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ABSTRACT
The Arrow-Debreu extension of the classic Hylland-Zeckhauser

scheme [27] for a one-sided matching market – called ADHZ in

this paper – has natural applications but has instances which do

not admit equilibria. By introducing approximation, we define the

𝜖-approximate ADHZ model, and we give the following results.

(1) Existence of equilibrium under linear utility functions. We

prove that the equilibrium satisfies Pareto optimality, approx-

imate envy-freeness, and approximate weak core stability.

(2) A combinatorial polynomial time algorithm for an 𝜖- approx-

imate ADHZ equilibrium for the case of dichotomous, and

more generally bi-valued, utilities.

(3) An instance of ADHZ, with dichotomous utilities and a

strongly connected demand graph, which does not admit an

equilibrium.

(4) A rational convex program for HZ under dichotomous utili-

ties; a combinatorial polynomial time algorithm for this case

was given in [35].

The 𝜖-approximate ADHZ model fills a void in the space of

general mechanisms for one-sided matching markets; see details in

the paper.
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1 INTRODUCTION
In this paper, we define an Arrow-Debreu extension of the classic

Hylland-Zeckhauser (HZ) mechanism [27] for one-sided matching

markets. This fills a void in the space of general
1
mechanisms

for one-sided matching markets. Such mechanisms are classified

according to two criteria: whether they use cardinal or ordinal

utility functions, and whether they are in the Fisher or Arrow-

Debreu
2
setting. The other three possibilities are covered as follows:

(cardinal, Fisher) by the Hylland-Zeckhauser scheme [27]; (ordinal,

1
As opposed to mechanisms for specific one-sided matching markets.

2
This is also called the Walrasian or exchange setting.
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Fisher) by Probabilistic Serial [7] and Random Priority [31]; and

(ordinal, Arrow-Debreu) by Top Trading Cycles [33]. Details about

these mechanisms are given in Section 1.1.

The two ways of expressing utilities of goods – ordinal and

cardinal – have their own pros and cons and neither dominates the

other. On the one hand, the former is easier to elicit from agents

and on the other, the latter is far more expressive, enabling an agent

to not only report if she prefers good 𝐴 to good 𝐵 but also by how

much. [1] exploits this greater expressivity of cardinal utilities to

give mechanisms for school choice which are superior to ordinal-

utility-based mechanisms.

The following example illustrates the advantage of cardinal vs

ordinal utilities. The instance has three types of goods,𝑇1,𝑇2,𝑇3, and

these goods are present in the proportion of (1%, 97%, 2%). Based
on their utility functions, the agents are partitioned into two sets

𝐴1 and 𝐴2, where 𝐴1 constitute 1% of the agents and 𝐴2, 99%. The

utility functions of agents in𝐴1 and𝐴2 for the three types of goods

are (1, 𝜖, 0) and (1, 1−𝜖, 0), respectively, for a small number 𝜖 > 0.

The main point is that whereas agents in 𝐴2 marginally prefer 𝑇1
to 𝑇2, those in 𝐴1 overwhelmingly prefer 𝑇1 to 𝑇2.

Clearly, the ordinal utilities of all agents in 𝐴1 ∪𝐴2 are the same.

Therefore, a mechanism based on such utilities will not be able to

make a distinction between the two types of agents. On the other

hand, the HZ mechanism, which uses cardinal utilities, will fix the

price of goods in 𝑇3 to be zero and those in 𝑇1 and 𝑇2 appropriately

so that by-and-large the bundles of𝐴1 and𝐴2 consist of goods from

𝑇1 and 𝑇2, respectively.

The Arrow-Debreu setting of one-sided matching markets has

several natural applications beyond the Fisher setting, e.g., allo-

cating students to rooms in a dorm for the next academic year,

assuming their current room is their initial endowment. Similarly,

school choice, when a student’s initial endowment is a seat in a

school which they already have. The issue of obtaining such an

extension of the HZ mechanism, called ADHZ in this paper, was

studied by Hylland and Zeckhauser. However, this culminated in

an example which inherently does not admit an equilibrium [27].

One recourse to this was given by Echenique, Miralles and Zhang

[17] via their notion of an 𝛼-slack Walrasian equilibrium: This is

a hybrid between the Fisher and Arrow-Debreu settings. Agents

have initial endowments of goods and for a fixed 𝛼 ∈ (0, 1], the
budget of each agent, for given prices of goods, is 𝛼 + (1 − 𝛼) ·𝑚,

where𝑚 is the value for her initial endowment; the agent spends

this budget to obtain an optimal bundle of goods. Via a non-trivial

proof, using the Kakutani Fixed Point Theorem, they proved that

an 𝛼-slack equilibrium always exists.
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In this paper, we show that we can remain with a pure Arrow-

Debreu setting provided we relax the notion of equilibrium to an

approximate equilibrium, a notion that has become common-place

in the study of equilibria within computer science. We call this the

𝜖-approximate ADHZ model. For this model, we give the following

results.

We prove the existence of an equilibrium for arbitrary cardinal

utility functions, using the fact from [17] that an𝛼-slack equilibrium

always exists for 𝛼 > 0.

We prove that the equilibrium in our 𝜖-approximate ADHZ

model is Pareto optimal, approximately envy free, and approxi-

mately weak core stable. In contrast, the allocation found by an HZ

equilibrium is Pareto optimal and envy-free [27].

For an Arrow-Debreu market under linear utilities, Gale [20]

defined a demand graph: a directed graph on agents with an edge

(𝑖, 𝑗) if agent 𝑖 likes a good that agent 𝑗 has in her initial endow-

ment. He proved that a sufficiency condition for the existence of

equilibrium is that this graph be strongly connected. The following

question arises naturally: Is this a sufficiency condition for equilib-

rium existence in ADHZ as well? We provide a negative answer to

this question. We give an instance of ADHZ whose demand graph

is not only strongly connected but also has dichotomous utilities,

and yet it does not admit an equilibrium.

For the case of dichotomous utilities, we give a combinatorial

polynomial-time algorithm for computing an equilibrium for our

𝜖-approximate ADHZ model. This result also extends to the case

of bi-valued utilities, i.e., each agent’s utility for individual goods

comes from a set of cardinality two, though the sets may be different

for different agents. These utilities are well-studied (see, e.g., [5, 8,

16, 21, 35]), mainly due to their significance in practical applications.

For example, it might be simpler for agents to answer whether their

desire for a good is “high” or “low” with numerical values. We

note that the polynomial-time algorithm of [14, 15] for Arrow-

Debreu markets under linear utilities, as well as the recent strongly

polynomial-time algorithm for the same problem [22] are quite

complicated, in particular because they resort to the use of balanced

flows, which uses the 𝑙2 norm. In contrast, we managed to avoid

the use of 𝑙2 norm and hence we obtain a simple algorithm.

A corollary of the last result is that the equilibrium of the dichoto-

mous utilities case of the 𝜖-approximate ADHZmodel involves only

rational numbers. In contrast we give an instance of ADHZ whose

unique equilibrium has irrational prices and allocations. This in-

stance is obtained by appropriately modifying an instance for the

HZ model, given in [35], whose (unique) equilibrium has irrational

prices and allocations. This led us to ask if there is a rational convex
program (RCP) that captures the equilibrium in this setting.

An RCP, defined in [34], is a nonlinear convex program all of

whose parameters are rational numbers and which always admits

a rational solution in which the denominators are polynomially

bounded. The quintessential such program is the Eisenberg-Gale

convex program [19] for a linear Fisher market. The significance of

finding such a program for a problem is that it directly implies ex-

istence of a polynomial time algorithm for the underlying problem,

since using the ellipsoid algorithm and Diophantine approximation

[23, 28], an RCP can be solved exactly in polynomial time. As a re-

sult, it gives practitioners a direct way to compute a solution using

general-purpose convex programming solvers. Although we were

not able to answer this question, we did find an RCP for HZ equi-

librium under dichotomous utilities. A combinatorial polynomial

time algorithm for this case was given in [35].

