plugging in the

MMS allocation obtained in Theorem 4.1 as the initial allocation,

we obtain the following result.

Corollary 4.16. In every goods division or chore division instance
with weakly lexicographic or factored bivalued utilities, an MMS and
PO allocation always exists and can be computed in polynomial time.

5 DISCUSSION
We make progress on the open question regarding the existence

of an envy-free up to one item (EF1) and Pareto optimal (PO) allo-

cation of chores, by giving a positive answer for the special case

when agents have bivalued utilities (i.e., all utilities are in {𝑎, 𝑏} for
some 0 > 𝑎 > 𝑏). Our algorithm uses the Fisher market framework,

which has been used successfully for allocating goods [9], but re-

quires novel ideas to adapt it to allocate chores. In case of goods

with bivalued utilities, Amanatidis et al. [2] show that an alloca-

tion satisfying the stronger fairness guarantee of envy-freeness up

to any good (EFX) always exists and can be computed efficiently;

they also establish the existence of an EFX + PO allocation. Garg

and Murhekar [23] improve upon this by using the Fisher market

framework to compute an EFX + PO allocation efficiently. Investi-

gating whether EFX or EFX + PO allocations of chores always exist
with bivalued utilities and, if so, whether they can be computed

efficiently is an exciting future direction. Alternatively, establishing

the existence (and efficient computation) of EF1 + PO allocations

of chores under other natural classes of utility functions, such as

weakly lexicographic utilities, is also an appealing avenue for future

work. Yet another direction would be to adapt our algorithm to

achieve EF1 + PO allocations ofmixed items (where some are goods

but others are chores), at least under restricted utilities.

Regarding our results on maximin share fairness (MMS), recall

that the existence of an MMS allocation immediately implies the

existence of an MMS + PO allocation because Pareto improvements

preserve the MMS guarantee. However, computing an MMS + PO

allocation may not always be easy, even when computing an MMS

allocation is. To the best of our knowledge, our result is the first

to establish non-trivial efficient computation of an MMS + PO

allocation under a natural class of utility functions. It would be

interesting to try to achieve MMS for more general classes of utility

functions, such as general bivalued utilities (when 𝑏/𝑎 is not an

integer) or all factored valuations.

ACKNOWLEDGMENTS
Nisarg Shah was partially supported by an NSERC Discovery Grant.

Main Track AAMAS 2022, May 9–13, 2022, Online

379

REFERENCES
[1] Hannaneh Akrami, Bhaskar Ray Chaudhury, Kurt Mehlhorn, Golnoosh

Shahkarami, and Quentin Vermande. 2021. Maximizing Nash Social Welfare in

2-Value Instances. arXiv:2107.08965.

[2] Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, Alexandros Hol-

lender, and Alexandros A Voudouris. 2021. Maximum Nash welfare and other

stories about EFX. Theoretical Computer Science 863 (2021), 69–85.
[3] Georgios Amanatidis, Evangelos Markakis, Afshin Nikzad, and Amin Saberi.

2017. Approximation algorithms for computing maximin share allocations. ACM
Transactions on Algorithms (TALG) 13, 4 (2017), 1–28.

[4] Haris Aziz, Péter Biró, Jérôme Lang, Julien Lesca, and Jérôme Monnot. 2019.

Efficient reallocation under additive and responsive preferences. Theoretical
Computer Science 790 (2019), 1–15.

[5] Haris Aziz and Ethan Brown. 2020. Random Assignment Under Bi-Valued

Utilities: Analyzing Hylland-Zeckhauser, Nash-Bargaining, and other Rules.

arXiv:2006.15747.

[6] Haris Aziz, Ioannis Caragiannis, Ayumi Igarashi, and Toby Walsh. 2022. Fair

allocation of indivisible goods and chores. Autonomous Agents and Multi-Agent
Systems 36, 3 (2022), 1–21.

[7] Haris Aziz, Gerhard Rauchecker, Guido Schryen, and Toby Walsh. 2017. Algo-

rithms for max-min share fair allocation of indivisible chores. In Proceedings of
the 31st AAAI Conference on Artificial Intelligence (AAAI). 335–341.

[8] Siddharth Barman and Sanath Kumar Krishnamurthy. 2019. On the proximity of

markets with integral equilibria. In Proceedings of the 33rd AAAI Conference on
Artificial Intelligence (AAAI). 1748–1755.

[9] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. 2018. Find-

ing fair and efficient allocations. In Proceedings of the 2018 ACM Conference on
Economics and Computation (EC). 557–574.

[10] Siddharth Barman, Sanath Kumar Krishnamurthy, and Rohit Vaish. 2018. Greedy

Algorithms for Maximizing Nash Social Welfare. In Proceedings of the 17th In-
ternational Conference on Autonomous Agents and Multiagent Systems (AAMAS).
7–13.

[11] Anna Bogomolnaia, Hervé Moulin, Fedor Sandomirskiy, and Elena Yanovskaya.

2017. Competitive division of a mixed manna. Econometrica 85, 6 (2017), 1847–
1871.

[12] Shant Boodaghians, Bhaskar Ray Chaudhury, and Ruta Mehta. 2022. Polynomial

Time Algorithms to Find an Approximate Competitive Equilibrium for Chores.

In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM, 2285–2302.

[13] Sylvain Bouveret and Michel Lemaître. 2016. Characterizing conflicts in fair

division of indivisible goods using a scale of criteria. Autonomous Agents and
Multi-Agent Systems 30, 2 (2016), 259–290.