1.1 Related Results
Matching markets have found many applications in various multi-

agent settings, e.g., see the recent works [3, 4, 13].

We start by stating the properties of mechanisms for one-sided

matching markets listed in the Introduction. Random Priority [31]

is strategyproof though not efficient or envy-free; Probabilistic

Serial [7] is efficient and envy-free but not strategyproof; and Top

Trading Cycles [33] is efficient, strategyproof and core-stable.

Recently, [35] undertook a comprehensive study of the compu-

tational complexity of the HZ scheme. They gave a combinatorial

polynomial time algorithm for dichotomous utilities and an example

which has only irrational equilibria; as a consequence, this problem

is not in PPAD. They showed that the problem of computing an

exact HZ equilibrium is in the class FIXP and the problem of com-

puting an approximate equilibrium is in PPAD. Very recently, [10]

showed that computing an approximate HZ equilibrium is PPAD-

hard. In order to deal with the computational intractability of HZ,

a Nash-bargaining-based mechanism was proposed in [26].

The study of the dichotomous case of matching markets was

initiated by Bogomolnaia and Moulin [8]. They studied a two-sided

matching market and they called it an “important special case of

the bilateral matching problem.” Using the Gallai-Edmonds decom-

position of a bipartite graph, they gave a mechanism that is Pareto

optimal and group strategyproof. They also gave a number of ap-

plications of their setting, some of which are natural applications

of one-sided markets as well, e.g., housemates distributing rooms,

having different features, in a house. As in the HZ scheme, their

mechanism also outputs a doubly-stochastic matrix whose entries

represent probability shares of allocations. However, they give an-

other interesting interpretation of this matrix. They say, “Time

sharing is the simplest way to deal fairly with indivisibilities of

matching markets: think of a set of workers sharing their time

among a set of employers.” Roth, Sönmez and Ünver [32] extended

these results to general graphmatching under dichotomous utilities;

this setting is applicable to the kidney exchange marketplace.

An interesting recent paper [2] defines the notion of a random

partial improvement mechanism for a one-sided matching market.

This mechanism truthfully elicits the cardinal preferences of the

agents and outputs a distribution over matchings that approximates

every agent’s utility in the Nash bargaining solution.

Several researchers have proposed Hylland-Zeckhauser-type

mechanisms for a number of applications, for instance [9, 25, 29, 30].

The basic scheme has also been generalized in several different

directions, including two-sided matching markets, adding quanti-

tative constraints, and to the setting in which agents have initial

endowments of goods instead of money, see [17, 18].

2 THE HYLLAND-ZECKHAUSER MECHANISM
The Hylland-Zeckhauser (HZ) mechanism can be viewed as a mar-

riage between a fractional perfect matching and a linear Fisher

market, which consists of a set 𝐴 of agents and a set 𝐺 of goods.

Each agent 𝑖 comes to the market with a budget 𝑏𝑖 and has utilities
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𝑢𝑖 𝑗 ≥ 0 for each good 𝑗 . In the case of linear utilities, agent 𝑖’s

utility from allocation (𝑥𝑖 𝑗 ) 𝑗 ∈𝐺 is

∑
𝑗 𝑢𝑖 𝑗𝑥𝑖 𝑗 . By fixing the units for

each good, we may assume without loss of generality that there is

a unit of each good in the market.

Definition 1. A Fisher equilibrium is a pair (𝑥, 𝑝) consisting of

an allocation (𝑥𝑖 𝑗 )𝑖∈𝐴,𝑗 ∈𝐺 and prices (𝑝 𝑗 ) 𝑗 ∈𝐺 with the following

properties.

(1) Each agent 𝑖 spends at most their budget, i.e.,

∑
𝑗 ∈𝐺 𝑝 𝑗𝑥𝑖 𝑗 ≤

𝑏𝑖 .

(2) Each agent 𝑖 gets an optimal bundle, i.e., utility maximizing

bundle at prices 𝑝 . Formally:∑︁
𝑗∈𝐺

𝑢𝑖 𝑗𝑥𝑖 𝑗 = max


∑︁
𝑗∈𝐺

𝑢𝑖 𝑗𝑦 𝑗

������ 𝑦 ∈ R𝐺≥0,
∑︁
𝑗∈𝐺

𝑝 𝑗𝑦 𝑗 ≤ 𝑏𝑖
 .

(3) The market clears, i.e., each good with positive price is fully

allocated to the agents.

The set of equilibria of a linear Fisher market corresponds to the

set of optimal solutions of the Eisenberg-Gale convex program [19],

which is a rational convex program (RCP) and in fact it motivated

the definition of this concept [34].

Fisher equilibria satisfy various nice properties, including equal-

type envy-freeness and Pareto optimality.

Definition 2 (Envy-freeness and Pareto optimality). An alloca-

tion is envy-free if for any two agents 𝑖, 𝑖 ′ ∈ 𝐴, agent 𝑖 weakly

prefers their allocation than those that 𝑖 ′ gets, i.e.,
∑
𝑗 ∈𝐺 𝑢𝑖 𝑗𝑥𝑖 𝑗 ≥∑

𝑗 ∈𝐺 𝑢𝑖 𝑗𝑥𝑖′ 𝑗 . It is equal-type envy-free if the above holds for any
two agents with identical budgets.

An allocation 𝑥 weakly dominates another allocation 𝑥 ′ if no
agent prefers 𝑥 ′ to 𝑥 . It strongly dominates 𝑥 ′ if it weakly dominates

it and some agent prefers 𝑥 to 𝑥 ′. An allocation 𝑥 is Pareto efficient
or Pareto optimal if there is no other allocation 𝑥 ′ which strongly

dominates it.

Definition 3. A one-sided matching market consists of a set 𝐴

of agents and a set 𝐺 of goods. Each agent has preferences over

goods, expressed either using cardinal or ordinal utility functions.

An allocation is a perfect matching of agents to goods. The goal of

the market is to find an allocation so that the underlyingmechanism

has some desirable game-theoretic properties.

The HZmechanism uses cardinal utility functions, in which each

good is rendered divisible by viewing it as one unit of probability
shares. An HZ equilibrium is defined as follows.

Definition 4. A Hylland-Zeckhauser (HZ) equilibrium is a pair

(𝑥, 𝑝) consisting of an allocation (𝑥𝑖 𝑗 )𝑖∈𝐴,𝑗 ∈𝐺 and prices (𝑝 𝑗 ) 𝑗 ∈𝐺
with the following properties.

(1) 𝑥 is a fractional perfect matching, i.e.,

∑
𝑗 ∈𝐺 𝑥𝑖 𝑗 = 1 for all 𝑖

and

∑
𝑖∈𝐴 𝑥𝑖 𝑗 = 1 for all 𝑗 .

(2) Each agent 𝑖 spends at most their budget, i.e.,

∑
𝑗 ∈𝐺 𝑝 𝑗𝑥𝑖 𝑗 ≤

𝑏𝑖 (usually 𝑏𝑖 = 1).

(3) Each agent 𝑖 gets an optimal bundle, which is defined to

be a cheapest utility maximizing bundle, i.e.,

∑
𝑗 ∈𝐺 𝑢𝑖 𝑗𝑥𝑖 𝑗 =

max

{∑
𝑗 𝑢𝑖 𝑗𝑦 𝑗

�� ∑
𝑗 𝑦 𝑗 = 1;

∑
𝑗 𝑝 𝑗𝑦 𝑗 ≤ 𝑏𝑖

}
and

∑
𝑗 ∈𝐺 𝑝 𝑗𝑥𝑖 𝑗 =

min

{∑
𝑗 𝑝 𝑗𝑦 𝑗

�� ∑
𝑗 𝑦 𝑗 = 1;

∑
𝑗 𝑢𝑖 𝑗𝑦 𝑗 ≥

∑
𝑗 𝑢𝑖 𝑗𝑥𝑖 𝑗

}
.

Like Fisher equilibria, HZ equilibria are Pareto optimal and envy-

free (assuming unit budgets).
3
The allocation 𝑥 found by the HZ

mechanism is a fractional perfect matching or a doubly-stochastic

matrix. In order to get an integral perfect matching from 𝑥 , a lot-

tery can be carried out using the Theorem of Birkhoff [6] and von

Neumann [36]. It states that any doubly-stochastic matrix can be

written as a convex combination of integral perfect matchings;

moreover, this decomposition can be found efficiently. Picking a

perfect matching according to the discrete probability distribution

determined by this convex combination yields the resulting alloca-

tion in the HZ mechanism.

3 THE 𝜖-APPROXIMATE ADHZ MODEL
In this paper we are interested in an exchange version of the HZ

mechanism. Before defining it, we introduce the Arrow-Debreu

(exchange) market under linear utility functions, which consists of

a set 𝐴 of agents and a set 𝐺 of goods. Each agent 𝑖 comes to the

market with an endowment 𝑒𝑖 𝑗 ≥ 0 of each good 𝑗 and also has a

utility 𝑢𝑖 𝑗 ≥ 0. Each good 𝑗 must be fully owned by the agents, i.e.,∑
𝑖∈𝐴 𝑒𝑖 𝑗 = 1 for all 𝑗 ∈ 𝐺 .

Definition 5. An Arrow-Debreu (AD) equilibrium for a given AD

market is a pair (𝑥, 𝑝) consisting of an allocation (𝑥𝑖 𝑗 )𝑖∈𝐴,𝑗 ∈𝐺 and

prices (𝑝 𝑗 ) 𝑗 ∈𝐺 with the following properties.

(1) Each agent spends at most the budget earned from the en-

dowment, i.e.,

∑
𝑗 𝑝 𝑗𝑥𝑖 𝑗 ≤ 𝑏𝑖 B

∑
𝑗 𝑝 𝑗𝑒𝑖 𝑗 .

(2) Each agent 𝑖 gets an optimal bundle, i.e.,
∑
𝑗 ∈𝐺 𝑢𝑖 𝑗𝑥𝑖 𝑗 =

max

{∑
𝑗 ∈𝐺 𝑢𝑖 𝑗𝑦 𝑗

�� 𝑦 ∈ R𝐺≥0,
∑
𝑗 ∈𝐺 𝑝 𝑗𝑦 𝑗 ≤ 𝑏𝑖

}
.

(3) The market clears, i.e., each good with positive price is fully

allocated to the agents.

The AD model generalizes Fisher model in the sense that any

Fisher market can be easily transformed into an AD market by

giving each agent a fixed proportion of every good. Clearly, AD

equilibria satisfy the condition of individual rationality, defined

below, since every agent could always buy back their endowment.

Definition 6. An allocation in an AD market is individually ra-
tional if for every agent 𝑖 we have

∑
𝑗 𝑢𝑖 𝑗𝑥𝑖 𝑗 ≥

∑
𝑗 𝑢𝑖 𝑗𝑒𝑖 𝑗 , i.e., no

agent loses utility by participating in the market.

However, individual rationality fundamentally clasheswith envy-

freeness. Consider a market consisting of two agents each owning

a distinct good. Assume that both agents prefer the good of agent

2 over the good of agent 1, then in any allocation either agent 1

envies agent 2 or agent 2’s individual rationality is violated. For this

reason we primarily consider a version of equal-type envy-freeness

in exchange markets, which demands envy-freeness only for agents

with the same initial endowment.

AD equilibria do not always exist. However, there is a simple

necessary and sufficient condition for their existence based on

strong connectivity of demand graph, due to Gale [20]. An RCP for

this problem was given by Devanur, Garg and Végh [11].

3
Pareto optimality for HZ equilibria requires that each agent receives a cheapest utility
maximizing bundle. If this condition is dropped, we get counter-examples to Pareto

optimality: Consider an instance with two agents 𝑎1 and 𝑎2 , and two goods 𝑔1 and

𝑔2 with 𝑢11 = 𝑢21 = 𝑢22 = 1;𝑢12 = 0. The prices (2, 0) together with the allocation

𝑥11 = 𝑥12 = 𝑥21 = 𝑥22 = 0.5 are optimal bundles, though not cheapest. The utilities

in this equilibrium are 0.5 for agent 𝑎1 and 1 for agent 𝑎2 . However, there is another

HZ equilibrium with prices (1, 𝑝) , for any 𝑝 ∈ [0, 1] with utility 1 for both agents.
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We now turn to the extension of the HZ mechanism to exchange

markets. In the ADHZ market, we have a set𝐴 of agents and a set𝐺
of goods with |𝐴| = |𝐺 | = 𝑛. Each agent 𝑖 comes with an endowment
𝑒𝑖 𝑗 ≥ 0 of each good 𝑗 and utilities 𝑢𝑖 𝑗 ≥ 0. The endowment vector

𝑒 is a fractional perfect matching.

Definition 7. An ADHZ equilibrium for a given ADHZ market

is a pair (𝑥, 𝑝) consisting of an allocation (𝑥𝑖 𝑗 )𝑖∈𝐴,𝑗 ∈𝐺 and prices
(𝑝 𝑗 ) 𝑗 ∈𝐺 with the following properties.

(1) 𝑥 is a fractional perfect matching, i.e.,

∑
𝑗 ∈𝐺 𝑥𝑖 𝑗 = 1 for all 𝑖

and

∑
𝑖∈𝐴 𝑥𝑖 𝑗 = 1 for all 𝑗 .

(2) Each agent spends at most the budget earned from the en-

dowment, i.e.,

∑
𝑗 𝑝 𝑗𝑥𝑖 𝑗 ≤ 𝑏𝑖 B

∑
𝑗 𝑝 𝑗𝑒𝑖 𝑗 .

(3) Each agent 𝑖 gets an optimal bundle, which is defined to

be a cheapest utility maximizing bundle, i.e.,

∑
𝑗 ∈𝐺 𝑢𝑖 𝑗𝑥𝑖 𝑗 =

max

{∑
𝑗 𝑢𝑖 𝑗𝑦 𝑗

�� ∑
𝑗 𝑦 𝑗 = 1;

∑
𝑗 𝑝 𝑗𝑦 𝑗 ≤ 𝑏𝑖

}
and

∑
𝑗 ∈𝐺 𝑝 𝑗𝑥𝑖 𝑗 =

min

{∑
𝑗 ∈𝐺 𝑝 𝑗𝑦 𝑗

�� ∑
𝑗 𝑦 𝑗 = 1;

∑
𝑗 ∈𝐺 𝑢𝑖 𝑗𝑦 𝑗 ≥

∑
𝑗 ∈𝐺 𝑢𝑖 𝑗𝑥𝑖 𝑗

}
.

Theorem 8. ADHZ equilibria are Pareto optimal, individually
rational, and equal-type envy-free.

Proof. Pareto optimality follows from the fact that any ADHZ

equilibrium is an HZ equilibrium with certain budgets 𝑏. Since any

HZ equilibrium is Pareto optimal, we get the same for ADHZ.

Note that the budget of any agent is always enough to buy back

their initial endowment. Since they get an optimal bundle, they

must get something which they value at least as high as their initial

endowment. Thus individual rationality is guaranteed.