[14] Simina Brânzei and Fedor Sandomirskiy. 2019. Algorithms for competitive

division of chores. arXiv:1907.01766.

[15] Eric Budish. 2011. The combinatorial assignment problem: Approximate compet-

itive equilibrium from equal incomes. Journal of Political Economy 119, 6 (2011),

1061–1103.

[16] Ioannis Caragiannis, David Kurokawa, Hervé Moulin, Ariel D Procaccia, Nisarg

Shah, and Junxing Wang. 2019. The unreasonable fairness of maximum Nash

welfare. ACM Transactions on Economics and Computation (TEAC) 7, 3 (2019),
1–32.

[17] Nikhil R Devanur, Christos H Papadimitriou, Amin Saberi, and Vijay V Vazirani.

2008. Market equilibrium via a primal–dual algorithm for a convex program.

Journal of the ACM (JACM) 55, 5 (2008), 1–18.
[18] Soroush Ebadian, Dominik Peters, and Nisarg Shah. 2021. How to Fairly Allocate

Easy and Difficult Chores. arXiv:2110.11285.

[19] Duncan Karl Foley. 1967. Resource allocation and the public sector. Yale University.
[20] George Gamow and Marvin Stern. 1958. Puzzle-Math. Viking.
[21] Michael R. Garey and David S. Johnson. 1990. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman & Co.

[22] Jugal Garg, Peter McGlaughlin, and Setareh Taki. 2019. Approximating Maximin

Share Allocations. In Proceedings of the 2nd Symposium on Simplicity in Algorithms
(SOSA), Vol. 69. 20:1–20:11.

[23] Jugal Garg and Aniket Murhekar. 2021. Computing Fair and Efficient Allocations

with Few Utility Values. In International Symposium on Algorithmic Game Theory.
345–359.

[24] Jugal Garg and Aniket Murhekar. 2021. On Fair and Efficient Allocations of Indi-

visible Goods. In Proceedings of the 35th AAAI Conference on Artificial Intelligence
(AAAI). 5595–5602.

[25] Jugal Garg, Aniket Murhekar, and John Qin. 2022. Fair and Efficient Allocations

of Chores under Bivalued Preferences. In Proceedings of the 36th AAAI Conference
on Artificial Intelligence (AAAI).

[26] Jugal Garg and Setareh Taki. 2021. An improved approximation algorithm for

maximin shares. Artificial Intelligence 300 (2021), 103547.
[27] Mohammad Ghodsi, MohammadTaghi HajiAghayi, Masoud Seddighin, Saeed Sed-

dighin, and Hadi Yami. 2018. Fair allocation of indivisible goods: Improvements

and generalizations. In Proceedings of the 19th ACM Conference on Economics and
Computation (EC). 539–556.

[28] Daniel Halpern, Ariel D Procaccia, Alexandros Psomas, and Nisarg Shah. 2020.

Fair division with binary valuations: One rule to rule them all. In Proceedings of
the 16th International Conference on Web and Internet Economics (WINE). Springer,
370–383.

[29] Hadi Hosseini, Sujoy Sikdar, Rohit Vaish, and Lirong Xia. 2021. Fair and Efficient

Allocations under Lexicographic Preferences. In Proceedings of the 35th AAAI
Conference on Artificial Intelligence (AAAI). 5472–5480.

[30] Xin Huang and Pinyan Lu. 2021. An algorithmic framework for approximating

maximin share allocation of chores. In Proceedings of the 22nd ACM Conference
on Economics and Computation (EC). 630–631.

[31] David Kurokawa, Ariel D Procaccia, and Junxing Wang. 2016. When can the max-

imin share guarantee be guaranteed?. In Proceedings of the 30th AAAI Conference
on Artificial Intelligence (AAAI). 523–529.

[32] David Kurokawa, Ariel D Procaccia, and Junxing Wang. 2018. Fair enough:

Guaranteeing approximate maximin shares. Journal of the ACM (JACM) 65, 2
(2018), 1–27.

[33] Richard J Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. 2004.

On approximately fair allocations of indivisible goods. In Proceedings of the 5th
ACM Conference on Economics and Computation (EC). 125–131.

[34] James B Orlin. 2010. Improved algorithms for computing Fisher’s market clearing

prices. In Proceedings of the 42nd Annual ACM Symposium on Theory of Computing
(STOC). 291–300.

[35] Nisarg Shah. 2017. Spliddit: two years of making the world fairer. XRDS: Cross-
roads, The ACM Magazine for Students 24, 1 (2017), 24–28.

[36] Hal R. Varian. 1974. Equity, envy and efficiency. Journal of Economic Theory 9

(1974), 63–91.

Main Track AAMAS 2022, May 9–13, 2022, Online

380

	Abstract
	1 Introduction
	1.1 Envy-Freeness Up To One Item (EF1)
	1.2 Maximin Share Fairness (MMS)
	1.3 Related Work

	2 Preliminaries
	3 EF1 + PO for Bivalued Chores
	3.1 Fisher Markets for Chore Division
	3.2 Algorithm

	4 MMS Under Restricted Utilities
	4.1 Ordered Instances and Valid Reductions
	4.2 Exact MMS Value for Factored Utilities
	4.3 Weakly Lexicographic Utilities
	4.4 Factored Personalized Bivalued Utilities
	4.5 Achieving Pareto Optimal MMS Allocations

	5 Discussion
	Acknowledgments
	References