If two agents, say 1 and 2, have the same endowment, then

their budget will be the same and so agent 1 will never value the 2’s

bundle higher than their own. Thus ADHZ equilibria are equal-type

envy-free. □

In addition, ADHZ equilibria also satisfy the following notion of

core-stability.

Definition 9. An allocation 𝑥 in an ADHZ market is weakly core-
stable if for any subsets 𝐴′ ⊆ 𝐴 and 𝐺 ′ ⊆ 𝐺 , there does not exist

an allocation 𝑥 ′ ∈ R𝐴′×𝐺′
≥0 such that

• 𝑥 ′ allocates at most one unit of goods to every agent in 𝐴′
,

• every good 𝑗 ∈ 𝐺 ′
is allocated at most to the extent of the

endowments of the agents in 𝐴′
, i.e.

∑
𝑖∈𝐴′ 𝑥 ′

𝑖 𝑗
≤ ∑

𝑖∈𝐴′ 𝑒𝑖 𝑗 ,

and

• every agent in 𝐴′
receives strictly better utility in 𝑥 ′ than in

𝑥 .

Theorem 10. ADHZ equilibria are weakly core-stable.

Proof. Let (𝑥, 𝑝) be some ADHZ equilibrium. For the sake of

a contradiction, assume that there are 𝐴′ ⊆ 𝐴, 𝐺 ′ ⊆ 𝐺 and 𝑥 ′ ∈
R𝐴

′×𝐺′
≥0 as excluded by the definition of weak core-stability. Now

consider the total money spent “along allocation 𝑥 ′”, i.e., the quan-
tity

∑
𝑖∈𝐴′

∑
𝑗 ∈𝐺′ 𝑝 𝑗𝑥

′
𝑖 𝑗
.

On the one hand we know that only the endowment of the agents

in 𝐴′
is allocated by 𝑥 ′. Thus∑︁

𝑖∈𝐴′

∑︁
𝑗 ∈𝐺′

𝑝 𝑗𝑥
′
𝑖 𝑗 ≤

∑︁
𝑖∈𝐴′

∑︁
𝑗 ∈𝐺′

𝑝 𝑗𝑒𝑖 𝑗 .

On the other hand, every agent 𝑖 receives strictly better utility

from 𝑥 ′ than from 𝑥 . But since agents buy optimal bundles in (𝑥, 𝑝),

this implies that the bundles in 𝑥 ′ must be worth more than their

budget, i.e., ∑︁
𝑗 ∈𝐺′

𝑝 𝑗𝑥
′
𝑖 𝑗 >

∑︁
𝑗 ∈𝐺

𝑝 𝑗𝑒𝑖 𝑗 ≥
∑︁
𝑗 ∈𝐺′

𝑝 𝑗𝑒𝑖 𝑗 .

Summing this inequality over all 𝑖 ∈ 𝐴′
yields a contradiction to

the previous inequality. □

Like in the case of HZ, equilibrium prices in ADHZ are invariant

under the operation of scaling the difference of prices from 1, as

shown in the following lemma.

Lemma 11. Suppose 𝑝 be an equilibrium price vector. For any 𝑟 > 0,
let 𝑝 ′ be such that 𝑝 ′

𝑗
− 1 = 𝑟 (𝑝 𝑗 − 1) for all 𝑗 ∈ 𝐺 . Then 𝑝 ′ is also

an equilibrium price vector.

Proof. Let 𝑥 be an equilibrium allocation at prices 𝑝 . For any

agent 𝑖 , we have
∑
𝑗 ∈𝐺 𝑥𝑖 𝑗𝑝 𝑗 ≤

∑
𝑗 ∈𝐺 𝑒𝑖 𝑗𝑝 𝑗 . We show that the pair

(𝑥, 𝑝 ′) is also an equilibrium.

Since (𝑥, 𝑝) is an equilibrium, for each 𝑖 ∈ 𝐴, we have∑︁
𝑗∈𝐺

𝑢𝑖 𝑗𝑥𝑖 𝑗 = max


∑︁
𝑗∈𝐺

𝑢𝑖 𝑗𝑦 𝑗 | 𝑦 ∈ R𝐺≥0,
∑︁
𝑗∈𝐺

𝑦 𝑗 = 1,
∑︁
𝑗∈𝐺

𝑦 𝑗𝑝 𝑗 ≤
∑︁
𝑗∈𝐺

𝑒𝑖 𝑗𝑝 𝑗

 .
Replacing 𝑝 𝑗 by (𝑝 ′

𝑗
− 1)/𝑟 + 1 for all 𝑗 ∈ 𝐺 , we get:

∑︁
𝑗∈𝐺

𝑢𝑖 𝑗𝑥𝑖 𝑗 = max


∑︁
𝑗∈𝐺

𝑢𝑖 𝑗𝑦 𝑗 | 𝑦 ∈ R𝐺≥0,
∑︁
𝑗∈𝐺

𝑦 𝑗 = 1,

∑︁
𝑗∈𝐺

𝑦 𝑗

(
𝑝′
𝑗
− 1

𝑟
+ 1

)
≤

∑︁
𝑗∈𝐺

𝑒𝑖 𝑗

(
𝑝′
𝑗
− 1

𝑟
+ 1

) .
Simplifying the above using

∑
𝑗 ∈𝐺 𝑒𝑖 𝑗 = 1 and

∑
𝑗 ∈𝐺 𝑦 𝑗 = 1 for all

𝑖 ∈ 𝐴, we get:∑︁
𝑗∈𝐺

𝑢𝑖 𝑗𝑥𝑖 𝑗 = max


∑︁
𝑗∈𝐺

𝑢𝑖 𝑗𝑦 𝑗 | 𝑦 ∈ R𝐺≥0,
∑︁
𝑗∈𝐺

𝑦 𝑗 = 1,
∑︁
𝑗∈𝐺

𝑦 𝑗𝑝
′
𝑗 ≤

∑︁
𝑗∈𝐺

𝑒𝑖 𝑗𝑝
′
𝑗

 .
The above implies that 𝑥 gives each agent an optimal bundle at

prices 𝑝 ′. This, together with the fact that 𝑥 is a fractional perfect

matching, shows that (𝑥, 𝑝 ′) is also an equilibrium. □

Unlike HZ, which always admits an equilibrium, ADHZ has in-

stances which do not admit an equilibrium, as observed by Hylland

and Zeckhauser [27]. Below we give a counterexample in which the

demand graph is strongly connected and utilities are dichotomous.

Proposition 12. The ADHZ market with dichotomous utilities in
Figure 1 does not admit an equilibrium.

Proof. Assume there is an equilibrium (𝑥, 𝑝) in this market.

Further, using Lemma 11, we can assume that the minimum price

is zero at 𝑝 . This implies that no agent will buy a zero utility good

at a positive price.

Each agent buys a total of one unit of goods and 𝑠 is the only

agent having positive utility for goods 𝑎 and 𝑏. Therefore, at least

one of these goods is not fully sold to 𝑠 and must be sold to an agent

deriving zero utility from it. Therefore this good must have zero

price. Without loss of generality, assume 𝑝𝑎 = 0. Since 𝑎 has no

budget and 𝑐 and 𝑑 are desired only by 𝑎, 𝑝𝑐 = 𝑝𝑑 = 0, otherwise

𝑐 and 𝑑 cannot be sold. For the same reason, 𝑝𝑒 = 0. Now observe
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𝑠 𝑡

𝑎

𝑏

𝑐

𝑑

𝑒

Figure 1: The demand graph of an ADHZ market with di-
chotomous utilities and no equilibrium. Each node repre-
sents an agent as well as the good possessed by this agent
in her initial endowment. An arrow from 𝑖 to 𝑗 represents
𝑢𝑖 𝑗 = 1; the rest of the edges have utility 0.

that both agents 𝑐 and 𝑑 have a utility 1 edge to a good of price zero,

namely 𝑒 . Therefore, the optimal bundle of both 𝑐 and 𝑑 is 𝑒 . But

then 𝑒 would have to be matched twice which is a contradiction. □

Even if ADHZ equilibria do exist, computing them is at least as

hard as computing HZ equilibria. This follows from the following

reduction.

Proposition 13. Consider an HZmarket with unit budgets. Define
an ADHZ market by giving every agent as endowment an equal
amount of every good. Then every HZ equilibrium in which the prices
sum up to 𝑛 is an ADHZ equilibrium and every ADHZ equilibrium
yields an HZ equilibrium by rescaling all prices by 𝑛/∑𝑗 ∈𝐺 𝑝 𝑗 .

[35] gave an instance of HZ with four agents and four goods

which has one equilibrium in which all agents fully spend their

budgets, and allocations and prices are irrational. Since this ex-

ample satisfies the conditions of Proposition 13, we get that the

modification of the example of [35], as stated in the Proposition, is

an instance for ADHZ having only irrational equilibria.

3.1 Existence and Properties of 𝜖-Approximate
ADHZ Equilibria

Since ADHZ equilibria do not always exist, we study the following

approximate equilibrium notion instead.

Definition 14. An 𝜖-approximate ADHZ equilibrium is an HZ

equilibrium (𝑥, 𝑝) for a budget vector 𝑏 with

(1 − 𝜖)
∑︁
𝑗 ∈𝐺

𝑝 𝑗𝑒𝑖 𝑗 ≤ 𝑏𝑖 ≤ 𝜖 +
∑︁
𝑗 ∈𝐺

𝑝 𝑗𝑒𝑖 𝑗 for all 𝑖 ∈ 𝐴 .

We also require that if two agents have the same endowment, then

their budget should also be the same.

The additive error term in the upper bound is necessary since

otherwise the counterexample from Proposition 12 still works. On

the other hand, the multiplicative lower bound is useful to get

approximate individual rationality. However, one can always find

approximate equilibria in which the sum of prices is bounded by 𝑛

using Lemma 11, so we also get∑︁
𝑗 ∈𝐺

𝑝 𝑗𝑒𝑖 𝑗 − 𝜖 ′ ≤ 𝑏𝑖 ≤
∑︁
𝑗 ∈𝐺

𝑝 𝑗𝑒𝑖 𝑗 + 𝜖 ′ for 𝜖 ′ B 𝑛𝜖.

This implies that we can equivalently define the above notion with

additive error terms on both upper and lower bounds.

In our notion of approximate equilibrium, we do not relax the

fractional perfect matching constraints or the optimum bundle con-

dition. We only allow the budgets of agents to be slightly different

from the money they would normally obtain in an ADHZ market.

Hence the step of randomly rounding the equilibrium allocation to

an integral perfect matching is the same as in the HZ scheme.

Theorem 15. Any 𝜖-approximate ADHZ equilibrium is Pareto
optimal, 𝜖-approximately individually rational, equal-type envy-free.

Proof. Pareto optimality follows just as for the non-approximate

ADHZ setting from the fact that an 𝜖-approximate ADHZ equilib-

rium is first and foremost an HZ equilibrium. For approximate

individual rationality note that every agent gets a budget of at least

(1 − 𝜖) times the cost of their endowment. Hence their utility can

decrease by at most a factor of (1 − 𝜖). Equal-type envy-freeness
follows immediately from the condition that agents with the same

endowment have the same budget. □

One can also define a suitably 𝜖-approximate notion of weak

core-stability, where instead of demanding that every agent strictly

improves in the seceding coalition, we instead require that every

agent improves by a factor of more than
1

1−𝜖 .

Theorem 16. Any 𝜖-approximate ADHZ equilibrium is 𝜖- approx-
imately weak-core stable.

Proof. Let (𝑥, 𝑝) be an 𝜖-approximate ADHZ equilibrium for

some budget vector 𝑏. Then in order for some other allocation 𝑥 ′

to improve agent 𝑖’s utility by a factor of more than
1

1−𝜖 , 𝑖 must

spend more than
𝑏𝑖
1−𝜖 . But note that

𝑏𝑖
1−𝜖 ≥ ∑

𝑗 ∈𝐺 𝑝 𝑗𝑒𝑖 𝑗 . From here

the proof is identical to that of Theorem 10. □

While approximate equilibrium notions are more amenable to

computation, they generally do not lend themselves well to exis-

tence proofs. However, our notion of 𝜖-approximate ADHZ equilib-

rium is a slight relaxation of the notion of an 𝛼-slack equilibrium

introduced in [17].

Definition 17. An 𝛼-slack ADHZ equilibrium for 𝛼 ∈ (0, 1] is an
HZ equilibrium (𝑥, 𝑝) for a budget vector 𝑏 in which 𝑏𝑖 = 𝛼 + (1 −
𝛼)∑𝑗 ∈𝐺 𝑝 𝑗𝑒𝑖 𝑗 for all 𝑖 ∈ 𝐴.

Theorem 18 (Theorem 2 in [17]). In any ADHZ market, 𝛼-slack
equilibria always exist if 𝛼 > 0.

Note that any 𝛼-slack equilibrium is automatically also an 𝛼-

approximate equilibrium. Thus we get:

Theorem 19. In any ADHZ market, 𝜖-approximate equilibria
always exist if 𝜖 > 0.
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4 ALGORITHM FOR 𝜖-APPROXIMATE ADHZ
UNDER DICHOTOMOUS UTILITIES

Before we can tackle the ADHZ setting, let us first give an algorithm

that can compute HZ equilibria with non-uniform budgets. This is

an extension of the algorithm presented in [35]. In the following, fix

some HZ market consisting of 𝑛 agents and goods with 𝑢𝑖 𝑗 ∈ {0, 1}
for all 𝑖 ∈ 𝐴 and 𝑗 ∈ 𝐺 . If 𝑢𝑖 𝑗 = 1, we will say that 𝑖 likes 𝑗 (and
dislikes otherwise). We assume that every agent likes at least one

good.
4

𝑠 𝑡

𝑏 𝑖

𝜌

𝜌

𝜌

𝑖

Figure 2: Shown is the flow network which corresponds to
finding an equilibrium allocation in price class 𝜌 . Filled cir-
cles represent agents in 𝐴(𝜌) with 𝑏𝑖 < 𝜌 , empty circles are
agents in 𝐴(𝜌) with 𝑏𝑖 ≥ 𝜌 , and diamond vertices are goods
in 𝐺 (𝜌). The contiguous edges represent all utility 1 edges
and have infinity capacity (utility 0 edges are not part of
the network). Dashed edges to empty circle vertices 𝑖 have
capacity 𝑏𝑖 whereas the other dashed edges have capacity 𝜌 .

Lemma 20. Let (𝑝 𝑗 ) 𝑗 ∈𝐺 be non-negative prices. For any 𝜌 ≥ 0, let
𝐺 (𝜌) be the goods which are sold at price 𝜌 and let 𝐴(𝜌) be those
agents for which the cheapest price of any liked good is 𝜌 . Assume
that

• there is a matching in the utility 1 edges on𝐴(0) ∪𝐺 (0) which
covers all agents in 𝐴(0) and

• if 𝜌 > 0 is equal to the price of some good, then the flow network
shown in Figure 2 has a maximum flow of size 𝜌 |𝐺 (𝜌) |.

Then we can find a fractional perfect matching 𝑥 which makes (𝑥, 𝑝)
an HZ equilibrium in polynomial time.

Proof. Allocate every agent in 𝐴(0) to some good in 𝐺 (0) ac-
cording to the matching which exists by assumption. Let 𝜌 > 0, be

the price of some good. Then we compute the maximum flow 𝑓 (𝜌)

in the flow network from Figure 2 and allocate 𝑥𝑖 𝑗 = 𝑓
(𝜌)
𝑖, 𝑗

/𝜌 for

all 𝑖 ∈ 𝐴(𝜌) and 𝑗 ∈ 𝐺 (𝜌). Lastly, extend 𝑥 to a fractional perfect

matching by matching the remaining capacity of the agents to the

remaining capacity of goods in 𝐺 (0).
Clearly, no agent exceeds their budget. To see that this yields

an HZ equilibrium, note that every agent only spends money on

4
Any HZ equilibrium (𝑥, 𝑝) for the utilities 𝑢𝑖 𝑗 is also an equilibrium for 𝑢̃𝑖 𝑗 where

𝑢̃𝑖 𝑗 = 𝑎𝑖 if 𝑢𝑖 𝑗 = 0 and𝑏𝑖 if𝑢𝑖 𝑗 = 1 for for all agents 𝑖 , goods 𝑗 , and arbitrary 0 ≤ 𝑎𝑖 <
𝑏𝑖 for every agent. This is because

∑
𝑗∈𝐺 𝑢̃𝑖 𝑗𝑥𝑖 𝑗 = 𝑎𝑖 + (𝑏𝑖 − 𝑎𝑖 )

∑
𝑗∈𝐺 𝑢𝑖 𝑗𝑥𝑖 𝑗 since

𝑥 is a fractional perfect matching. Hence utility function 𝑢̃ is an affine transformation

of utility function 𝑢; the former is called a bi-valued utility function.

cheapest liked goods and if they do not get allocated entirely to

liked goods, then they additionally spend all of their budget. This

ensures that every agent gets an optimum bundle. □

Theorem 21. For any rational budget vector 𝑏, we can compute
an HZ equilibrium in polynomial time.

Proof. We start in the same way is the algorithm in [35]: by

computing a minimum vertex cover in the graph of utility 1 edges,

we partition 𝐴 = 𝐴1 ∪𝐴2 and 𝐺1 ∪𝐺2 such that

• every agent in 𝐴2 can be matched to a distinct liked good in

𝐺2,

• every agent in 𝐴1 only has liked goods in 𝐺1, and

• for every 𝑆 ⊆ 𝐺2 we have |𝑁− (𝑆) | ≥ |𝑆 | where 𝑁− (𝑆) | are
the agents that have a liked good in 𝑆 .

Set 𝑝 𝑗 = 0 for all 𝑗 ∈ 𝐺2 and 𝑝 𝑗 = min𝑖∈𝐴1
𝑏𝑖 for all 𝑗 ∈ 𝐺1. Now

we run a DPSV-like [12] algorithm on 𝐴1 ∪𝐺1 to raise prices until

certain sets of goods become tight.

For each 𝑖 ∈ 𝐴, let 𝛽𝑖 be its effective budget at current prices
𝑝 , that is the minimum of its actual budget 𝑏𝑖 and the price of its

cheapest liked good. The algorithm will now raise all prices 𝑝 at

the same rate until there is a set 𝑆 ⊆ 𝐺1 which goes tight in the

sense that

∑
𝑖∈Γ (𝑆) 𝛽𝑖 =

∑
𝑗 ∈𝑆 𝑝 𝑗 where Γ is the collection of agents

which have a cheapest liked good in 𝑆 . At this point, we freeze the

prices of the goods in 𝑆 . If all prices have been frozen we are done.

Otherwise, we continue raising all unfrozen prices of goods in 𝐺1.

It is easy to see that if the prices keep rising, eventually each

agents’ effective budget will be their real budget and so a set must

become tight at some point. We will not go into detail here but it is

possible to find the next set which will go tight in polynomial time

similar as in DPSV. Finally, since we never unfreeze prices, there

will be at most 𝑛 iterations of the algorithm and hence it runs in

polynomial time overall.

We observe that as in the proof of the DPSV algorithm, for

any 𝑆 ⊆ 𝐺1, we have that

∑
𝑖∈Γ (𝑆) 𝛽𝑖 ≥

∑
𝑗 ∈𝐴 𝑝 𝑗 and

∑
𝑖∈𝐴1

𝛽𝑖 =∑
𝑗 ∈𝐺1

𝑝 𝑗 . It is then easy to show that this implies that for any price

𝜌 above 0, the corresponding flow network from Figure 2 supports

a flow of value 𝜌 |𝐺 (𝜌) | by the max-flow min-cut theorem. Thus we

can apply Lemma 20 to get an equilibrium allocation. □

Lemma 22. Let 𝑏 and 𝑏 ′ be two budget vectors with 0 ≤ 𝑏 ≤ 𝑏 ′.
Assume we are given an HZ equilibrium (𝑥, 𝑝) for the budgets 𝑏. Then
we can compute in polynomial time a new HZ equilibrium (𝑥 ′, 𝑝 ′)
with 𝑝 ≤ 𝑝 ′ for the budgets 𝑏 ′.

Proof. We will simply run the same algorithm as in the proof

of Theorem 21, except that this time we start with the prices 𝑝 .

More precisely, we increase the lowest non-zero price until a set

goes tight or it becomes equal to the next higher price, then repeat

this process until we once again get

∑
𝑖∈Γ (𝑆) 𝛽𝑖 ≥ ∑

𝑗 ∈𝐴 𝑝 𝑗 and∑
𝑖∈Γ (𝐺1) 𝛽𝑖 =

∑
𝑗 ∈𝐺1

𝑝 𝑗 where 𝐺1 is now defined as the set of

goods with positive prices in (𝑥, 𝑝). As in the proof of Theorem 21,

this will freeze all prices in polynomial time at which point we can

use a max-flow min-cut argument to construct the new equilibrium

allocation 𝑥 ′ in polynomial time. □

Let us now return to the approximate ADHZ setting. Instead of

budgets, fix now some fractional perfect matching of endowments

(𝑒𝑖 𝑗 )𝑖∈𝐴,𝑗 ∈𝐺 .
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Theorem 23. An 𝜖-approximate ADHZ equilibrium for rational
𝜖 ∈ (0, 1), can be computed in time polynomial in 1

𝜖 and 𝑛, i.e. by a
fully polynomial time approximation scheme.

Proof. We will iteratively apply Lemma 22. Start by setting

𝑏
(1)
𝑖
B 𝜖

2
for all 𝑖 ∈ 𝐴 and computing anHZ equilibrium (𝑥 (1) , 𝑝 (1) )

according to Theorem 21. Beginning with 𝑘 B 1, we run the fol-

lowing algorithm.

(1) Let 𝑏
(𝑘+1)
𝑖

B 𝜖
2
+ (1 − 𝜖

2
)∑𝑗 ∈𝐺 𝑝

(𝑘)
𝑗
𝑒𝑖 𝑗 for all 𝑖 ∈ 𝐴.

(2) Compute a new HZ equilibrium (𝑥 (𝑘+1) , 𝑝 (𝑘+1) ) for budgets
𝑏 (𝑘+1) according to Lemma 22 using the old equilibrium

(𝑥 (𝑘) , 𝑝 (𝑘) ) as the starting point. Note that since 𝑝 (𝑘) ≥
𝑝 (𝑘−1) we always have 𝑏 (𝑘+1) ≥ 𝑏 (𝑘) and so this is well-

defined.

(3) Set 𝑘 B 𝑘 + 1 and go back to step 1.

Note that∑︁
𝑖∈𝐴

𝑏
(𝑘+1)
𝑖

=
𝜖

2

𝑛 +
(
1 − 𝜖

2

) ∑︁
𝑗 ∈𝐺

𝑝
(𝑘)
𝑗

≤ 𝜖

2

𝑛 +
(
1 − 𝜖

2

) ∑︁
𝑖∈𝐴

𝑏
(𝑘)
𝑖

and thus ∑︁
𝑗 ∈𝐺

𝑝
(𝑘)
𝑗

≤
∑︁
𝑖∈𝐴

𝑏
(𝑘)
𝑖

≤ 𝑛

as otherwise we would get

∑
𝑖∈𝐴 𝑏

(𝑘+1)
𝑖

<
∑
𝑖∈𝐴 𝑏

(𝑘)
𝑖

.

Let 𝐾 be the first iteration such that 𝑝 (𝐾) ≤ 1−𝜖/2
1−𝜖 𝑝

(𝐾−1)
. Note

that

𝐾 ≤ 𝑛 log 1−𝜖/2
1−𝜖

(𝑛
𝜖

)
= 𝑂

(𝑛
𝜖
log

(𝑛
𝜖

))
since all non-zero prices are initialized to at least 𝜖 but are bounded

by 𝑛. Then (𝑥 (𝐾) , 𝑝 (𝐾) ) is an 𝜖-approximate ADHZ equilibrium

with budget vector 𝑏 (𝐾) because for all 𝑖 ∈ 𝐴 we have

𝑏
(𝐾)
𝑖

=
𝜖

2

+
(
1 − 𝜖

2

) ∑︁
𝑗 ∈𝐺

𝑝
(𝐾−1)
𝑗

𝑒𝑖 𝑗

∈
(1 − 𝜖)

∑︁
𝑗 ∈𝐺

𝑝
(𝐾)
𝑗

𝑒𝑖 𝑗 , 𝜖 +
∑︁
𝑗 ∈𝐺

𝑝
(𝐾)
𝑗

𝑒𝑖 𝑗

 .
Lastly, we note that since the number of iterations is bounded by

𝑂 ( 𝑛𝜖 log(
𝑛
𝜖 )) and each iteration runs in polynomial time, the total

runtime is polynomial in
1

𝜖 and 𝑛 as claimed. □

5 AN RCP FOR THE HZ SCHEME UNDER
DICHOTOMOUS UTILITIES

We will assume without loss of generality that each agent 𝑖 ∈ 𝐴
likes some good 𝑗 ∈ 𝐺 , i.e. 𝑢𝑖 𝑗 = 1. We will show that program (1)

given below is the required RCP.

max

∑
𝑖∈𝐴 log

∑
𝑗 ∈𝐺 𝑢𝑖 𝑗𝑥𝑖 𝑗

subject to ∀𝑗 ∈ 𝐺 :

∑
𝑖∈𝐴 𝑥𝑖 𝑗 ≤ 1

∀𝑖 ∈ 𝐴 :

∑
𝑗 ∈𝐺 𝑥𝑖 𝑗 ≤ 1

∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐺 : 𝑥𝑖 𝑗 ≥ 0

. (1)

Let 𝑝 𝑗 ’s and 𝛼𝑖 ’s denote the non-negative dual variables for the

first and second constraints, respectively.

Theorem 24. Any HZ equilibrium is an optimal solution to (1),
and every optimal solution of (1) can be trivially extended to an HZ
equilibrium. Furthermore, the latter can be expressed via rational
numbers whose denominators have polynomial, in 𝑛, number of bits,
thereby showing that (1) is a rational convex program.

Proof. Let 𝑢𝑖 :=
∑
𝑗 ∈𝐺 𝑢𝑖 𝑗𝑥𝑖 𝑗 . Clearly, in any HZ equilibrium,

since each agent 𝑖 is allocated an optimal bundle of goods, she will

be allocated a non-zero amount of a unit-utility good and hence will

satisfy 𝑢𝑖 > 0. Furthermore, in an optimal solution 𝑥 of (1), every

agent must have positive utility, because otherwise the objective

function value will be −∞. Therefore, ∀𝑖 ∈ 𝐴 : 𝑢𝑖 > 0.

The KKT conditions of this program are:

(1) ∀𝑖 ∈ 𝐴 : 𝛼𝑖 ≥ 0.

(2) ∀𝑗 ∈ 𝐺 : 𝑝 𝑗 ≥ 0.

(3) ∀𝑖 ∈ 𝐴 : If 𝛼𝑖 > 0 then

∑
𝑗 𝑥𝑖 𝑗 = 1.

(4) ∀𝑗 ∈ 𝐺 : If 𝑝 𝑗 > 0 then

∑
𝑖 𝑥𝑖 𝑗 = 1.

(5) ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐺 : 𝑢𝑖 𝑗 ≤ 𝑢𝑖 (𝑝 𝑗 + 𝛼𝑖 ).
(6) ∀𝑖 ∈ 𝐴, 𝑗 ∈ 𝐺 : 𝑥𝑖 𝑗 > 0 ⇒ 𝑢𝑖 𝑗 = 𝑢𝑖 (𝑝 𝑗 + 𝛼𝑖 ) .
To prove the forward direction of the first statement, let (𝑥, 𝑝)

be an HZ equilibrium. Since 𝑥 is a fractional perfect matching on

agents and goods, it satisfies the constraints of (1) and is hence a

feasible solution for it. We are left with proving optimality.

The KKT conditions 2, 3 and 4 are clearly satisfied by (𝑥, 𝑝). Next,
consider agent 𝑖 . If there is a good 𝑗 such that 𝑝 𝑗 ≤ 1 and 𝑢𝑖 𝑗 = 1,

then 𝑖 will be allocated one unit of the cheapest such goods. Assume

the price of the latter is 𝑝 . Define 𝛼𝑖 = 1− 𝑝 . Clearly 𝑢𝑖 = 1. Now, it

is easy to check that Conditions 1, 5 and 6 are also holding.

Next assume that every good 𝑗 such that 𝑢𝑖 𝑗 = 1 has 𝑝 𝑗 > 1

and let 𝑝 be the cheapest such price. Clearly, 𝑖’s optimal bundle

will contain 1/𝑝 amount of these goods, giving her total utility 1/𝑝 .
Since the equilibrium always has a zero-priced good, that good,

say 𝑗 , must have 𝑢𝑖 𝑗 = 0. Now, 𝑖 must be buying such zero-utility

zero-priced goods to get to one unit of goods. We will define 𝛼𝑖 = 0.

Again, it is easy to check that Conditions 1, 5 and 6 are holding.

Hence we get that (𝑥, 𝑝) is an optimal solution to (1).

Next, we prove the reverse direction of the first statement. Let

(𝑥, 𝑝) be an optimal solution to (1). Assume that agent 𝑖 is allocated

good 𝑗 , i.e. 𝑥𝑖 𝑗 > 0. We consider the following two cases:

(𝑎) 𝑢𝑖 𝑗 = 0. Using Condition 6 and 𝑢𝑖 > 0, we get that 𝑝 𝑗 = 𝛼𝑖 =

0.

(𝑏) 𝑢𝑖 𝑗 = 1. Using Conditions 5 and 6 and 𝑢𝑖 > 0, we get that the

price of good 𝑗 is the cheapest among all goods for which

𝑖’s utility is 1.

For each agent 𝑖 , multiply the equality in Condition 6 by 𝑥𝑖 𝑗 and

sum over all 𝑗 to get:∑︁
𝑗

𝑥𝑖 𝑗𝑢𝑖 𝑗 = 𝑢𝑖

∑︁
𝑗

𝑥𝑖 𝑗 (𝑝 𝑗 + 𝛼𝑖 )

After canceling 𝑢𝑖 from both sides we obtain∑︁
𝑗

𝑥𝑖 𝑗 (𝑝 𝑗 + 𝛼𝑖 ) = 1 =
∑︁
𝑗

𝑥𝑖 𝑗𝑝 𝑗 + 𝛼𝑖
∑︁
𝑗

𝑥𝑖 𝑗 .

Now, if𝛼𝑖 > 0, then

∑
𝑗 𝑥𝑖 𝑗 = 1 and if𝛼𝑖 = 0, then𝛼𝑖

∑
𝑗 𝑥𝑖 𝑗 = 0 = 𝛼𝑖 .

Therefore, in both cases 𝛼𝑖
∑
𝑗 𝑥𝑖 𝑗 = 𝛼𝑖 . Hence,∑︁

𝑗

𝑥𝑖 𝑗𝑝 𝑗 = 1 − 𝛼𝑖 . (2)
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We will view the dual variables 𝑝 of the optimal solution (𝑥, 𝑝)
as prices of goods. The above statement then implies that agent 𝑖’s

bundle costs 1 − 𝛼𝑖 .
Let 𝑆 denote the set of agents who get less than one unit of

goods, i.e. 𝑆 := {𝑖 ∈ 𝐴 | ∑
𝑗 𝑥𝑖 𝑗 < 1}, and let 𝑇 denote the set

of partially allocated goods, i.e. 𝑇 := { 𝑗 ∈ 𝐺 | ∑
𝑖 𝑥𝑖 𝑗 < 1}. By

Condition 4, 𝑝 𝑗 = 0 for each 𝑗 ∈ 𝑇 . Observe that if for 𝑖 ∈ 𝑆 and

𝑗 ∈ 𝑇 , 𝑢𝑖 𝑗 = 1, then by allocating a positive amount of good 𝑗 to 𝑖 ,

the objective function value of program (1) strictly increases, giving

a contradiction. Therefore, 𝑢𝑖 𝑗 = 0.

Since the number of agents equals the number of goods, the

total deficiency of agents in solution 𝑥 equals the total amount of

unallocated goods. Therefore, we can arbitrarily allocate unallo-

cated goods in 𝑇 to deficient agents in 𝑆 so as to obtain a fractional

perfect matching, say 𝑥 ′. Clearly, (𝑥 ′, 𝑝) is still an optimal solution

to (1) and is also an HZ equilibrium.

For the second statement, we will start with this solution (𝑥 ′, 𝑝).
Let 𝐺 ′ ⊆ 𝐺 denote the set of goods with prices bigger than 1, i.e.

𝐺 ′ = { 𝑗 ∈ 𝐺 | 𝑝 𝑗 > 1} and let 𝐴′ ⊆ 𝐴 be the set of agents who

have allocations from 𝐺 ′
. By Cases (𝑎) and (𝑏), for each 𝑖 ∈ 𝐴′

,

there is a 𝑗 ∈ 𝐺 ′
such that 𝑢𝑖 𝑗 = 1; moreover this is the cheapest

good for which 𝑖 has utility 1. We first show that each agent 𝑖 ∈ 𝐴′

satisfies 𝛼𝑖 = 0. If

∑
𝑗 ∈𝐺 𝑥𝑖 𝑗 < 1, this follows from KKT Condition 3.

Otherwise, there exists 𝑗 ∈ 𝐺 such that 𝑥𝑖 𝑗 > 0 and𝑢𝑖 𝑗 = 0. The last

statement follow from the fact that

∑
𝑗 𝑥𝑖 𝑗𝑝 𝑗 ≤ 1, which follows

from (2). Again, by Case (𝑎), 𝛼𝑖 = 0. Now, by (2), the money spent

by each agent in 𝐴′
is exactly 1 dollar on goods in 𝐺 ′

.

Consider the connected components of bipartite graph (𝐴′,𝐺 ′, 𝐸),
where the set 𝐸 = {(𝑖, 𝑗) ∈ (𝐴′,𝐺 ′) | 𝑥𝑖 𝑗 > 0}. Cases (𝑎) and (𝑏) im-

ply that all goods in a connected component 𝐶 must have the same

price, say 𝑝𝐶 . Clearly, the sum of prices of all goods in𝐶 equals the

total money of agents in𝐶 ; the latter is simply the number of agents

in 𝐶 . This implies that 𝑝𝐶 is rational. Clearly, there is a rational

allocation of 1/𝑝𝐶 amount of goods to every agent in 𝐶 .

Let 𝑖 ∈ 𝐴 such that the cheapest good for which 𝑖 has utility

1 has price 1. If 𝛼𝑖 = 0, by (2), 𝑖 buys 1 dollar, and hence 1 unit,

of such goods. If 𝛼 > 0, by KKT Condition 3,

∑
𝑗 ∈𝐺 𝑥𝑖 𝑗 = 1 and

therefore again 𝑖 has bought 1 unit of such goods. Now, without

loss of generality, we will assign to 𝑖 an entire unit of one such

good.

Finally, let 𝐺 ′′ ⊆ 𝐺 denote the set of goods with prices in the

interval (0, 1), i.e. 𝐺 ′′ = { 𝑗 ∈ 𝐺 | 0 < 𝑝 𝑗 < 1} and let 𝐴′′ ⊆ 𝐴 be

the set of agents who have allocations from 𝐺 ′′
. Let 𝑖 ∈ 𝐴′′

. Since∑
𝑗 𝑥𝑖 𝑗𝑝 𝑗 < 1, by (2) 𝛼 > 0. Therefore each agent in 𝐴′′

buys one

unit of goods from 𝐺 ′′
. Hence the allocation of goods from 𝐺 ′′

to

𝐴′′
forms a fractional perfect matching on (𝐺 ′′, 𝐴′′). Therefore,

we can pick any perfect matching consistent with this fractional

perfect matching and allocate goods from 𝐺 ′′
integrally to 𝐴′′

.

Hence in all cases, the allocation consists of rational numbers,

completing the proof. □

Remark 25. The proof of Theorem 24 shows that for the dichoto-
mous case, the dual of (1) yields equilibrium prices. In contrast, for
arbitrary utilities, there is no known mathematical construct, no mat-
ter how inefficient its computation, that yields equilibrium prices. In
a sense, this should not be surprising, since there is a polynomial time

algorithm for computing an equilibrium for the dichotomous case
[35].

Since the objective function in (1) is strictly concave, the utility

derived by each agent 𝑖 must be the same in all solutions of (1).

Hence, we get the following corollary which can be seen as a variant

of the well-known Rural Hospital Theorem; see [24] for the latter.

Corollary 26. Each agent gets the same utility under all HZ
equilibria with dichotomous utilities.

6 DISCUSSION
In this paper, we defined an 𝜖-approximate ADHZ model for one-

sided matching markets with endowments. We showed that 𝜖-

approximate ADHZ equilibrium always exists for every 𝜖 > 0. We

strengthened the non-existence of ADHZ equilibrium for the case

when the demand graph is not strongly connected and agents have

dichotomous utilities.We derived a novel combinatorial polynomial-

time algorithm for computing an 𝜖-ADHZ equilibrium under di-

chotomous utilities. Finally, we presented a rational convex program

(RCP) for the HZ model under dichotomous utilities, which also

implies that the problem is polynomial-time solvable.

Since finding an HZ equilibrium is PPAD-complete [10, 35], it

will be interesting to obtain a similar result for the 𝜖-approximate

ADHZ model. In Section 1.1 we stated a number of results that

build on the HZ scheme and others that are generalizations of the

HZ scheme. It will be interesting to explore similar extensions of

the 𝜖-approximate ADHZ model as well.
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